HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chlimi Structured version   Visualization version   GIF version

Theorem chlimi 31263
Description: The limit property of a closed subspace of a Hilbert space. (Contributed by NM, 14-Sep-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
chlim.1 𝐴 ∈ V
Assertion
Ref Expression
chlimi ((𝐻C𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻)

Proof of Theorem chlimi
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isch2 31252 . . . 4 (𝐻C ↔ (𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
21simprbi 496 . . 3 (𝐻C → ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻))
3 nnex 12270 . . . . . . 7 ℕ ∈ V
4 fex 7246 . . . . . . 7 ((𝐹:ℕ⟶𝐻 ∧ ℕ ∈ V) → 𝐹 ∈ V)
53, 4mpan2 691 . . . . . 6 (𝐹:ℕ⟶𝐻𝐹 ∈ V)
65adantr 480 . . . . 5 ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐹 ∈ V)
7 feq1 6717 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓:ℕ⟶𝐻𝐹:ℕ⟶𝐻))
8 breq1 5151 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓𝑣 𝑥𝐹𝑣 𝑥))
97, 8anbi12d 632 . . . . . . . . 9 (𝑓 = 𝐹 → ((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) ↔ (𝐹:ℕ⟶𝐻𝐹𝑣 𝑥)))
109imbi1d 341 . . . . . . . 8 (𝑓 = 𝐹 → (((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ((𝐹:ℕ⟶𝐻𝐹𝑣 𝑥) → 𝑥𝐻)))
1110albidv 1918 . . . . . . 7 (𝑓 = 𝐹 → (∀𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑥((𝐹:ℕ⟶𝐻𝐹𝑣 𝑥) → 𝑥𝐻)))
1211spcgv 3596 . . . . . 6 (𝐹 ∈ V → (∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) → ∀𝑥((𝐹:ℕ⟶𝐻𝐹𝑣 𝑥) → 𝑥𝐻)))
13 chlim.1 . . . . . . 7 𝐴 ∈ V
14 breq2 5152 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐹𝑣 𝑥𝐹𝑣 𝐴))
1514anbi2d 630 . . . . . . . 8 (𝑥 = 𝐴 → ((𝐹:ℕ⟶𝐻𝐹𝑣 𝑥) ↔ (𝐹:ℕ⟶𝐻𝐹𝑣 𝐴)))
16 eleq1 2827 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝐻𝐴𝐻))
1715, 16imbi12d 344 . . . . . . 7 (𝑥 = 𝐴 → (((𝐹:ℕ⟶𝐻𝐹𝑣 𝑥) → 𝑥𝐻) ↔ ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻)))
1813, 17spcv 3605 . . . . . 6 (∀𝑥((𝐹:ℕ⟶𝐻𝐹𝑣 𝑥) → 𝑥𝐻) → ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻))
1912, 18syl6 35 . . . . 5 (𝐹 ∈ V → (∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) → ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻)))
206, 19syl 17 . . . 4 ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → (∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) → ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻)))
2120pm2.43b 55 . . 3 (∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) → ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻))
222, 21syl 17 . 2 (𝐻C → ((𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻))
23223impib 1115 1 ((𝐻C𝐹:ℕ⟶𝐻𝐹𝑣 𝐴) → 𝐴𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1535   = wceq 1537  wcel 2106  Vcvv 3478   class class class wbr 5148  wf 6559  cn 12264  𝑣 chli 30956   S csh 30957   C cch 30958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-1cn 11211  ax-addcl 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-map 8867  df-nn 12265  df-ch 31250
This theorem is referenced by:  hhsscms  31307  chintcli  31360  chscllem4  31669
  Copyright terms: Public domain W3C validator