MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmulcl Structured version   Visualization version   GIF version

Theorem nnmulcl 12177
Description: Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.) Remove dependency on ax-mulcom 11115 and ax-mulass 11117. (Revised by Steven Nguyen, 24-Sep-2022.)
Assertion
Ref Expression
nnmulcl ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ)

Proof of Theorem nnmulcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7365 . . . . 5 (𝑥 = 1 → (𝐴 · 𝑥) = (𝐴 · 1))
21eleq1d 2822 . . . 4 (𝑥 = 1 → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · 1) ∈ ℕ))
32imbi2d 340 . . 3 (𝑥 = 1 → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · 1) ∈ ℕ)))
4 oveq2 7365 . . . . 5 (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦))
54eleq1d 2822 . . . 4 (𝑥 = 𝑦 → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · 𝑦) ∈ ℕ))
65imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · 𝑦) ∈ ℕ)))
7 oveq2 7365 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐴 · 𝑥) = (𝐴 · (𝑦 + 1)))
87eleq1d 2822 . . . 4 (𝑥 = (𝑦 + 1) → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · (𝑦 + 1)) ∈ ℕ))
98imbi2d 340 . . 3 (𝑥 = (𝑦 + 1) → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ)))
10 oveq2 7365 . . . . 5 (𝑥 = 𝐵 → (𝐴 · 𝑥) = (𝐴 · 𝐵))
1110eleq1d 2822 . . . 4 (𝑥 = 𝐵 → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · 𝐵) ∈ ℕ))
1211imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · 𝐵) ∈ ℕ)))
13 nnre 12160 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
14 ax-1rid 11121 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
1514eleq1d 2822 . . . . 5 (𝐴 ∈ ℝ → ((𝐴 · 1) ∈ ℕ ↔ 𝐴 ∈ ℕ))
1615biimprd 247 . . . 4 (𝐴 ∈ ℝ → (𝐴 ∈ ℕ → (𝐴 · 1) ∈ ℕ))
1713, 16mpcom 38 . . 3 (𝐴 ∈ ℕ → (𝐴 · 1) ∈ ℕ)
18 nnaddcl 12176 . . . . . . . 8 (((𝐴 · 𝑦) ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 · 𝑦) + 𝐴) ∈ ℕ)
1918ancoms 459 . . . . . . 7 ((𝐴 ∈ ℕ ∧ (𝐴 · 𝑦) ∈ ℕ) → ((𝐴 · 𝑦) + 𝐴) ∈ ℕ)
20 nncn 12161 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
21 nncn 12161 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
22 ax-1cn 11109 . . . . . . . . . . 11 1 ∈ ℂ
23 adddi 11140 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1)))
2422, 23mp3an3 1450 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1)))
2520, 21, 24syl2an 596 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1)))
2613, 14syl 17 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (𝐴 · 1) = 𝐴)
2726adantr 481 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 · 1) = 𝐴)
2827oveq2d 7373 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 · 𝑦) + (𝐴 · 1)) = ((𝐴 · 𝑦) + 𝐴))
2925, 28eqtrd 2776 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + 𝐴))
3029eleq1d 2822 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 · (𝑦 + 1)) ∈ ℕ ↔ ((𝐴 · 𝑦) + 𝐴) ∈ ℕ))
3119, 30syl5ibr 245 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 ∈ ℕ ∧ (𝐴 · 𝑦) ∈ ℕ) → (𝐴 · (𝑦 + 1)) ∈ ℕ))
3231exp4b 431 . . . . 5 (𝐴 ∈ ℕ → (𝑦 ∈ ℕ → (𝐴 ∈ ℕ → ((𝐴 · 𝑦) ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ))))
3332pm2.43b 55 . . . 4 (𝑦 ∈ ℕ → (𝐴 ∈ ℕ → ((𝐴 · 𝑦) ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ)))
3433a2d 29 . . 3 (𝑦 ∈ ℕ → ((𝐴 ∈ ℕ → (𝐴 · 𝑦) ∈ ℕ) → (𝐴 ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ)))
353, 6, 9, 12, 17, 34nnind 12171 . 2 (𝐵 ∈ ℕ → (𝐴 ∈ ℕ → (𝐴 · 𝐵) ∈ ℕ))
3635impcom 408 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  (class class class)co 7357  cc 11049  cr 11050  1c1 11052   + caddc 11054   · cmul 11056  cn 12153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-addass 11116  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rrecex 11123  ax-cnre 11124
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-nn 12154
This theorem is referenced by:  nnmulcli  12178  nnmtmip  12179  nndivtr  12200  nnmulcld  12206  nn0mulcl  12449  qaddcl  12890  qmulcl  12892  modmulnn  13794  nnexpcl  13980  nnsqcl  14033  expmulnbnd  14138  faccl  14183  facdiv  14187  faclbnd3  14192  faclbnd4lem3  14195  faclbnd5  14198  bcrpcl  14208  trirecip  15748  fprodnncl  15838  nnrisefaccl  15902  lcmgcdlem  16482  lcmgcdnn  16487  pcmptcl  16763  prmreclem1  16788  prmreclem6  16793  4sqlem12  16828  vdwlem3  16855  vdwlem9  16861  vdwlem10  16862  mulgnnass  18911  ovolunlem1a  24860  ovolunlem1  24861  mbfi1fseqlem3  25082  mbfi1fseqlem4  25083  elqaalem2  25680  elqaalem3  25681  log2cnv  26294  log2tlbnd  26295  log2ublem2  26297  log2ub  26299  basellem1  26430  basellem2  26431  basellem3  26432  basellem4  26433  basellem5  26434  basellem6  26435  basellem7  26436  basellem8  26437  basellem9  26438  efnnfsumcl  26452  efchtdvds  26508  mumullem1  26528  mumullem2  26529  fsumdvdscom  26534  dvdsflf1o  26536  chtublem  26559  pcbcctr  26624  bclbnd  26628  bposlem1  26632  bposlem2  26633  bposlem3  26634  bposlem4  26635  bposlem5  26636  bposlem6  26637  lgseisenlem1  26723  lgseisenlem2  26724  lgseisenlem3  26725  lgseisenlem4  26726  lgsquadlem1  26728  lgsquadlem2  26729  chebbnd1lem1  26817  chebbnd1lem3  26819  dchrisumlem1  26837  mulogsum  26880  pntrsumo1  26913  pntrsumbnd  26914  ostth2lem1  26966  subfaclim  33782  jm2.17a  41270  jm2.17b  41271  jm2.17c  41272  acongrep  41290  acongeq  41293  jm2.27a  41315  jm2.27c  41317
  Copyright terms: Public domain W3C validator