![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infrelb | Structured version Visualization version GIF version |
Description: If a nonempty set of real numbers has a lower bound, its infimum is less than or equal to any of its elements. (Contributed by Jeff Hankins, 15-Sep-2013.) (Revised by AV, 4-Sep-2020.) |
Ref | Expression |
---|---|
infrelb | ⊢ ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵) → inf(𝐵, ℝ, < ) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵) → 𝐵 ⊆ ℝ) | |
2 | ne0i 4334 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → 𝐵 ≠ ∅) | |
3 | 2 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵) → 𝐵 ≠ ∅) |
4 | simp2 1137 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) | |
5 | infrecl 12200 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → inf(𝐵, ℝ, < ) ∈ ℝ) | |
6 | 1, 3, 4, 5 | syl3anc 1371 | . 2 ⊢ ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵) → inf(𝐵, ℝ, < ) ∈ ℝ) |
7 | ssel2 3977 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ ℝ) | |
8 | 7 | 3adant2 1131 | . 2 ⊢ ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ ℝ) |
9 | ltso 11298 | . . . . . . 7 ⊢ < Or ℝ | |
10 | 9 | a1i 11 | . . . . . 6 ⊢ (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝐴 ∈ 𝐵) → < Or ℝ) |
11 | simpll 765 | . . . . . . 7 ⊢ (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝐴 ∈ 𝐵) → 𝐵 ⊆ ℝ) | |
12 | 2 | adantl 482 | . . . . . . 7 ⊢ (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝐴 ∈ 𝐵) → 𝐵 ≠ ∅) |
13 | simplr 767 | . . . . . . 7 ⊢ (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝐴 ∈ 𝐵) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) | |
14 | infm3 12177 | . . . . . . 7 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐵 𝑧 < 𝑦))) | |
15 | 11, 12, 13, 14 | syl3anc 1371 | . . . . . 6 ⊢ (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝐴 ∈ 𝐵) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐵 𝑧 < 𝑦))) |
16 | 10, 15 | inflb 9486 | . . . . 5 ⊢ (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝐴 ∈ 𝐵) → (𝐴 ∈ 𝐵 → ¬ 𝐴 < inf(𝐵, ℝ, < ))) |
17 | 16 | expcom 414 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → (𝐴 ∈ 𝐵 → ¬ 𝐴 < inf(𝐵, ℝ, < )))) |
18 | 17 | pm2.43b 55 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → (𝐴 ∈ 𝐵 → ¬ 𝐴 < inf(𝐵, ℝ, < ))) |
19 | 18 | 3impia 1117 | . 2 ⊢ ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵) → ¬ 𝐴 < inf(𝐵, ℝ, < )) |
20 | 6, 8, 19 | nltled 11368 | 1 ⊢ ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵) → inf(𝐵, ℝ, < ) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ⊆ wss 3948 ∅c0 4322 class class class wbr 5148 Or wor 5587 infcinf 9438 ℝcr 11111 < clt 11252 ≤ cle 11253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 |
This theorem is referenced by: infrefilb 12204 minveclem2 25167 minveclem4 25173 aalioulem2 26070 pilem2 26188 pilem3 26189 pntlem3 27336 minvecolem2 30383 minvecolem4 30388 taupilem2 36506 ptrecube 36791 heicant 36826 pellfundlb 41924 climinf 44621 fourierdlem42 45164 |
Copyright terms: Public domain | W3C validator |