| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordsucss | Structured version Visualization version GIF version | ||
| Description: The successor of an element of an ordinal class is a subset of it. Lemma 1.14 of [Schloeder] p. 2. (Contributed by NM, 21-Jun-1998.) |
| Ref | Expression |
|---|---|
| ordsucss | ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordelord 6374 | . . . . 5 ⊢ ((Ord 𝐵 ∧ 𝐴 ∈ 𝐵) → Ord 𝐴) | |
| 2 | ordnbtwn 6447 | . . . . . . . 8 ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴)) | |
| 3 | imnan 399 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ suc 𝐴) ↔ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴)) | |
| 4 | 2, 3 | sylibr 234 | . . . . . . 7 ⊢ (Ord 𝐴 → (𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ suc 𝐴)) |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ suc 𝐴)) |
| 6 | ordsuc 7807 | . . . . . . 7 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
| 7 | ordtri1 6385 | . . . . . . 7 ⊢ ((Ord suc 𝐴 ∧ Ord 𝐵) → (suc 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴)) | |
| 8 | 6, 7 | sylanb 581 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (suc 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴)) |
| 9 | 5, 8 | sylibrd 259 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
| 10 | 1, 9 | sylan 580 | . . . 4 ⊢ (((Ord 𝐵 ∧ 𝐴 ∈ 𝐵) ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
| 11 | 10 | exp31 419 | . . 3 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)))) |
| 12 | 11 | pm2.43b 55 | . 2 ⊢ (𝐴 ∈ 𝐵 → (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵))) |
| 13 | 12 | pm2.43b 55 | 1 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3926 Ord word 6351 suc csuc 6354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 df-suc 6358 |
| This theorem is referenced by: ordelsuc 7814 ordsucelsuc 7816 orduniorsuc 7824 tfindsg2 7857 oaordi 8558 oawordeulem 8566 omeulem2 8595 oeworde 8605 oelimcl 8612 oeeui 8614 nnaordi 8630 nnawordex 8649 oaabs2 8661 omxpenlem 9087 inf3lem5 9646 cantnflt 9686 cantnflem1d 9702 cnfcom 9714 r1ordg 9792 rankr1ag 9816 cfslb2n 10282 cfsmolem 10284 fin23lem26 10339 isf32lem3 10369 ttukeylem7 10529 indpi 10921 nolesgn2ores 27636 nogesgn1ores 27638 nosupbday 27669 nosupres 27671 nosupbnd1lem1 27672 nosupbnd2 27680 noinfbday 27684 noinfres 27686 noinfbnd1lem1 27687 noinfbnd2 27695 onsucss 43290 omabs2 43356 onsucunifi 43394 nadd1suc 43416 |
| Copyright terms: Public domain | W3C validator |