MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapfset Structured version   Visualization version   GIF version

Theorem mapfset 8784
Description: If 𝐵 is a set, the value of the set exponentiation (𝐵m 𝐴) is the class of all functions from 𝐴 to 𝐵. Generalisation of mapvalg 8770 (which does not require ax-rep 5221) to arbitrary domains. Note that the class {𝑓𝑓:𝐴𝐵} can only contain set-functions, as opposed to arbitrary class-functions. When 𝐴 is a proper class, there can be no set-functions on it, so the above class is empty (see also fsetdmprc0 8789), hence a set. In this case, both sides of the equality in this theorem are the empty set. (Contributed by AV, 8-Aug-2024.)
Assertion
Ref Expression
mapfset (𝐵𝑉 → {𝑓𝑓:𝐴𝐵} = (𝐵m 𝐴))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem mapfset
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 vex 3442 . . . 4 𝑚 ∈ V
2 feq1 6634 . . . 4 (𝑓 = 𝑚 → (𝑓:𝐴𝐵𝑚:𝐴𝐵))
31, 2elab 3637 . . 3 (𝑚 ∈ {𝑓𝑓:𝐴𝐵} ↔ 𝑚:𝐴𝐵)
4 simpr 484 . . . . . . 7 ((𝑚:𝐴𝐵𝐵𝑉) → 𝐵𝑉)
5 dmfex 7845 . . . . . . . . 9 ((𝑚 ∈ V ∧ 𝑚:𝐴𝐵) → 𝐴 ∈ V)
61, 5mpan 690 . . . . . . . 8 (𝑚:𝐴𝐵𝐴 ∈ V)
76adantr 480 . . . . . . 7 ((𝑚:𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
84, 7elmapd 8774 . . . . . 6 ((𝑚:𝐴𝐵𝐵𝑉) → (𝑚 ∈ (𝐵m 𝐴) ↔ 𝑚:𝐴𝐵))
98exbiri 810 . . . . 5 (𝑚:𝐴𝐵 → (𝐵𝑉 → (𝑚:𝐴𝐵𝑚 ∈ (𝐵m 𝐴))))
109pm2.43b 55 . . . 4 (𝐵𝑉 → (𝑚:𝐴𝐵𝑚 ∈ (𝐵m 𝐴)))
11 elmapi 8783 . . . 4 (𝑚 ∈ (𝐵m 𝐴) → 𝑚:𝐴𝐵)
1210, 11impbid1 225 . . 3 (𝐵𝑉 → (𝑚:𝐴𝐵𝑚 ∈ (𝐵m 𝐴)))
133, 12bitrid 283 . 2 (𝐵𝑉 → (𝑚 ∈ {𝑓𝑓:𝐴𝐵} ↔ 𝑚 ∈ (𝐵m 𝐴)))
1413eqrdv 2727 1 (𝐵𝑉 → {𝑓𝑓:𝐴𝐵} = (𝐵m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  Vcvv 3438  wf 6482  (class class class)co 7353  m cmap 8760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-map 8762
This theorem is referenced by:  mapssfset  8785  fsetex  8790
  Copyright terms: Public domain W3C validator