Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnmulcl | Structured version Visualization version GIF version |
Description: Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.) Remove dependency on ax-mulcom 10866 and ax-mulass 10868. (Revised by Steven Nguyen, 24-Sep-2022.) |
Ref | Expression |
---|---|
nnmulcl | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7263 | . . . . 5 ⊢ (𝑥 = 1 → (𝐴 · 𝑥) = (𝐴 · 1)) | |
2 | 1 | eleq1d 2823 | . . . 4 ⊢ (𝑥 = 1 → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · 1) ∈ ℕ)) |
3 | 2 | imbi2d 340 | . . 3 ⊢ (𝑥 = 1 → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · 1) ∈ ℕ))) |
4 | oveq2 7263 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦)) | |
5 | 4 | eleq1d 2823 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · 𝑦) ∈ ℕ)) |
6 | 5 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · 𝑦) ∈ ℕ))) |
7 | oveq2 7263 | . . . . 5 ⊢ (𝑥 = (𝑦 + 1) → (𝐴 · 𝑥) = (𝐴 · (𝑦 + 1))) | |
8 | 7 | eleq1d 2823 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · (𝑦 + 1)) ∈ ℕ)) |
9 | 8 | imbi2d 340 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ))) |
10 | oveq2 7263 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 · 𝑥) = (𝐴 · 𝐵)) | |
11 | 10 | eleq1d 2823 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · 𝐵) ∈ ℕ)) |
12 | 11 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · 𝐵) ∈ ℕ))) |
13 | nnre 11910 | . . . 4 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
14 | ax-1rid 10872 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | |
15 | 14 | eleq1d 2823 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((𝐴 · 1) ∈ ℕ ↔ 𝐴 ∈ ℕ)) |
16 | 15 | biimprd 247 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 ∈ ℕ → (𝐴 · 1) ∈ ℕ)) |
17 | 13, 16 | mpcom 38 | . . 3 ⊢ (𝐴 ∈ ℕ → (𝐴 · 1) ∈ ℕ) |
18 | nnaddcl 11926 | . . . . . . . 8 ⊢ (((𝐴 · 𝑦) ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 · 𝑦) + 𝐴) ∈ ℕ) | |
19 | 18 | ancoms 458 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ (𝐴 · 𝑦) ∈ ℕ) → ((𝐴 · 𝑦) + 𝐴) ∈ ℕ) |
20 | nncn 11911 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
21 | nncn 11911 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
22 | ax-1cn 10860 | . . . . . . . . . . 11 ⊢ 1 ∈ ℂ | |
23 | adddi 10891 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1))) | |
24 | 22, 23 | mp3an3 1448 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1))) |
25 | 20, 21, 24 | syl2an 595 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1))) |
26 | 13, 14 | syl 17 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℕ → (𝐴 · 1) = 𝐴) |
27 | 26 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 · 1) = 𝐴) |
28 | 27 | oveq2d 7271 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 · 𝑦) + (𝐴 · 1)) = ((𝐴 · 𝑦) + 𝐴)) |
29 | 25, 28 | eqtrd 2778 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + 𝐴)) |
30 | 29 | eleq1d 2823 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 · (𝑦 + 1)) ∈ ℕ ↔ ((𝐴 · 𝑦) + 𝐴) ∈ ℕ)) |
31 | 19, 30 | syl5ibr 245 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 ∈ ℕ ∧ (𝐴 · 𝑦) ∈ ℕ) → (𝐴 · (𝑦 + 1)) ∈ ℕ)) |
32 | 31 | exp4b 430 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (𝑦 ∈ ℕ → (𝐴 ∈ ℕ → ((𝐴 · 𝑦) ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ)))) |
33 | 32 | pm2.43b 55 | . . . 4 ⊢ (𝑦 ∈ ℕ → (𝐴 ∈ ℕ → ((𝐴 · 𝑦) ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ))) |
34 | 33 | a2d 29 | . . 3 ⊢ (𝑦 ∈ ℕ → ((𝐴 ∈ ℕ → (𝐴 · 𝑦) ∈ ℕ) → (𝐴 ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ))) |
35 | 3, 6, 9, 12, 17, 34 | nnind 11921 | . 2 ⊢ (𝐵 ∈ ℕ → (𝐴 ∈ ℕ → (𝐴 · 𝐵) ∈ ℕ)) |
36 | 35 | impcom 407 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 ℝcr 10801 1c1 10803 + caddc 10805 · cmul 10807 ℕcn 11903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-addass 10867 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rrecex 10874 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 |
This theorem is referenced by: nnmulcli 11928 nnmtmip 11929 nndivtr 11950 nnmulcld 11956 nn0mulcl 12199 qaddcl 12634 qmulcl 12636 modmulnn 13537 nnexpcl 13723 nnsqcl 13775 expmulnbnd 13878 faccl 13925 facdiv 13929 faclbnd3 13934 faclbnd4lem3 13937 faclbnd5 13940 bcrpcl 13950 trirecip 15503 fprodnncl 15593 nnrisefaccl 15657 lcmgcdlem 16239 lcmgcdnn 16244 pcmptcl 16520 prmreclem1 16545 prmreclem6 16550 4sqlem12 16585 vdwlem3 16612 vdwlem9 16618 vdwlem10 16619 mulgnnass 18653 ovolunlem1a 24565 ovolunlem1 24566 mbfi1fseqlem3 24787 mbfi1fseqlem4 24788 elqaalem2 25385 elqaalem3 25386 log2cnv 25999 log2tlbnd 26000 log2ublem2 26002 log2ub 26004 basellem1 26135 basellem2 26136 basellem3 26137 basellem4 26138 basellem5 26139 basellem6 26140 basellem7 26141 basellem8 26142 basellem9 26143 efnnfsumcl 26157 efchtdvds 26213 mumullem1 26233 mumullem2 26234 fsumdvdscom 26239 dvdsflf1o 26241 chtublem 26264 pcbcctr 26329 bclbnd 26333 bposlem1 26337 bposlem2 26338 bposlem3 26339 bposlem4 26340 bposlem5 26341 bposlem6 26342 lgseisenlem1 26428 lgseisenlem2 26429 lgseisenlem3 26430 lgseisenlem4 26431 lgsquadlem1 26433 lgsquadlem2 26434 chebbnd1lem1 26522 chebbnd1lem3 26524 dchrisumlem1 26542 mulogsum 26585 pntrsumo1 26618 pntrsumbnd 26619 ostth2lem1 26671 subfaclim 33050 jm2.17a 40698 jm2.17b 40699 jm2.17c 40700 acongrep 40718 acongeq 40721 jm2.27a 40743 jm2.27c 40745 |
Copyright terms: Public domain | W3C validator |