MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ico0 Structured version   Visualization version   GIF version

Theorem ico0 13430
Description: An empty open interval of extended reals. (Contributed by FL, 30-May-2014.)
Assertion
Ref Expression
ico0 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵𝐴))

Proof of Theorem ico0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 icoval 13422 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴[,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < 𝐵)})
21eqeq1d 2737 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < 𝐵)} = ∅))
3 df-ne 2939 . . . . . 6 ({𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < 𝐵)} ≠ ∅ ↔ ¬ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < 𝐵)} = ∅)
4 rabn0 4395 . . . . . 6 ({𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < 𝐵)} ≠ ∅ ↔ ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥 < 𝐵))
53, 4bitr3i 277 . . . . 5 (¬ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < 𝐵)} = ∅ ↔ ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥 < 𝐵))
6 xrlelttr 13195 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴𝑥𝑥 < 𝐵) → 𝐴 < 𝐵))
763com23 1125 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → ((𝐴𝑥𝑥 < 𝐵) → 𝐴 < 𝐵))
873expa 1117 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → ((𝐴𝑥𝑥 < 𝐵) → 𝐴 < 𝐵))
98rexlimdva 3153 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴𝑥𝑥 < 𝐵) → 𝐴 < 𝐵))
10 qbtwnxr 13239 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
11 qre 12993 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
1211rexrd 11309 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ*)
1312a1i 11 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵)) → (𝑥 ∈ ℚ → 𝑥 ∈ ℝ*))
14 simpr1 1193 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵)) → 𝐴 ∈ ℝ*)
15 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵)) → 𝑥 ∈ ℝ*)
16 xrltle 13188 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (𝐴 < 𝑥𝐴𝑥))
1714, 15, 16syl2anc 584 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵)) → (𝐴 < 𝑥𝐴𝑥))
1817anim1d 611 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵)) → ((𝐴 < 𝑥𝑥 < 𝐵) → (𝐴𝑥𝑥 < 𝐵)))
1913, 18anim12d 609 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵)) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < 𝐵))))
2019ex 412 . . . . . . . . . . . 12 (𝑥 ∈ ℝ* → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < 𝐵)))))
2112, 20syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℚ → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < 𝐵)))))
2221adantr 480 . . . . . . . . . 10 ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < 𝐵)))))
2322pm2.43b 55 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < 𝐵))))
2423reximdv2 3162 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵) → ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥 < 𝐵)))
2510, 24mpd 15 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥 < 𝐵))
26253expia 1120 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥 < 𝐵)))
279, 26impbid 212 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴𝑥𝑥 < 𝐵) ↔ 𝐴 < 𝐵))
285, 27bitrid 283 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < 𝐵)} = ∅ ↔ 𝐴 < 𝐵))
29 xrltnle 11326 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
3028, 29bitrd 279 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < 𝐵)} = ∅ ↔ ¬ 𝐵𝐴))
3130con4bid 317 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ({𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < 𝐵)} = ∅ ↔ 𝐵𝐴))
322, 31bitrd 279 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wrex 3068  {crab 3433  c0 4339   class class class wbr 5148  (class class class)co 7431  *cxr 11292   < clt 11293  cle 11294  cq 12988  [,)cico 13386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-ico 13390
This theorem is referenced by:  icombl  25613  ioombl  25614  difioo  32791  volico  45939  voliooico  45948  voliccico  45955  ovn0lem  46521  ovnhoilem1  46557  hspmbllem1  46582
  Copyright terms: Public domain W3C validator