MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsucss Structured version   Visualization version   GIF version

Theorem ordsucss 7248
Description: The successor of an element of an ordinal class is a subset of it. (Contributed by NM, 21-Jun-1998.)
Assertion
Ref Expression
ordsucss (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))

Proof of Theorem ordsucss
StepHypRef Expression
1 ordelord 5958 . . . . 5 ((Ord 𝐵𝐴𝐵) → Ord 𝐴)
2 ordnbtwn 6029 . . . . . . . 8 (Ord 𝐴 → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
3 imnan 388 . . . . . . . 8 ((𝐴𝐵 → ¬ 𝐵 ∈ suc 𝐴) ↔ ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
42, 3sylibr 225 . . . . . . 7 (Ord 𝐴 → (𝐴𝐵 → ¬ 𝐵 ∈ suc 𝐴))
54adantr 468 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 → ¬ 𝐵 ∈ suc 𝐴))
6 ordsuc 7244 . . . . . . 7 (Ord 𝐴 ↔ Ord suc 𝐴)
7 ordtri1 5969 . . . . . . 7 ((Ord suc 𝐴 ∧ Ord 𝐵) → (suc 𝐴𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴))
86, 7sylanb 572 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (suc 𝐴𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴))
95, 8sylibrd 250 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 → suc 𝐴𝐵))
101, 9sylan 571 . . . 4 (((Ord 𝐵𝐴𝐵) ∧ Ord 𝐵) → (𝐴𝐵 → suc 𝐴𝐵))
1110exp31 408 . . 3 (Ord 𝐵 → (𝐴𝐵 → (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))))
1211pm2.43b 55 . 2 (𝐴𝐵 → (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵)))
1312pm2.43b 55 1 (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wcel 2156  wss 3769  Ord word 5935  suc csuc 5938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pr 5096  ax-un 7179
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-ral 3101  df-rex 3102  df-rab 3105  df-v 3393  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-br 4845  df-opab 4907  df-tr 4947  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-ord 5939  df-on 5940  df-suc 5942
This theorem is referenced by:  ordelsuc  7250  ordsucelsuc  7252  orduniorsuc  7260  tfindsg2  7291  oaordi  7863  oawordeulem  7871  omeulem2  7900  oeworde  7910  oelimcl  7917  oeeui  7919  nnaordi  7935  nnawordex  7954  oaabs2  7962  omxpenlem  8300  inf3lem5  8776  cantnflt  8816  cantnflem1d  8832  cnfcom  8844  r1ordg  8888  rankr1ag  8912  cfslb2n  9375  cfsmolem  9377  fin23lem26  9432  isf32lem3  9462  ttukeylem7  9622  indpi  10014  nolesgn2ores  32146  nosupres  32174  nosupbnd1lem1  32175  nosupbnd2  32183
  Copyright terms: Public domain W3C validator