| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chlimi | Structured version Visualization version GIF version | ||
| Description: The limit property of a closed subspace of a Hilbert space. (Contributed by NM, 14-Sep-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chlim.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| chlimi | ⊢ ((𝐻 ∈ Cℋ ∧ 𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isch2 31152 | . . . 4 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) | |
| 2 | 1 | simprbi 496 | . . 3 ⊢ (𝐻 ∈ Cℋ → ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻)) |
| 3 | nnex 12192 | . . . . . . 7 ⊢ ℕ ∈ V | |
| 4 | fex 7200 | . . . . . . 7 ⊢ ((𝐹:ℕ⟶𝐻 ∧ ℕ ∈ V) → 𝐹 ∈ V) | |
| 5 | 3, 4 | mpan2 691 | . . . . . 6 ⊢ (𝐹:ℕ⟶𝐻 → 𝐹 ∈ V) |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐹 ∈ V) |
| 7 | feq1 6666 | . . . . . . . . . 10 ⊢ (𝑓 = 𝐹 → (𝑓:ℕ⟶𝐻 ↔ 𝐹:ℕ⟶𝐻)) | |
| 8 | breq1 5110 | . . . . . . . . . 10 ⊢ (𝑓 = 𝐹 → (𝑓 ⇝𝑣 𝑥 ↔ 𝐹 ⇝𝑣 𝑥)) | |
| 9 | 7, 8 | anbi12d 632 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → ((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) ↔ (𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥))) |
| 10 | 9 | imbi1d 341 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
| 11 | 10 | albidv 1920 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ∀𝑥((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
| 12 | 11 | spcgv 3562 | . . . . . 6 ⊢ (𝐹 ∈ V → (∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) → ∀𝑥((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
| 13 | chlim.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
| 14 | breq2 5111 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → (𝐹 ⇝𝑣 𝑥 ↔ 𝐹 ⇝𝑣 𝐴)) | |
| 15 | 14 | anbi2d 630 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥) ↔ (𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴))) |
| 16 | eleq1 2816 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐻 ↔ 𝐴 ∈ 𝐻)) | |
| 17 | 15, 16 | imbi12d 344 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻))) |
| 18 | 13, 17 | spcv 3571 | . . . . . 6 ⊢ (∀𝑥((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) → ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻)) |
| 19 | 12, 18 | syl6 35 | . . . . 5 ⊢ (𝐹 ∈ V → (∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) → ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻))) |
| 20 | 6, 19 | syl 17 | . . . 4 ⊢ ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → (∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) → ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻))) |
| 21 | 20 | pm2.43b 55 | . . 3 ⊢ (∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) → ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻)) |
| 22 | 2, 21 | syl 17 | . 2 ⊢ (𝐻 ∈ Cℋ → ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻)) |
| 23 | 22 | 3impib 1116 | 1 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∀wal 1538 = wceq 1540 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 ⟶wf 6507 ℕcn 12186 ⇝𝑣 chli 30856 Sℋ csh 30857 Cℋ cch 30858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-map 8801 df-nn 12187 df-ch 31150 |
| This theorem is referenced by: hhsscms 31207 chintcli 31260 chscllem4 31569 |
| Copyright terms: Public domain | W3C validator |