MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infrelb Structured version   Visualization version   GIF version

Theorem infrelb 12253
Description: If a nonempty set of real numbers has a lower bound, its infimum is less than or equal to any of its elements. (Contributed by Jeff Hankins, 15-Sep-2013.) (Revised by AV, 4-Sep-2020.)
Assertion
Ref Expression
infrelb ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦𝐴𝐵) → inf(𝐵, ℝ, < ) ≤ 𝐴)
Distinct variable group:   𝑥,𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem infrelb
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp1 1137 . . 3 ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦𝐴𝐵) → 𝐵 ⊆ ℝ)
2 ne0i 4341 . . . 4 (𝐴𝐵𝐵 ≠ ∅)
323ad2ant3 1136 . . 3 ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦𝐴𝐵) → 𝐵 ≠ ∅)
4 simp2 1138 . . 3 ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦𝐴𝐵) → ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦)
5 infrecl 12250 . . 3 ((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦) → inf(𝐵, ℝ, < ) ∈ ℝ)
61, 3, 4, 5syl3anc 1373 . 2 ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦𝐴𝐵) → inf(𝐵, ℝ, < ) ∈ ℝ)
7 ssel2 3978 . . 3 ((𝐵 ⊆ ℝ ∧ 𝐴𝐵) → 𝐴 ∈ ℝ)
873adant2 1132 . 2 ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦𝐴𝐵) → 𝐴 ∈ ℝ)
9 ltso 11341 . . . . . . 7 < Or ℝ
109a1i 11 . . . . . 6 (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → < Or ℝ)
11 simpll 767 . . . . . . 7 (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → 𝐵 ⊆ ℝ)
122adantl 481 . . . . . . 7 (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → 𝐵 ≠ ∅)
13 simplr 769 . . . . . . 7 (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦)
14 infm3 12227 . . . . . . 7 ((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦) → ∃𝑥 ∈ ℝ (∀𝑦𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐵 𝑧 < 𝑦)))
1511, 12, 13, 14syl3anc 1373 . . . . . 6 (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → ∃𝑥 ∈ ℝ (∀𝑦𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐵 𝑧 < 𝑦)))
1610, 15inflb 9529 . . . . 5 (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → (𝐴𝐵 → ¬ 𝐴 < inf(𝐵, ℝ, < )))
1716expcom 413 . . . 4 (𝐴𝐵 → ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦) → (𝐴𝐵 → ¬ 𝐴 < inf(𝐵, ℝ, < ))))
1817pm2.43b 55 . . 3 ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦) → (𝐴𝐵 → ¬ 𝐴 < inf(𝐵, ℝ, < )))
19183impia 1118 . 2 ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦𝐴𝐵) → ¬ 𝐴 < inf(𝐵, ℝ, < ))
206, 8, 19nltled 11411 1 ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦𝐴𝐵) → inf(𝐵, ℝ, < ) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087  wcel 2108  wne 2940  wral 3061  wrex 3070  wss 3951  c0 4333   class class class wbr 5143   Or wor 5591  infcinf 9481  cr 11154   < clt 11295  cle 11296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495
This theorem is referenced by:  infrefilb  12254  minveclem2  25460  minveclem4  25466  aalioulem2  26375  pilem2  26496  pilem3  26497  pntlem3  27653  minvecolem2  30894  minvecolem4  30899  taupilem2  37323  ptrecube  37627  heicant  37662  hashscontpow1  42122  pellfundlb  42895  climinf  45621  fourierdlem42  46164
  Copyright terms: Public domain W3C validator