HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chlimi Structured version   Visualization version   GIF version

Theorem chlimi 30752
Description: The limit property of a closed subspace of a Hilbert space. (Contributed by NM, 14-Sep-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
chlim.1 𝐴 ∈ V
Assertion
Ref Expression
chlimi ((𝐻C𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻)

Proof of Theorem chlimi
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isch2 30741 . . . 4 (𝐻C ↔ (𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
21simprbi 495 . . 3 (𝐻C → ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻))
3 nnex 12224 . . . . . . 7 ℕ ∈ V
4 fex 7231 . . . . . . 7 ((𝐹:ℕ⟶𝐻 ∧ ℕ ∈ V) → 𝐹 ∈ V)
53, 4mpan2 687 . . . . . 6 (𝐹:ℕ⟶𝐻𝐹 ∈ V)
65adantr 479 . . . . 5 ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐹 ∈ V)
7 feq1 6699 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓:ℕ⟶𝐻𝐹:ℕ⟶𝐻))
8 breq1 5152 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓𝑣 𝑥𝐹𝑣 𝑥))
97, 8anbi12d 629 . . . . . . . . 9 (𝑓 = 𝐹 → ((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) ↔ (𝐹:ℕ⟶𝐻𝐹𝑣 𝑥)))
109imbi1d 340 . . . . . . . 8 (𝑓 = 𝐹 → (((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ((𝐹:ℕ⟶𝐻𝐹𝑣 𝑥) → 𝑥𝐻)))
1110albidv 1921 . . . . . . 7 (𝑓 = 𝐹 → (∀𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑥((𝐹:ℕ⟶𝐻𝐹𝑣 𝑥) → 𝑥𝐻)))
1211spcgv 3587 . . . . . 6 (𝐹 ∈ V → (∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) → ∀𝑥((𝐹:ℕ⟶𝐻𝐹𝑣 𝑥) → 𝑥𝐻)))
13 chlim.1 . . . . . . 7 𝐴 ∈ V
14 breq2 5153 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐹𝑣 𝑥𝐹𝑣 𝐴))
1514anbi2d 627 . . . . . . . 8 (𝑥 = 𝐴 → ((𝐹:ℕ⟶𝐻𝐹𝑣 𝑥) ↔ (𝐹:ℕ⟶𝐻𝐹𝑣 𝐴)))
16 eleq1 2819 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝐻𝐴𝐻))
1715, 16imbi12d 343 . . . . . . 7 (𝑥 = 𝐴 → (((𝐹:ℕ⟶𝐻𝐹𝑣 𝑥) → 𝑥𝐻) ↔ ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻)))
1813, 17spcv 3596 . . . . . 6 (∀𝑥((𝐹:ℕ⟶𝐻𝐹𝑣 𝑥) → 𝑥𝐻) → ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻))
1912, 18syl6 35 . . . . 5 (𝐹 ∈ V → (∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) → ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻)))
206, 19syl 17 . . . 4 ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → (∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) → ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻)))
2120pm2.43b 55 . . 3 (∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) → ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻))
222, 21syl 17 . 2 (𝐻C → ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻))
23223impib 1114 1 ((𝐻C𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1085  wal 1537   = wceq 1539  wcel 2104  Vcvv 3472   class class class wbr 5149  wf 6540  cn 12218  𝑣 chli 30445   S csh 30446   C cch 30447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-cnex 11170  ax-1cn 11172  ax-addcl 11174
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7860  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-map 8826  df-nn 12219  df-ch 30739
This theorem is referenced by:  hhsscms  30796  chintcli  30849  chscllem4  31158
  Copyright terms: Public domain W3C validator