![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chlimi | Structured version Visualization version GIF version |
Description: The limit property of a closed subspace of a Hilbert space. (Contributed by NM, 14-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chlim.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
chlimi | ⊢ ((𝐻 ∈ Cℋ ∧ 𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isch2 31148 | . . . 4 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) | |
2 | 1 | simprbi 495 | . . 3 ⊢ (𝐻 ∈ Cℋ → ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻)) |
3 | nnex 12265 | . . . . . . 7 ⊢ ℕ ∈ V | |
4 | fex 7242 | . . . . . . 7 ⊢ ((𝐹:ℕ⟶𝐻 ∧ ℕ ∈ V) → 𝐹 ∈ V) | |
5 | 3, 4 | mpan2 689 | . . . . . 6 ⊢ (𝐹:ℕ⟶𝐻 → 𝐹 ∈ V) |
6 | 5 | adantr 479 | . . . . 5 ⊢ ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐹 ∈ V) |
7 | feq1 6708 | . . . . . . . . . 10 ⊢ (𝑓 = 𝐹 → (𝑓:ℕ⟶𝐻 ↔ 𝐹:ℕ⟶𝐻)) | |
8 | breq1 5155 | . . . . . . . . . 10 ⊢ (𝑓 = 𝐹 → (𝑓 ⇝𝑣 𝑥 ↔ 𝐹 ⇝𝑣 𝑥)) | |
9 | 7, 8 | anbi12d 630 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → ((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) ↔ (𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥))) |
10 | 9 | imbi1d 340 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
11 | 10 | albidv 1915 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ∀𝑥((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
12 | 11 | spcgv 3581 | . . . . . 6 ⊢ (𝐹 ∈ V → (∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) → ∀𝑥((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
13 | chlim.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
14 | breq2 5156 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → (𝐹 ⇝𝑣 𝑥 ↔ 𝐹 ⇝𝑣 𝐴)) | |
15 | 14 | anbi2d 628 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥) ↔ (𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴))) |
16 | eleq1 2813 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐻 ↔ 𝐴 ∈ 𝐻)) | |
17 | 15, 16 | imbi12d 343 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻))) |
18 | 13, 17 | spcv 3590 | . . . . . 6 ⊢ (∀𝑥((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) → ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻)) |
19 | 12, 18 | syl6 35 | . . . . 5 ⊢ (𝐹 ∈ V → (∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) → ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻))) |
20 | 6, 19 | syl 17 | . . . 4 ⊢ ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → (∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) → ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻))) |
21 | 20 | pm2.43b 55 | . . 3 ⊢ (∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) → ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻)) |
22 | 2, 21 | syl 17 | . 2 ⊢ (𝐻 ∈ Cℋ → ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻)) |
23 | 22 | 3impib 1113 | 1 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 ∀wal 1531 = wceq 1533 ∈ wcel 2098 Vcvv 3461 class class class wbr 5152 ⟶wf 6549 ℕcn 12259 ⇝𝑣 chli 30852 Sℋ csh 30853 Cℋ cch 30854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 ax-cnex 11210 ax-1cn 11212 ax-addcl 11214 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5579 df-eprel 5585 df-po 5593 df-so 5594 df-fr 5636 df-we 5638 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-pred 6311 df-ord 6378 df-on 6379 df-lim 6380 df-suc 6381 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7426 df-oprab 7427 df-mpo 7428 df-om 7876 df-2nd 8003 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-map 8856 df-nn 12260 df-ch 31146 |
This theorem is referenced by: hhsscms 31203 chintcli 31256 chscllem4 31565 |
Copyright terms: Public domain | W3C validator |