Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chlimi | Structured version Visualization version GIF version |
Description: The limit property of a closed subspace of a Hilbert space. (Contributed by NM, 14-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chlim.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
chlimi | ⊢ ((𝐻 ∈ Cℋ ∧ 𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isch2 29486 | . . . 4 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) | |
2 | 1 | simprbi 496 | . . 3 ⊢ (𝐻 ∈ Cℋ → ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻)) |
3 | nnex 11909 | . . . . . . 7 ⊢ ℕ ∈ V | |
4 | fex 7084 | . . . . . . 7 ⊢ ((𝐹:ℕ⟶𝐻 ∧ ℕ ∈ V) → 𝐹 ∈ V) | |
5 | 3, 4 | mpan2 687 | . . . . . 6 ⊢ (𝐹:ℕ⟶𝐻 → 𝐹 ∈ V) |
6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐹 ∈ V) |
7 | feq1 6565 | . . . . . . . . . 10 ⊢ (𝑓 = 𝐹 → (𝑓:ℕ⟶𝐻 ↔ 𝐹:ℕ⟶𝐻)) | |
8 | breq1 5073 | . . . . . . . . . 10 ⊢ (𝑓 = 𝐹 → (𝑓 ⇝𝑣 𝑥 ↔ 𝐹 ⇝𝑣 𝑥)) | |
9 | 7, 8 | anbi12d 630 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → ((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) ↔ (𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥))) |
10 | 9 | imbi1d 341 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
11 | 10 | albidv 1924 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ∀𝑥((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
12 | 11 | spcgv 3525 | . . . . . 6 ⊢ (𝐹 ∈ V → (∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) → ∀𝑥((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
13 | chlim.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
14 | breq2 5074 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → (𝐹 ⇝𝑣 𝑥 ↔ 𝐹 ⇝𝑣 𝐴)) | |
15 | 14 | anbi2d 628 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥) ↔ (𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴))) |
16 | eleq1 2826 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐻 ↔ 𝐴 ∈ 𝐻)) | |
17 | 15, 16 | imbi12d 344 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻))) |
18 | 13, 17 | spcv 3534 | . . . . . 6 ⊢ (∀𝑥((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) → ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻)) |
19 | 12, 18 | syl6 35 | . . . . 5 ⊢ (𝐹 ∈ V → (∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) → ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻))) |
20 | 6, 19 | syl 17 | . . . 4 ⊢ ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → (∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) → ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻))) |
21 | 20 | pm2.43b 55 | . . 3 ⊢ (∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) → ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻)) |
22 | 2, 21 | syl 17 | . 2 ⊢ (𝐻 ∈ Cℋ → ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻)) |
23 | 22 | 3impib 1114 | 1 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∀wal 1537 = wceq 1539 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 ⟶wf 6414 ℕcn 11903 ⇝𝑣 chli 29190 Sℋ csh 29191 Cℋ cch 29192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-map 8575 df-nn 11904 df-ch 29484 |
This theorem is referenced by: hhsscms 29541 chintcli 29594 chscllem4 29903 |
Copyright terms: Public domain | W3C validator |