MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmulcl Structured version   Visualization version   GIF version

Theorem nnmulcl 11399
Description: Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.) Remove dependency on ax-mulcom 10336 and ax-mulass 10338. (Revised by Steven Nguyen, 24-Sep-2022.)
Assertion
Ref Expression
nnmulcl ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ)

Proof of Theorem nnmulcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6930 . . . . 5 (𝑥 = 1 → (𝐴 · 𝑥) = (𝐴 · 1))
21eleq1d 2844 . . . 4 (𝑥 = 1 → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · 1) ∈ ℕ))
32imbi2d 332 . . 3 (𝑥 = 1 → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · 1) ∈ ℕ)))
4 oveq2 6930 . . . . 5 (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦))
54eleq1d 2844 . . . 4 (𝑥 = 𝑦 → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · 𝑦) ∈ ℕ))
65imbi2d 332 . . 3 (𝑥 = 𝑦 → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · 𝑦) ∈ ℕ)))
7 oveq2 6930 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐴 · 𝑥) = (𝐴 · (𝑦 + 1)))
87eleq1d 2844 . . . 4 (𝑥 = (𝑦 + 1) → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · (𝑦 + 1)) ∈ ℕ))
98imbi2d 332 . . 3 (𝑥 = (𝑦 + 1) → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ)))
10 oveq2 6930 . . . . 5 (𝑥 = 𝐵 → (𝐴 · 𝑥) = (𝐴 · 𝐵))
1110eleq1d 2844 . . . 4 (𝑥 = 𝐵 → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · 𝐵) ∈ ℕ))
1211imbi2d 332 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · 𝐵) ∈ ℕ)))
13 nnre 11382 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
14 ax-1rid 10342 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
1514eleq1d 2844 . . . . 5 (𝐴 ∈ ℝ → ((𝐴 · 1) ∈ ℕ ↔ 𝐴 ∈ ℕ))
1615biimprd 240 . . . 4 (𝐴 ∈ ℝ → (𝐴 ∈ ℕ → (𝐴 · 1) ∈ ℕ))
1713, 16mpcom 38 . . 3 (𝐴 ∈ ℕ → (𝐴 · 1) ∈ ℕ)
18 nnaddcl 11398 . . . . . . . 8 (((𝐴 · 𝑦) ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 · 𝑦) + 𝐴) ∈ ℕ)
1918ancoms 452 . . . . . . 7 ((𝐴 ∈ ℕ ∧ (𝐴 · 𝑦) ∈ ℕ) → ((𝐴 · 𝑦) + 𝐴) ∈ ℕ)
20 nncn 11383 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
21 nncn 11383 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
22 ax-1cn 10330 . . . . . . . . . . 11 1 ∈ ℂ
23 adddi 10361 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1)))
2422, 23mp3an3 1523 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1)))
2520, 21, 24syl2an 589 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1)))
2613, 14syl 17 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (𝐴 · 1) = 𝐴)
2726adantr 474 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 · 1) = 𝐴)
2827oveq2d 6938 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 · 𝑦) + (𝐴 · 1)) = ((𝐴 · 𝑦) + 𝐴))
2925, 28eqtrd 2814 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + 𝐴))
3029eleq1d 2844 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 · (𝑦 + 1)) ∈ ℕ ↔ ((𝐴 · 𝑦) + 𝐴) ∈ ℕ))
3119, 30syl5ibr 238 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 ∈ ℕ ∧ (𝐴 · 𝑦) ∈ ℕ) → (𝐴 · (𝑦 + 1)) ∈ ℕ))
3231exp4b 423 . . . . 5 (𝐴 ∈ ℕ → (𝑦 ∈ ℕ → (𝐴 ∈ ℕ → ((𝐴 · 𝑦) ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ))))
3332pm2.43b 55 . . . 4 (𝑦 ∈ ℕ → (𝐴 ∈ ℕ → ((𝐴 · 𝑦) ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ)))
3433a2d 29 . . 3 (𝑦 ∈ ℕ → ((𝐴 ∈ ℕ → (𝐴 · 𝑦) ∈ ℕ) → (𝐴 ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ)))
353, 6, 9, 12, 17, 34nnind 11394 . 2 (𝐵 ∈ ℕ → (𝐴 ∈ ℕ → (𝐴 · 𝐵) ∈ ℕ))
3635impcom 398 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  (class class class)co 6922  cc 10270  cr 10271  1c1 10273   + caddc 10275   · cmul 10277  cn 11374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-addass 10337  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rrecex 10344  ax-cnre 10345
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-om 7344  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-nn 11375
This theorem is referenced by:  nnmulcli  11401  nnmtmip  11402  nndivtr  11422  nnmulcld  11428  nn0mulcl  11680  qaddcl  12112  qmulcl  12114  modmulnn  13007  nnexpcl  13191  nnsqcl  13252  expmulnbnd  13315  faccl  13388  facdiv  13392  faclbnd3  13397  faclbnd4lem3  13400  faclbnd5  13403  bcrpcl  13413  trirecip  14999  fprodnncl  15088  nnrisefaccl  15152  lcmgcdlem  15725  lcmgcdnn  15730  pcmptcl  15999  prmreclem1  16024  prmreclem6  16029  4sqlem12  16064  vdwlem3  16091  vdwlem9  16097  vdwlem10  16098  mulgnnass  17961  ovolunlem1a  23700  ovolunlem1  23701  mbfi1fseqlem3  23921  mbfi1fseqlem4  23922  elqaalem2  24512  elqaalem3  24513  log2cnv  25123  log2tlbnd  25124  log2ublem2  25126  log2ub  25128  basellem1  25259  basellem2  25260  basellem3  25261  basellem4  25262  basellem5  25263  basellem6  25264  basellem7  25265  basellem8  25266  basellem9  25267  efnnfsumcl  25281  efchtdvds  25337  mumullem1  25357  mumullem2  25358  fsumdvdscom  25363  dvdsflf1o  25365  chtublem  25388  pcbcctr  25453  bclbnd  25457  bposlem1  25461  bposlem2  25462  bposlem3  25463  bposlem4  25464  bposlem5  25465  bposlem6  25466  lgseisenlem1  25552  lgseisenlem2  25553  lgseisenlem3  25554  lgseisenlem4  25555  lgsquadlem1  25557  lgsquadlem2  25558  chebbnd1lem1  25610  chebbnd1lem3  25612  dchrisumlem1  25630  mulogsum  25673  pntrsumo1  25706  pntrsumbnd  25707  ostth2lem1  25759  subfaclim  31769  jm2.17a  38490  jm2.17b  38491  jm2.17c  38492  acongrep  38510  acongeq  38513  jm2.27a  38535  jm2.27c  38537
  Copyright terms: Public domain W3C validator