Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chlimi | Structured version Visualization version GIF version |
Description: The limit property of a closed subspace of a Hilbert space. (Contributed by NM, 14-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chlim.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
chlimi | ⊢ ((𝐻 ∈ Cℋ ∧ 𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isch2 29585 | . . . 4 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) | |
2 | 1 | simprbi 497 | . . 3 ⊢ (𝐻 ∈ Cℋ → ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻)) |
3 | nnex 11979 | . . . . . . 7 ⊢ ℕ ∈ V | |
4 | fex 7102 | . . . . . . 7 ⊢ ((𝐹:ℕ⟶𝐻 ∧ ℕ ∈ V) → 𝐹 ∈ V) | |
5 | 3, 4 | mpan2 688 | . . . . . 6 ⊢ (𝐹:ℕ⟶𝐻 → 𝐹 ∈ V) |
6 | 5 | adantr 481 | . . . . 5 ⊢ ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐹 ∈ V) |
7 | feq1 6581 | . . . . . . . . . 10 ⊢ (𝑓 = 𝐹 → (𝑓:ℕ⟶𝐻 ↔ 𝐹:ℕ⟶𝐻)) | |
8 | breq1 5077 | . . . . . . . . . 10 ⊢ (𝑓 = 𝐹 → (𝑓 ⇝𝑣 𝑥 ↔ 𝐹 ⇝𝑣 𝑥)) | |
9 | 7, 8 | anbi12d 631 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → ((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) ↔ (𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥))) |
10 | 9 | imbi1d 342 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
11 | 10 | albidv 1923 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ∀𝑥((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
12 | 11 | spcgv 3535 | . . . . . 6 ⊢ (𝐹 ∈ V → (∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) → ∀𝑥((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
13 | chlim.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
14 | breq2 5078 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → (𝐹 ⇝𝑣 𝑥 ↔ 𝐹 ⇝𝑣 𝐴)) | |
15 | 14 | anbi2d 629 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥) ↔ (𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴))) |
16 | eleq1 2826 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐻 ↔ 𝐴 ∈ 𝐻)) | |
17 | 15, 16 | imbi12d 345 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻))) |
18 | 13, 17 | spcv 3544 | . . . . . 6 ⊢ (∀𝑥((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) → ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻)) |
19 | 12, 18 | syl6 35 | . . . . 5 ⊢ (𝐹 ∈ V → (∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) → ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻))) |
20 | 6, 19 | syl 17 | . . . 4 ⊢ ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → (∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) → ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻))) |
21 | 20 | pm2.43b 55 | . . 3 ⊢ (∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) → ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻)) |
22 | 2, 21 | syl 17 | . 2 ⊢ (𝐻 ∈ Cℋ → ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻)) |
23 | 22 | 3impib 1115 | 1 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∀wal 1537 = wceq 1539 ∈ wcel 2106 Vcvv 3432 class class class wbr 5074 ⟶wf 6429 ℕcn 11973 ⇝𝑣 chli 29289 Sℋ csh 29290 Cℋ cch 29291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-1cn 10929 ax-addcl 10931 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-map 8617 df-nn 11974 df-ch 29583 |
This theorem is referenced by: hhsscms 29640 chintcli 29693 chscllem4 30002 |
Copyright terms: Public domain | W3C validator |