| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapfset | Structured version Visualization version GIF version | ||
| Description: If 𝐵 is a set, the value of the set exponentiation (𝐵 ↑m 𝐴) is the class of all functions from 𝐴 to 𝐵. Generalisation of mapvalg 8812 (which does not require ax-rep 5237) to arbitrary domains. Note that the class {𝑓 ∣ 𝑓:𝐴⟶𝐵} can only contain set-functions, as opposed to arbitrary class-functions. When 𝐴 is a proper class, there can be no set-functions on it, so the above class is empty (see also fsetdmprc0 8831), hence a set. In this case, both sides of the equality in this theorem are the empty set. (Contributed by AV, 8-Aug-2024.) |
| Ref | Expression |
|---|---|
| mapfset | ⊢ (𝐵 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = (𝐵 ↑m 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3454 | . . . 4 ⊢ 𝑚 ∈ V | |
| 2 | feq1 6669 | . . . 4 ⊢ (𝑓 = 𝑚 → (𝑓:𝐴⟶𝐵 ↔ 𝑚:𝐴⟶𝐵)) | |
| 3 | 1, 2 | elab 3649 | . . 3 ⊢ (𝑚 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↔ 𝑚:𝐴⟶𝐵) |
| 4 | simpr 484 | . . . . . . 7 ⊢ ((𝑚:𝐴⟶𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
| 5 | dmfex 7884 | . . . . . . . . 9 ⊢ ((𝑚 ∈ V ∧ 𝑚:𝐴⟶𝐵) → 𝐴 ∈ V) | |
| 6 | 1, 5 | mpan 690 | . . . . . . . 8 ⊢ (𝑚:𝐴⟶𝐵 → 𝐴 ∈ V) |
| 7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝑚:𝐴⟶𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) |
| 8 | 4, 7 | elmapd 8816 | . . . . . 6 ⊢ ((𝑚:𝐴⟶𝐵 ∧ 𝐵 ∈ 𝑉) → (𝑚 ∈ (𝐵 ↑m 𝐴) ↔ 𝑚:𝐴⟶𝐵)) |
| 9 | 8 | exbiri 810 | . . . . 5 ⊢ (𝑚:𝐴⟶𝐵 → (𝐵 ∈ 𝑉 → (𝑚:𝐴⟶𝐵 → 𝑚 ∈ (𝐵 ↑m 𝐴)))) |
| 10 | 9 | pm2.43b 55 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑚:𝐴⟶𝐵 → 𝑚 ∈ (𝐵 ↑m 𝐴))) |
| 11 | elmapi 8825 | . . . 4 ⊢ (𝑚 ∈ (𝐵 ↑m 𝐴) → 𝑚:𝐴⟶𝐵) | |
| 12 | 10, 11 | impbid1 225 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑚:𝐴⟶𝐵 ↔ 𝑚 ∈ (𝐵 ↑m 𝐴))) |
| 13 | 3, 12 | bitrid 283 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝑚 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↔ 𝑚 ∈ (𝐵 ↑m 𝐴))) |
| 14 | 13 | eqrdv 2728 | 1 ⊢ (𝐵 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = (𝐵 ↑m 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 Vcvv 3450 ⟶wf 6510 (class class class)co 7390 ↑m cmap 8802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 |
| This theorem is referenced by: mapssfset 8827 fsetex 8832 |
| Copyright terms: Public domain | W3C validator |