MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ico0 Structured version   Visualization version   GIF version

Theorem ico0 13286
Description: An empty open interval of extended reals. (Contributed by FL, 30-May-2014.)
Assertion
Ref Expression
ico0 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵𝐴))

Proof of Theorem ico0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 icoval 13278 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴[,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < 𝐵)})
21eqeq1d 2733 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < 𝐵)} = ∅))
3 df-ne 2929 . . . . . 6 ({𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < 𝐵)} ≠ ∅ ↔ ¬ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < 𝐵)} = ∅)
4 rabn0 4334 . . . . . 6 ({𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < 𝐵)} ≠ ∅ ↔ ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥 < 𝐵))
53, 4bitr3i 277 . . . . 5 (¬ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < 𝐵)} = ∅ ↔ ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥 < 𝐵))
6 xrlelttr 13050 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴𝑥𝑥 < 𝐵) → 𝐴 < 𝐵))
763com23 1126 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → ((𝐴𝑥𝑥 < 𝐵) → 𝐴 < 𝐵))
873expa 1118 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → ((𝐴𝑥𝑥 < 𝐵) → 𝐴 < 𝐵))
98rexlimdva 3133 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴𝑥𝑥 < 𝐵) → 𝐴 < 𝐵))
10 qbtwnxr 13094 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
11 qre 12846 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
1211rexrd 11157 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ*)
1312a1i 11 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵)) → (𝑥 ∈ ℚ → 𝑥 ∈ ℝ*))
14 simpr1 1195 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵)) → 𝐴 ∈ ℝ*)
15 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵)) → 𝑥 ∈ ℝ*)
16 xrltle 13043 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (𝐴 < 𝑥𝐴𝑥))
1714, 15, 16syl2anc 584 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵)) → (𝐴 < 𝑥𝐴𝑥))
1817anim1d 611 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵)) → ((𝐴 < 𝑥𝑥 < 𝐵) → (𝐴𝑥𝑥 < 𝐵)))
1913, 18anim12d 609 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵)) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < 𝐵))))
2019ex 412 . . . . . . . . . . . 12 (𝑥 ∈ ℝ* → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < 𝐵)))))
2112, 20syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℚ → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < 𝐵)))))
2221adantr 480 . . . . . . . . . 10 ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < 𝐵)))))
2322pm2.43b 55 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥 < 𝐵))))
2423reximdv2 3142 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵) → ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥 < 𝐵)))
2510, 24mpd 15 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥 < 𝐵))
26253expia 1121 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥 < 𝐵)))
279, 26impbid 212 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴𝑥𝑥 < 𝐵) ↔ 𝐴 < 𝐵))
285, 27bitrid 283 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < 𝐵)} = ∅ ↔ 𝐴 < 𝐵))
29 xrltnle 11174 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
3028, 29bitrd 279 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < 𝐵)} = ∅ ↔ ¬ 𝐵𝐴))
3130con4bid 317 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ({𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < 𝐵)} = ∅ ↔ 𝐵𝐴))
322, 31bitrd 279 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056  {crab 3395  c0 4278   class class class wbr 5086  (class class class)co 7341  *cxr 11140   < clt 11141  cle 11142  cq 12841  [,)cico 13242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-n0 12377  df-z 12464  df-uz 12728  df-q 12842  df-ico 13246
This theorem is referenced by:  icombl  25487  ioombl  25488  difioo  32757  volico  46021  voliooico  46030  voliccico  46037  ovn0lem  46603  ovnhoilem1  46639  hspmbllem1  46664
  Copyright terms: Public domain W3C validator