HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chlimi Structured version   Visualization version   GIF version

Theorem chlimi 29596
Description: The limit property of a closed subspace of a Hilbert space. (Contributed by NM, 14-Sep-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
chlim.1 𝐴 ∈ V
Assertion
Ref Expression
chlimi ((𝐻C𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻)

Proof of Theorem chlimi
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isch2 29585 . . . 4 (𝐻C ↔ (𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
21simprbi 497 . . 3 (𝐻C → ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻))
3 nnex 11979 . . . . . . 7 ℕ ∈ V
4 fex 7102 . . . . . . 7 ((𝐹:ℕ⟶𝐻 ∧ ℕ ∈ V) → 𝐹 ∈ V)
53, 4mpan2 688 . . . . . 6 (𝐹:ℕ⟶𝐻𝐹 ∈ V)
65adantr 481 . . . . 5 ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐹 ∈ V)
7 feq1 6581 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓:ℕ⟶𝐻𝐹:ℕ⟶𝐻))
8 breq1 5077 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓𝑣 𝑥𝐹𝑣 𝑥))
97, 8anbi12d 631 . . . . . . . . 9 (𝑓 = 𝐹 → ((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) ↔ (𝐹:ℕ⟶𝐻𝐹𝑣 𝑥)))
109imbi1d 342 . . . . . . . 8 (𝑓 = 𝐹 → (((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ((𝐹:ℕ⟶𝐻𝐹𝑣 𝑥) → 𝑥𝐻)))
1110albidv 1923 . . . . . . 7 (𝑓 = 𝐹 → (∀𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑥((𝐹:ℕ⟶𝐻𝐹𝑣 𝑥) → 𝑥𝐻)))
1211spcgv 3535 . . . . . 6 (𝐹 ∈ V → (∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) → ∀𝑥((𝐹:ℕ⟶𝐻𝐹𝑣 𝑥) → 𝑥𝐻)))
13 chlim.1 . . . . . . 7 𝐴 ∈ V
14 breq2 5078 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐹𝑣 𝑥𝐹𝑣 𝐴))
1514anbi2d 629 . . . . . . . 8 (𝑥 = 𝐴 → ((𝐹:ℕ⟶𝐻𝐹𝑣 𝑥) ↔ (𝐹:ℕ⟶𝐻𝐹𝑣 𝐴)))
16 eleq1 2826 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝐻𝐴𝐻))
1715, 16imbi12d 345 . . . . . . 7 (𝑥 = 𝐴 → (((𝐹:ℕ⟶𝐻𝐹𝑣 𝑥) → 𝑥𝐻) ↔ ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻)))
1813, 17spcv 3544 . . . . . 6 (∀𝑥((𝐹:ℕ⟶𝐻𝐹𝑣 𝑥) → 𝑥𝐻) → ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻))
1912, 18syl6 35 . . . . 5 (𝐹 ∈ V → (∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) → ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻)))
206, 19syl 17 . . . 4 ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → (∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) → ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻)))
2120pm2.43b 55 . . 3 (∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) → ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻))
222, 21syl 17 . 2 (𝐻C → ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻))
23223impib 1115 1 ((𝐻C𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wal 1537   = wceq 1539  wcel 2106  Vcvv 3432   class class class wbr 5074  wf 6429  cn 11973  𝑣 chli 29289   S csh 29290   C cch 29291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-1cn 10929  ax-addcl 10931
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-map 8617  df-nn 11974  df-ch 29583
This theorem is referenced by:  hhsscms  29640  chintcli  29693  chscllem4  30002
  Copyright terms: Public domain W3C validator