| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordsucss | Structured version Visualization version GIF version | ||
| Description: The successor of an element of an ordinal class is a subset of it. Lemma 1.14 of [Schloeder] p. 2. (Contributed by NM, 21-Jun-1998.) |
| Ref | Expression |
|---|---|
| ordsucss | ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordelord 6333 | . . . . 5 ⊢ ((Ord 𝐵 ∧ 𝐴 ∈ 𝐵) → Ord 𝐴) | |
| 2 | ordnbtwn 6406 | . . . . . . . 8 ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴)) | |
| 3 | imnan 399 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ suc 𝐴) ↔ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴)) | |
| 4 | 2, 3 | sylibr 234 | . . . . . . 7 ⊢ (Ord 𝐴 → (𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ suc 𝐴)) |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ suc 𝐴)) |
| 6 | ordsuc 7750 | . . . . . . 7 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
| 7 | ordtri1 6344 | . . . . . . 7 ⊢ ((Ord suc 𝐴 ∧ Ord 𝐵) → (suc 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴)) | |
| 8 | 6, 7 | sylanb 581 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (suc 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴)) |
| 9 | 5, 8 | sylibrd 259 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
| 10 | 1, 9 | sylan 580 | . . . 4 ⊢ (((Ord 𝐵 ∧ 𝐴 ∈ 𝐵) ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
| 11 | 10 | exp31 419 | . . 3 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)))) |
| 12 | 11 | pm2.43b 55 | . 2 ⊢ (𝐴 ∈ 𝐵 → (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵))) |
| 13 | 12 | pm2.43b 55 | 1 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 ⊆ wss 3898 Ord word 6310 suc csuc 6313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6314 df-on 6315 df-suc 6317 |
| This theorem is referenced by: ordelsuc 7756 ordsucelsuc 7758 orduniorsuc 7766 tfindsg2 7798 oaordi 8467 oawordeulem 8475 omeulem2 8504 oeworde 8514 oelimcl 8521 oeeui 8523 nnaordi 8539 nnawordex 8558 oaabs2 8570 omxpenlem 8998 inf3lem5 9529 cantnflt 9569 cantnflem1d 9585 cnfcom 9597 r1ordg 9678 rankr1ag 9702 cfslb2n 10166 cfsmolem 10168 fin23lem26 10223 isf32lem3 10253 ttukeylem7 10413 indpi 10805 nolesgn2ores 27612 nogesgn1ores 27614 nosupbday 27645 nosupres 27647 nosupbnd1lem1 27648 nosupbnd2 27656 noinfbday 27660 noinfres 27662 noinfbnd1lem1 27663 noinfbnd2 27671 fineqvnttrclselem2 35163 onsucss 43383 omabs2 43449 onsucunifi 43487 nadd1suc 43509 |
| Copyright terms: Public domain | W3C validator |