| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapfset | Structured version Visualization version GIF version | ||
| Description: If 𝐵 is a set, the value of the set exponentiation (𝐵 ↑m 𝐴) is the class of all functions from 𝐴 to 𝐵. Generalisation of mapvalg 8809 (which does not require ax-rep 5234) to arbitrary domains. Note that the class {𝑓 ∣ 𝑓:𝐴⟶𝐵} can only contain set-functions, as opposed to arbitrary class-functions. When 𝐴 is a proper class, there can be no set-functions on it, so the above class is empty (see also fsetdmprc0 8828), hence a set. In this case, both sides of the equality in this theorem are the empty set. (Contributed by AV, 8-Aug-2024.) |
| Ref | Expression |
|---|---|
| mapfset | ⊢ (𝐵 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = (𝐵 ↑m 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3451 | . . . 4 ⊢ 𝑚 ∈ V | |
| 2 | feq1 6666 | . . . 4 ⊢ (𝑓 = 𝑚 → (𝑓:𝐴⟶𝐵 ↔ 𝑚:𝐴⟶𝐵)) | |
| 3 | 1, 2 | elab 3646 | . . 3 ⊢ (𝑚 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↔ 𝑚:𝐴⟶𝐵) |
| 4 | simpr 484 | . . . . . . 7 ⊢ ((𝑚:𝐴⟶𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
| 5 | dmfex 7881 | . . . . . . . . 9 ⊢ ((𝑚 ∈ V ∧ 𝑚:𝐴⟶𝐵) → 𝐴 ∈ V) | |
| 6 | 1, 5 | mpan 690 | . . . . . . . 8 ⊢ (𝑚:𝐴⟶𝐵 → 𝐴 ∈ V) |
| 7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝑚:𝐴⟶𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) |
| 8 | 4, 7 | elmapd 8813 | . . . . . 6 ⊢ ((𝑚:𝐴⟶𝐵 ∧ 𝐵 ∈ 𝑉) → (𝑚 ∈ (𝐵 ↑m 𝐴) ↔ 𝑚:𝐴⟶𝐵)) |
| 9 | 8 | exbiri 810 | . . . . 5 ⊢ (𝑚:𝐴⟶𝐵 → (𝐵 ∈ 𝑉 → (𝑚:𝐴⟶𝐵 → 𝑚 ∈ (𝐵 ↑m 𝐴)))) |
| 10 | 9 | pm2.43b 55 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑚:𝐴⟶𝐵 → 𝑚 ∈ (𝐵 ↑m 𝐴))) |
| 11 | elmapi 8822 | . . . 4 ⊢ (𝑚 ∈ (𝐵 ↑m 𝐴) → 𝑚:𝐴⟶𝐵) | |
| 12 | 10, 11 | impbid1 225 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑚:𝐴⟶𝐵 ↔ 𝑚 ∈ (𝐵 ↑m 𝐴))) |
| 13 | 3, 12 | bitrid 283 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝑚 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↔ 𝑚 ∈ (𝐵 ↑m 𝐴))) |
| 14 | 13 | eqrdv 2727 | 1 ⊢ (𝐵 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = (𝐵 ↑m 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 Vcvv 3447 ⟶wf 6507 (class class class)co 7387 ↑m cmap 8799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 |
| This theorem is referenced by: mapssfset 8824 fsetex 8829 |
| Copyright terms: Public domain | W3C validator |