MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsucss Structured version   Visualization version   GIF version

Theorem ordsucss 7803
Description: The successor of an element of an ordinal class is a subset of it. Lemma 1.14 of [Schloeder] p. 2. (Contributed by NM, 21-Jun-1998.)
Assertion
Ref Expression
ordsucss (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))

Proof of Theorem ordsucss
StepHypRef Expression
1 ordelord 6380 . . . . 5 ((Ord 𝐵𝐴𝐵) → Ord 𝐴)
2 ordnbtwn 6451 . . . . . . . 8 (Ord 𝐴 → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
3 imnan 399 . . . . . . . 8 ((𝐴𝐵 → ¬ 𝐵 ∈ suc 𝐴) ↔ ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
42, 3sylibr 233 . . . . . . 7 (Ord 𝐴 → (𝐴𝐵 → ¬ 𝐵 ∈ suc 𝐴))
54adantr 480 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 → ¬ 𝐵 ∈ suc 𝐴))
6 ordsuc 7798 . . . . . . 7 (Ord 𝐴 ↔ Ord suc 𝐴)
7 ordtri1 6391 . . . . . . 7 ((Ord suc 𝐴 ∧ Ord 𝐵) → (suc 𝐴𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴))
86, 7sylanb 580 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (suc 𝐴𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴))
95, 8sylibrd 259 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 → suc 𝐴𝐵))
101, 9sylan 579 . . . 4 (((Ord 𝐵𝐴𝐵) ∧ Ord 𝐵) → (𝐴𝐵 → suc 𝐴𝐵))
1110exp31 419 . . 3 (Ord 𝐵 → (𝐴𝐵 → (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))))
1211pm2.43b 55 . 2 (𝐴𝐵 → (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵)))
1312pm2.43b 55 1 (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wcel 2098  wss 3943  Ord word 6357  suc csuc 6360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-tr 5259  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-ord 6361  df-on 6362  df-suc 6364
This theorem is referenced by:  ordelsuc  7805  ordsucelsuc  7807  orduniorsuc  7815  tfindsg2  7848  oaordi  8547  oawordeulem  8555  omeulem2  8584  oeworde  8594  oelimcl  8601  oeeui  8603  nnaordi  8619  nnawordex  8638  oaabs2  8650  omxpenlem  9075  inf3lem5  9629  cantnflt  9669  cantnflem1d  9685  cnfcom  9697  r1ordg  9775  rankr1ag  9799  cfslb2n  10265  cfsmolem  10267  fin23lem26  10322  isf32lem3  10352  ttukeylem7  10512  indpi  10904  nolesgn2ores  27560  nogesgn1ores  27562  nosupbday  27593  nosupres  27595  nosupbnd1lem1  27596  nosupbnd2  27604  noinfbday  27608  noinfres  27610  noinfbnd1lem1  27611  noinfbnd2  27619  onsucss  42592  omabs2  42658  onsucunifi  42696  nadd1suc  42718
  Copyright terms: Public domain W3C validator