MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapfset Structured version   Visualization version   GIF version

Theorem mapfset 8908
Description: If 𝐵 is a set, the value of the set exponentiation (𝐵m 𝐴) is the class of all functions from 𝐴 to 𝐵. Generalisation of mapvalg 8894 (which does not require ax-rep 5303) to arbitrary domains. Note that the class {𝑓𝑓:𝐴𝐵} can only contain set-functions, as opposed to arbitrary class-functions. When 𝐴 is a proper class, there can be no set-functions on it, so the above class is empty (see also fsetdmprc0 8913), hence a set. In this case, both sides of the equality in this theorem are the empty set. (Contributed by AV, 8-Aug-2024.)
Assertion
Ref Expression
mapfset (𝐵𝑉 → {𝑓𝑓:𝐴𝐵} = (𝐵m 𝐴))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem mapfset
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 vex 3492 . . . 4 𝑚 ∈ V
2 feq1 6728 . . . 4 (𝑓 = 𝑚 → (𝑓:𝐴𝐵𝑚:𝐴𝐵))
31, 2elab 3694 . . 3 (𝑚 ∈ {𝑓𝑓:𝐴𝐵} ↔ 𝑚:𝐴𝐵)
4 simpr 484 . . . . . . 7 ((𝑚:𝐴𝐵𝐵𝑉) → 𝐵𝑉)
5 dmfex 7945 . . . . . . . . 9 ((𝑚 ∈ V ∧ 𝑚:𝐴𝐵) → 𝐴 ∈ V)
61, 5mpan 689 . . . . . . . 8 (𝑚:𝐴𝐵𝐴 ∈ V)
76adantr 480 . . . . . . 7 ((𝑚:𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
84, 7elmapd 8898 . . . . . 6 ((𝑚:𝐴𝐵𝐵𝑉) → (𝑚 ∈ (𝐵m 𝐴) ↔ 𝑚:𝐴𝐵))
98exbiri 810 . . . . 5 (𝑚:𝐴𝐵 → (𝐵𝑉 → (𝑚:𝐴𝐵𝑚 ∈ (𝐵m 𝐴))))
109pm2.43b 55 . . . 4 (𝐵𝑉 → (𝑚:𝐴𝐵𝑚 ∈ (𝐵m 𝐴)))
11 elmapi 8907 . . . 4 (𝑚 ∈ (𝐵m 𝐴) → 𝑚:𝐴𝐵)
1210, 11impbid1 225 . . 3 (𝐵𝑉 → (𝑚:𝐴𝐵𝑚 ∈ (𝐵m 𝐴)))
133, 12bitrid 283 . 2 (𝐵𝑉 → (𝑚 ∈ {𝑓𝑓:𝐴𝐵} ↔ 𝑚 ∈ (𝐵m 𝐴)))
1413eqrdv 2738 1 (𝐵𝑉 → {𝑓𝑓:𝐴𝐵} = (𝐵m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  Vcvv 3488  wf 6569  (class class class)co 7448  m cmap 8884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886
This theorem is referenced by:  mapssfset  8909  fsetex  8914
  Copyright terms: Public domain W3C validator