![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infrelb | Structured version Visualization version GIF version |
Description: If a nonempty set of real numbers has a lower bound, its infimum is less than or equal to any of its elements. (Contributed by Jeff Hankins, 15-Sep-2013.) (Revised by AV, 4-Sep-2020.) |
Ref | Expression |
---|---|
infrelb | ⊢ ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵) → inf(𝐵, ℝ, < ) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1129 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵) → 𝐵 ⊆ ℝ) | |
2 | ne0i 4220 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → 𝐵 ≠ ∅) | |
3 | 2 | 3ad2ant3 1128 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵) → 𝐵 ≠ ∅) |
4 | simp2 1130 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) | |
5 | infrecl 11471 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → inf(𝐵, ℝ, < ) ∈ ℝ) | |
6 | 1, 3, 4, 5 | syl3anc 1364 | . 2 ⊢ ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵) → inf(𝐵, ℝ, < ) ∈ ℝ) |
7 | ssel2 3884 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ ℝ) | |
8 | 7 | 3adant2 1124 | . 2 ⊢ ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ ℝ) |
9 | ltso 10568 | . . . . . . 7 ⊢ < Or ℝ | |
10 | 9 | a1i 11 | . . . . . 6 ⊢ (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝐴 ∈ 𝐵) → < Or ℝ) |
11 | simpll 763 | . . . . . . 7 ⊢ (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝐴 ∈ 𝐵) → 𝐵 ⊆ ℝ) | |
12 | 2 | adantl 482 | . . . . . . 7 ⊢ (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝐴 ∈ 𝐵) → 𝐵 ≠ ∅) |
13 | simplr 765 | . . . . . . 7 ⊢ (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝐴 ∈ 𝐵) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) | |
14 | infm3 11448 | . . . . . . 7 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐵 𝑧 < 𝑦))) | |
15 | 11, 12, 13, 14 | syl3anc 1364 | . . . . . 6 ⊢ (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝐴 ∈ 𝐵) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐵 𝑧 < 𝑦))) |
16 | 10, 15 | inflb 8799 | . . . . 5 ⊢ (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝐴 ∈ 𝐵) → (𝐴 ∈ 𝐵 → ¬ 𝐴 < inf(𝐵, ℝ, < ))) |
17 | 16 | expcom 414 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → (𝐴 ∈ 𝐵 → ¬ 𝐴 < inf(𝐵, ℝ, < )))) |
18 | 17 | pm2.43b 55 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → (𝐴 ∈ 𝐵 → ¬ 𝐴 < inf(𝐵, ℝ, < ))) |
19 | 18 | 3impia 1110 | . 2 ⊢ ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵) → ¬ 𝐴 < inf(𝐵, ℝ, < )) |
20 | 6, 8, 19 | nltled 10637 | 1 ⊢ ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵) → inf(𝐵, ℝ, < ) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1080 ∈ wcel 2081 ≠ wne 2984 ∀wral 3105 ∃wrex 3106 ⊆ wss 3859 ∅c0 4211 class class class wbr 4962 Or wor 5361 infcinf 8751 ℝcr 10382 < clt 10521 ≤ cle 10522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 ax-pre-sup 10461 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-po 5362 df-so 5363 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-er 8139 df-en 8358 df-dom 8359 df-sdom 8360 df-sup 8752 df-inf 8753 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 |
This theorem is referenced by: minveclem2 23712 minveclem4 23718 aalioulem2 24605 pilem2 24723 pilem3 24724 pntlem3 25867 minvecolem2 28343 minvecolem4 28348 taupilem2 34134 ptrecube 34423 heicant 34458 pellfundlb 38966 infrefilb 41192 climinf 41429 fourierdlem42 41976 |
Copyright terms: Public domain | W3C validator |