Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lidldomn1 Structured version   Visualization version   GIF version

Theorem lidldomn1 48219
Description: If a (left) ideal (which is not the zero ideal) of a domain has a multiplicative identity element, the identity element is the identity of the domain. (Contributed by AV, 17-Feb-2020.)
Hypotheses
Ref Expression
lidldomn1.l 𝐿 = (LIdeal‘𝑅)
lidldomn1.t · = (.r𝑅)
lidldomn1.1 1 = (1r𝑅)
lidldomn1.0 0 = (0g𝑅)
Assertion
Ref Expression
lidldomn1 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → 𝐼 = 1 ))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑈   𝑥, ·
Allowed substitution hints:   𝑅(𝑥)   1 (𝑥)   𝐿(𝑥)   0 (𝑥)

Proof of Theorem lidldomn1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 domnring 20616 . . . 4 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
213ad2ant1 1133 . . 3 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑅 ∈ Ring)
3 simp2l 1200 . . 3 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑈𝐿)
4 simp2r 1201 . . 3 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑈 ≠ { 0 })
5 lidldomn1.l . . . 4 𝐿 = (LIdeal‘𝑅)
6 lidldomn1.0 . . . 4 0 = (0g𝑅)
75, 6lidlnz 21152 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝐿𝑈 ≠ { 0 }) → ∃𝑦𝑈 𝑦0 )
82, 3, 4, 7syl3anc 1373 . 2 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → ∃𝑦𝑈 𝑦0 )
9 oveq2 7395 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐼 · 𝑥) = (𝐼 · 𝑦))
10 id 22 . . . . . . . . . . 11 (𝑥 = 𝑦𝑥 = 𝑦)
119, 10eqeq12d 2745 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐼 · 𝑥) = 𝑥 ↔ (𝐼 · 𝑦) = 𝑦))
12 oveq1 7394 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥 · 𝐼) = (𝑦 · 𝐼))
1312, 10eqeq12d 2745 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑥 · 𝐼) = 𝑥 ↔ (𝑦 · 𝐼) = 𝑦))
1411, 13anbi12d 632 . . . . . . . . 9 (𝑥 = 𝑦 → (((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) ↔ ((𝐼 · 𝑦) = 𝑦 ∧ (𝑦 · 𝐼) = 𝑦)))
1514rspcva 3586 . . . . . . . 8 ((𝑦𝑈 ∧ ∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) → ((𝐼 · 𝑦) = 𝑦 ∧ (𝑦 · 𝐼) = 𝑦))
162adantr 480 . . . . . . . . . . . . . 14 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → 𝑅 ∈ Ring)
17 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (Base‘𝑅) = (Base‘𝑅)
1817, 5lidlss 21122 . . . . . . . . . . . . . . . . . . . 20 (𝑈𝐿𝑈 ⊆ (Base‘𝑅))
1918adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑈𝐿𝑈 ≠ { 0 }) → 𝑈 ⊆ (Base‘𝑅))
20193ad2ant2 1134 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑈 ⊆ (Base‘𝑅))
2120sseld 3945 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (𝑦𝑈𝑦 ∈ (Base‘𝑅)))
2221com12 32 . . . . . . . . . . . . . . . 16 (𝑦𝑈 → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑦 ∈ (Base‘𝑅)))
2322adantr 480 . . . . . . . . . . . . . . 15 ((𝑦𝑈𝑦0 ) → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑦 ∈ (Base‘𝑅)))
2423impcom 407 . . . . . . . . . . . . . 14 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → 𝑦 ∈ (Base‘𝑅))
25 lidldomn1.t . . . . . . . . . . . . . . 15 · = (.r𝑅)
26 lidldomn1.1 . . . . . . . . . . . . . . 15 1 = (1r𝑅)
2717, 25, 26ringlidm 20178 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅)) → ( 1 · 𝑦) = 𝑦)
2816, 24, 27syl2anc 584 . . . . . . . . . . . . 13 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ( 1 · 𝑦) = 𝑦)
29 eqeq2 2741 . . . . . . . . . . . . . . . 16 (𝑦 = ( 1 · 𝑦) → ((𝐼 · 𝑦) = 𝑦 ↔ (𝐼 · 𝑦) = ( 1 · 𝑦)))
3029eqcoms 2737 . . . . . . . . . . . . . . 15 (( 1 · 𝑦) = 𝑦 → ((𝐼 · 𝑦) = 𝑦 ↔ (𝐼 · 𝑦) = ( 1 · 𝑦)))
3130adantl 481 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) ∧ ( 1 · 𝑦) = 𝑦) → ((𝐼 · 𝑦) = 𝑦 ↔ (𝐼 · 𝑦) = ( 1 · 𝑦)))
32 ringgrp 20147 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
331, 32syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ Domn → 𝑅 ∈ Grp)
34333ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝑅 ∈ Grp)
3534adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → 𝑅 ∈ Grp)
3619sseld 3945 . . . . . . . . . . . . . . . . . . . . 21 ((𝑈𝐿𝑈 ≠ { 0 }) → (𝐼𝑈𝐼 ∈ (Base‘𝑅)))
3736a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Domn → ((𝑈𝐿𝑈 ≠ { 0 }) → (𝐼𝑈𝐼 ∈ (Base‘𝑅))))
38373imp 1110 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 ∈ (Base‘𝑅))
3938adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → 𝐼 ∈ (Base‘𝑅))
4017, 25ringcl 20159 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐼 · 𝑦) ∈ (Base‘𝑅))
4116, 39, 24, 40syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (𝐼 · 𝑦) ∈ (Base‘𝑅))
4217, 26ringidcl 20174 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
431, 42syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Domn → 1 ∈ (Base‘𝑅))
44433ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 1 ∈ (Base‘𝑅))
4544adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → 1 ∈ (Base‘𝑅))
4617, 25ringcl 20159 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ 1 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ( 1 · 𝑦) ∈ (Base‘𝑅))
4716, 45, 24, 46syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ( 1 · 𝑦) ∈ (Base‘𝑅))
48 eqid 2729 . . . . . . . . . . . . . . . . . 18 (-g𝑅) = (-g𝑅)
4917, 6, 48grpsubeq0 18958 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Grp ∧ (𝐼 · 𝑦) ∈ (Base‘𝑅) ∧ ( 1 · 𝑦) ∈ (Base‘𝑅)) → (((𝐼 · 𝑦)(-g𝑅)( 1 · 𝑦)) = 0 ↔ (𝐼 · 𝑦) = ( 1 · 𝑦)))
5035, 41, 47, 49syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (((𝐼 · 𝑦)(-g𝑅)( 1 · 𝑦)) = 0 ↔ (𝐼 · 𝑦) = ( 1 · 𝑦)))
5117, 25, 48, 16, 39, 45, 24ringsubdir 20217 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ((𝐼(-g𝑅) 1 ) · 𝑦) = ((𝐼 · 𝑦)(-g𝑅)( 1 · 𝑦)))
5251eqeq1d 2731 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (((𝐼(-g𝑅) 1 ) · 𝑦) = 0 ↔ ((𝐼 · 𝑦)(-g𝑅)( 1 · 𝑦)) = 0 ))
53 simpl1 1192 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → 𝑅 ∈ Domn)
5434, 38, 443jca 1128 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (𝑅 ∈ Grp ∧ 𝐼 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅)))
5554adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (𝑅 ∈ Grp ∧ 𝐼 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅)))
5617, 48grpsubcl 18952 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Grp ∧ 𝐼 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅)) → (𝐼(-g𝑅) 1 ) ∈ (Base‘𝑅))
5755, 56syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (𝐼(-g𝑅) 1 ) ∈ (Base‘𝑅))
5817, 25, 6domneq0 20617 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Domn ∧ (𝐼(-g𝑅) 1 ) ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (((𝐼(-g𝑅) 1 ) · 𝑦) = 0 ↔ ((𝐼(-g𝑅) 1 ) = 0𝑦 = 0 )))
5953, 57, 24, 58syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (((𝐼(-g𝑅) 1 ) · 𝑦) = 0 ↔ ((𝐼(-g𝑅) 1 ) = 0𝑦 = 0 )))
6017, 6, 48grpsubeq0 18958 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Grp ∧ 𝐼 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅)) → ((𝐼(-g𝑅) 1 ) = 0𝐼 = 1 ))
6155, 60syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ((𝐼(-g𝑅) 1 ) = 0𝐼 = 1 ))
6261biimpd 229 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ((𝐼(-g𝑅) 1 ) = 0𝐼 = 1 ))
63 eqneqall 2936 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 0 → (𝑦0𝐼 = 1 ))
6463com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝑦0 → (𝑦 = 0𝐼 = 1 ))
6564adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑈𝑦0 ) → (𝑦 = 0𝐼 = 1 ))
6665adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (𝑦 = 0𝐼 = 1 ))
6762, 66jaod 859 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (((𝐼(-g𝑅) 1 ) = 0𝑦 = 0 ) → 𝐼 = 1 ))
6859, 67sylbid 240 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (((𝐼(-g𝑅) 1 ) · 𝑦) = 0𝐼 = 1 ))
6952, 68sylbird 260 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → (((𝐼 · 𝑦)(-g𝑅)( 1 · 𝑦)) = 0𝐼 = 1 ))
7050, 69sylbird 260 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ((𝐼 · 𝑦) = ( 1 · 𝑦) → 𝐼 = 1 ))
7170adantr 480 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) ∧ ( 1 · 𝑦) = 𝑦) → ((𝐼 · 𝑦) = ( 1 · 𝑦) → 𝐼 = 1 ))
7231, 71sylbid 240 . . . . . . . . . . . . 13 ((((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) ∧ ( 1 · 𝑦) = 𝑦) → ((𝐼 · 𝑦) = 𝑦𝐼 = 1 ))
7328, 72mpdan 687 . . . . . . . . . . . 12 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ (𝑦𝑈𝑦0 )) → ((𝐼 · 𝑦) = 𝑦𝐼 = 1 ))
7473ex 412 . . . . . . . . . . 11 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → ((𝑦𝑈𝑦0 ) → ((𝐼 · 𝑦) = 𝑦𝐼 = 1 )))
7574com13 88 . . . . . . . . . 10 ((𝐼 · 𝑦) = 𝑦 → ((𝑦𝑈𝑦0 ) → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 = 1 )))
7675expd 415 . . . . . . . . 9 ((𝐼 · 𝑦) = 𝑦 → (𝑦𝑈 → (𝑦0 → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 = 1 ))))
7776adantr 480 . . . . . . . 8 (((𝐼 · 𝑦) = 𝑦 ∧ (𝑦 · 𝐼) = 𝑦) → (𝑦𝑈 → (𝑦0 → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 = 1 ))))
7815, 77syl 17 . . . . . . 7 ((𝑦𝑈 ∧ ∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) → (𝑦𝑈 → (𝑦0 → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 = 1 ))))
7978ex 412 . . . . . 6 (𝑦𝑈 → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → (𝑦𝑈 → (𝑦0 → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 = 1 )))))
8079pm2.43b 55 . . . . 5 (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → (𝑦𝑈 → (𝑦0 → ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → 𝐼 = 1 ))))
8180com14 96 . . . 4 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (𝑦𝑈 → (𝑦0 → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → 𝐼 = 1 ))))
8281imp 406 . . 3 (((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) ∧ 𝑦𝑈) → (𝑦0 → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → 𝐼 = 1 )))
8382rexlimdva 3134 . 2 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (∃𝑦𝑈 𝑦0 → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → 𝐼 = 1 )))
848, 83mpd 15 1 ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → 𝐼 = 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3914  {csn 4589  cfv 6511  (class class class)co 7387  Basecbs 17179  .rcmulr 17221  0gc0g 17402  Grpcgrp 18865  -gcsg 18867  1rcur 20090  Ringcrg 20142  Domncdomn 20601  LIdealclidl 21116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-nzr 20422  df-subrg 20479  df-domn 20604  df-lmod 20768  df-lss 20838  df-sra 21080  df-rgmod 21081  df-lidl 21118
This theorem is referenced by:  uzlidlring  48223
  Copyright terms: Public domain W3C validator