![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mapfset | Structured version Visualization version GIF version |
Description: If 𝐵 is a set, the value of the set exponentiation (𝐵 ↑m 𝐴) is the class of all functions from 𝐴 to 𝐵. Generalisation of mapvalg 8894 (which does not require ax-rep 5303) to arbitrary domains. Note that the class {𝑓 ∣ 𝑓:𝐴⟶𝐵} can only contain set-functions, as opposed to arbitrary class-functions. When 𝐴 is a proper class, there can be no set-functions on it, so the above class is empty (see also fsetdmprc0 8913), hence a set. In this case, both sides of the equality in this theorem are the empty set. (Contributed by AV, 8-Aug-2024.) |
Ref | Expression |
---|---|
mapfset | ⊢ (𝐵 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = (𝐵 ↑m 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3492 | . . . 4 ⊢ 𝑚 ∈ V | |
2 | feq1 6728 | . . . 4 ⊢ (𝑓 = 𝑚 → (𝑓:𝐴⟶𝐵 ↔ 𝑚:𝐴⟶𝐵)) | |
3 | 1, 2 | elab 3694 | . . 3 ⊢ (𝑚 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↔ 𝑚:𝐴⟶𝐵) |
4 | simpr 484 | . . . . . . 7 ⊢ ((𝑚:𝐴⟶𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
5 | dmfex 7945 | . . . . . . . . 9 ⊢ ((𝑚 ∈ V ∧ 𝑚:𝐴⟶𝐵) → 𝐴 ∈ V) | |
6 | 1, 5 | mpan 689 | . . . . . . . 8 ⊢ (𝑚:𝐴⟶𝐵 → 𝐴 ∈ V) |
7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝑚:𝐴⟶𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) |
8 | 4, 7 | elmapd 8898 | . . . . . 6 ⊢ ((𝑚:𝐴⟶𝐵 ∧ 𝐵 ∈ 𝑉) → (𝑚 ∈ (𝐵 ↑m 𝐴) ↔ 𝑚:𝐴⟶𝐵)) |
9 | 8 | exbiri 810 | . . . . 5 ⊢ (𝑚:𝐴⟶𝐵 → (𝐵 ∈ 𝑉 → (𝑚:𝐴⟶𝐵 → 𝑚 ∈ (𝐵 ↑m 𝐴)))) |
10 | 9 | pm2.43b 55 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑚:𝐴⟶𝐵 → 𝑚 ∈ (𝐵 ↑m 𝐴))) |
11 | elmapi 8907 | . . . 4 ⊢ (𝑚 ∈ (𝐵 ↑m 𝐴) → 𝑚:𝐴⟶𝐵) | |
12 | 10, 11 | impbid1 225 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑚:𝐴⟶𝐵 ↔ 𝑚 ∈ (𝐵 ↑m 𝐴))) |
13 | 3, 12 | bitrid 283 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝑚 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↔ 𝑚 ∈ (𝐵 ↑m 𝐴))) |
14 | 13 | eqrdv 2738 | 1 ⊢ (𝐵 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = (𝐵 ↑m 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 Vcvv 3488 ⟶wf 6569 (class class class)co 7448 ↑m cmap 8884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 |
This theorem is referenced by: mapssfset 8909 fsetex 8914 |
Copyright terms: Public domain | W3C validator |