Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chlimi | Structured version Visualization version GIF version |
Description: The limit property of a closed subspace of a Hilbert space. (Contributed by NM, 14-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chlim.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
chlimi | ⊢ ((𝐻 ∈ Cℋ ∧ 𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isch2 29717 | . . . 4 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) | |
2 | 1 | simprbi 497 | . . 3 ⊢ (𝐻 ∈ Cℋ → ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻)) |
3 | nnex 12058 | . . . . . . 7 ⊢ ℕ ∈ V | |
4 | fex 7141 | . . . . . . 7 ⊢ ((𝐹:ℕ⟶𝐻 ∧ ℕ ∈ V) → 𝐹 ∈ V) | |
5 | 3, 4 | mpan2 688 | . . . . . 6 ⊢ (𝐹:ℕ⟶𝐻 → 𝐹 ∈ V) |
6 | 5 | adantr 481 | . . . . 5 ⊢ ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐹 ∈ V) |
7 | feq1 6618 | . . . . . . . . . 10 ⊢ (𝑓 = 𝐹 → (𝑓:ℕ⟶𝐻 ↔ 𝐹:ℕ⟶𝐻)) | |
8 | breq1 5089 | . . . . . . . . . 10 ⊢ (𝑓 = 𝐹 → (𝑓 ⇝𝑣 𝑥 ↔ 𝐹 ⇝𝑣 𝑥)) | |
9 | 7, 8 | anbi12d 631 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → ((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) ↔ (𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥))) |
10 | 9 | imbi1d 341 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
11 | 10 | albidv 1922 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ∀𝑥((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
12 | 11 | spcgv 3543 | . . . . . 6 ⊢ (𝐹 ∈ V → (∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) → ∀𝑥((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
13 | chlim.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
14 | breq2 5090 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → (𝐹 ⇝𝑣 𝑥 ↔ 𝐹 ⇝𝑣 𝐴)) | |
15 | 14 | anbi2d 629 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥) ↔ (𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴))) |
16 | eleq1 2824 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐻 ↔ 𝐴 ∈ 𝐻)) | |
17 | 15, 16 | imbi12d 344 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻))) |
18 | 13, 17 | spcv 3552 | . . . . . 6 ⊢ (∀𝑥((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) → ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻)) |
19 | 12, 18 | syl6 35 | . . . . 5 ⊢ (𝐹 ∈ V → (∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) → ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻))) |
20 | 6, 19 | syl 17 | . . . 4 ⊢ ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → (∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) → ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻))) |
21 | 20 | pm2.43b 55 | . . 3 ⊢ (∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) → ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻)) |
22 | 2, 21 | syl 17 | . 2 ⊢ (𝐻 ∈ Cℋ → ((𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻)) |
23 | 22 | 3impib 1115 | 1 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∀wal 1538 = wceq 1540 ∈ wcel 2105 Vcvv 3440 class class class wbr 5086 ⟶wf 6461 ℕcn 12052 ⇝𝑣 chli 29421 Sℋ csh 29422 Cℋ cch 29423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-1cn 11008 ax-addcl 11010 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-map 8666 df-nn 12053 df-ch 29715 |
This theorem is referenced by: hhsscms 29772 chintcli 29825 chscllem4 30134 |
Copyright terms: Public domain | W3C validator |