HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chlimi Structured version   Visualization version   GIF version

Theorem chlimi 28642
Description: The limit property of a closed subspace of a Hilbert space. (Contributed by NM, 14-Sep-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
chlim.1 𝐴 ∈ V
Assertion
Ref Expression
chlimi ((𝐻C𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻)

Proof of Theorem chlimi
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isch2 28631 . . . 4 (𝐻C ↔ (𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
21simprbi 492 . . 3 (𝐻C → ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻))
3 nnex 11364 . . . . . . 7 ℕ ∈ V
4 fex 6750 . . . . . . 7 ((𝐹:ℕ⟶𝐻 ∧ ℕ ∈ V) → 𝐹 ∈ V)
53, 4mpan2 682 . . . . . 6 (𝐹:ℕ⟶𝐻𝐹 ∈ V)
65adantr 474 . . . . 5 ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐹 ∈ V)
7 feq1 6263 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓:ℕ⟶𝐻𝐹:ℕ⟶𝐻))
8 breq1 4878 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓𝑣 𝑥𝐹𝑣 𝑥))
97, 8anbi12d 624 . . . . . . . . 9 (𝑓 = 𝐹 → ((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) ↔ (𝐹:ℕ⟶𝐻𝐹𝑣 𝑥)))
109imbi1d 333 . . . . . . . 8 (𝑓 = 𝐹 → (((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ((𝐹:ℕ⟶𝐻𝐹𝑣 𝑥) → 𝑥𝐻)))
1110albidv 2019 . . . . . . 7 (𝑓 = 𝐹 → (∀𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑥((𝐹:ℕ⟶𝐻𝐹𝑣 𝑥) → 𝑥𝐻)))
1211spcgv 3510 . . . . . 6 (𝐹 ∈ V → (∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) → ∀𝑥((𝐹:ℕ⟶𝐻𝐹𝑣 𝑥) → 𝑥𝐻)))
13 chlim.1 . . . . . . 7 𝐴 ∈ V
14 breq2 4879 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐹𝑣 𝑥𝐹𝑣 𝐴))
1514anbi2d 622 . . . . . . . 8 (𝑥 = 𝐴 → ((𝐹:ℕ⟶𝐻𝐹𝑣 𝑥) ↔ (𝐹:ℕ⟶𝐻𝐹𝑣 𝐴)))
16 eleq1 2894 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝐻𝐴𝐻))
1715, 16imbi12d 336 . . . . . . 7 (𝑥 = 𝐴 → (((𝐹:ℕ⟶𝐻𝐹𝑣 𝑥) → 𝑥𝐻) ↔ ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻)))
1813, 17spcv 3516 . . . . . 6 (∀𝑥((𝐹:ℕ⟶𝐻𝐹𝑣 𝑥) → 𝑥𝐻) → ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻))
1912, 18syl6 35 . . . . 5 (𝐹 ∈ V → (∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) → ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻)))
206, 19syl 17 . . . 4 ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → (∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) → ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻)))
2120pm2.43b 55 . . 3 (∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) → ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻))
222, 21syl 17 . 2 (𝐻C → ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻))
23223impib 1148 1 ((𝐻C𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1111  wal 1654   = wceq 1656  wcel 2164  Vcvv 3414   class class class wbr 4875  wf 6123  cn 11357  𝑣 chli 28335   S csh 28336   C cch 28337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-1cn 10317  ax-addcl 10319
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-map 8129  df-nn 11358  df-ch 28629
This theorem is referenced by:  hhsscms  28687  chintcli  28741  chscllem4  29050
  Copyright terms: Public domain W3C validator