| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordsucss | Structured version Visualization version GIF version | ||
| Description: The successor of an element of an ordinal class is a subset of it. Lemma 1.14 of [Schloeder] p. 2. (Contributed by NM, 21-Jun-1998.) |
| Ref | Expression |
|---|---|
| ordsucss | ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordelord 6357 | . . . . 5 ⊢ ((Ord 𝐵 ∧ 𝐴 ∈ 𝐵) → Ord 𝐴) | |
| 2 | ordnbtwn 6430 | . . . . . . . 8 ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴)) | |
| 3 | imnan 399 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ suc 𝐴) ↔ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴)) | |
| 4 | 2, 3 | sylibr 234 | . . . . . . 7 ⊢ (Ord 𝐴 → (𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ suc 𝐴)) |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ suc 𝐴)) |
| 6 | ordsuc 7791 | . . . . . . 7 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
| 7 | ordtri1 6368 | . . . . . . 7 ⊢ ((Ord suc 𝐴 ∧ Ord 𝐵) → (suc 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴)) | |
| 8 | 6, 7 | sylanb 581 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (suc 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴)) |
| 9 | 5, 8 | sylibrd 259 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
| 10 | 1, 9 | sylan 580 | . . . 4 ⊢ (((Ord 𝐵 ∧ 𝐴 ∈ 𝐵) ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
| 11 | 10 | exp31 419 | . . 3 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)))) |
| 12 | 11 | pm2.43b 55 | . 2 ⊢ (𝐴 ∈ 𝐵 → (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵))) |
| 13 | 12 | pm2.43b 55 | 1 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3917 Ord word 6334 suc csuc 6337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 df-suc 6341 |
| This theorem is referenced by: ordelsuc 7798 ordsucelsuc 7800 orduniorsuc 7808 tfindsg2 7841 oaordi 8513 oawordeulem 8521 omeulem2 8550 oeworde 8560 oelimcl 8567 oeeui 8569 nnaordi 8585 nnawordex 8604 oaabs2 8616 omxpenlem 9047 inf3lem5 9592 cantnflt 9632 cantnflem1d 9648 cnfcom 9660 r1ordg 9738 rankr1ag 9762 cfslb2n 10228 cfsmolem 10230 fin23lem26 10285 isf32lem3 10315 ttukeylem7 10475 indpi 10867 nolesgn2ores 27591 nogesgn1ores 27593 nosupbday 27624 nosupres 27626 nosupbnd1lem1 27627 nosupbnd2 27635 noinfbday 27639 noinfres 27641 noinfbnd1lem1 27642 noinfbnd2 27650 onsucss 43262 omabs2 43328 onsucunifi 43366 nadd1suc 43388 |
| Copyright terms: Public domain | W3C validator |