MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmulcl Structured version   Visualization version   GIF version

Theorem nnmulcl 11658
Description: Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.) Remove dependency on ax-mulcom 10599 and ax-mulass 10601. (Revised by Steven Nguyen, 24-Sep-2022.)
Assertion
Ref Expression
nnmulcl ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ)

Proof of Theorem nnmulcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7157 . . . . 5 (𝑥 = 1 → (𝐴 · 𝑥) = (𝐴 · 1))
21eleq1d 2900 . . . 4 (𝑥 = 1 → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · 1) ∈ ℕ))
32imbi2d 344 . . 3 (𝑥 = 1 → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · 1) ∈ ℕ)))
4 oveq2 7157 . . . . 5 (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦))
54eleq1d 2900 . . . 4 (𝑥 = 𝑦 → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · 𝑦) ∈ ℕ))
65imbi2d 344 . . 3 (𝑥 = 𝑦 → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · 𝑦) ∈ ℕ)))
7 oveq2 7157 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐴 · 𝑥) = (𝐴 · (𝑦 + 1)))
87eleq1d 2900 . . . 4 (𝑥 = (𝑦 + 1) → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · (𝑦 + 1)) ∈ ℕ))
98imbi2d 344 . . 3 (𝑥 = (𝑦 + 1) → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ)))
10 oveq2 7157 . . . . 5 (𝑥 = 𝐵 → (𝐴 · 𝑥) = (𝐴 · 𝐵))
1110eleq1d 2900 . . . 4 (𝑥 = 𝐵 → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · 𝐵) ∈ ℕ))
1211imbi2d 344 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · 𝐵) ∈ ℕ)))
13 nnre 11641 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
14 ax-1rid 10605 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
1514eleq1d 2900 . . . . 5 (𝐴 ∈ ℝ → ((𝐴 · 1) ∈ ℕ ↔ 𝐴 ∈ ℕ))
1615biimprd 251 . . . 4 (𝐴 ∈ ℝ → (𝐴 ∈ ℕ → (𝐴 · 1) ∈ ℕ))
1713, 16mpcom 38 . . 3 (𝐴 ∈ ℕ → (𝐴 · 1) ∈ ℕ)
18 nnaddcl 11657 . . . . . . . 8 (((𝐴 · 𝑦) ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 · 𝑦) + 𝐴) ∈ ℕ)
1918ancoms 462 . . . . . . 7 ((𝐴 ∈ ℕ ∧ (𝐴 · 𝑦) ∈ ℕ) → ((𝐴 · 𝑦) + 𝐴) ∈ ℕ)
20 nncn 11642 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
21 nncn 11642 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
22 ax-1cn 10593 . . . . . . . . . . 11 1 ∈ ℂ
23 adddi 10624 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1)))
2422, 23mp3an3 1447 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1)))
2520, 21, 24syl2an 598 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1)))
2613, 14syl 17 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (𝐴 · 1) = 𝐴)
2726adantr 484 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 · 1) = 𝐴)
2827oveq2d 7165 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 · 𝑦) + (𝐴 · 1)) = ((𝐴 · 𝑦) + 𝐴))
2925, 28eqtrd 2859 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + 𝐴))
3029eleq1d 2900 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 · (𝑦 + 1)) ∈ ℕ ↔ ((𝐴 · 𝑦) + 𝐴) ∈ ℕ))
3119, 30syl5ibr 249 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 ∈ ℕ ∧ (𝐴 · 𝑦) ∈ ℕ) → (𝐴 · (𝑦 + 1)) ∈ ℕ))
3231exp4b 434 . . . . 5 (𝐴 ∈ ℕ → (𝑦 ∈ ℕ → (𝐴 ∈ ℕ → ((𝐴 · 𝑦) ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ))))
3332pm2.43b 55 . . . 4 (𝑦 ∈ ℕ → (𝐴 ∈ ℕ → ((𝐴 · 𝑦) ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ)))
3433a2d 29 . . 3 (𝑦 ∈ ℕ → ((𝐴 ∈ ℕ → (𝐴 · 𝑦) ∈ ℕ) → (𝐴 ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ)))
353, 6, 9, 12, 17, 34nnind 11652 . 2 (𝐵 ∈ ℕ → (𝐴 ∈ ℕ → (𝐴 · 𝐵) ∈ ℕ))
3635impcom 411 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  (class class class)co 7149  cc 10533  cr 10534  1c1 10536   + caddc 10538   · cmul 10540  cn 11634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-addass 10600  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rrecex 10607  ax-cnre 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-ov 7152  df-om 7575  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-nn 11635
This theorem is referenced by:  nnmulcli  11659  nnmtmip  11660  nndivtr  11681  nnmulcld  11687  nn0mulcl  11930  qaddcl  12361  qmulcl  12363  modmulnn  13261  nnexpcl  13447  nnsqcl  13498  expmulnbnd  13601  faccl  13648  facdiv  13652  faclbnd3  13657  faclbnd4lem3  13660  faclbnd5  13663  bcrpcl  13673  trirecip  15218  fprodnncl  15309  nnrisefaccl  15373  lcmgcdlem  15948  lcmgcdnn  15953  pcmptcl  16225  prmreclem1  16250  prmreclem6  16255  4sqlem12  16290  vdwlem3  16317  vdwlem9  16323  vdwlem10  16324  mulgnnass  18262  ovolunlem1a  24106  ovolunlem1  24107  mbfi1fseqlem3  24327  mbfi1fseqlem4  24328  elqaalem2  24922  elqaalem3  24923  log2cnv  25536  log2tlbnd  25537  log2ublem2  25539  log2ub  25541  basellem1  25672  basellem2  25673  basellem3  25674  basellem4  25675  basellem5  25676  basellem6  25677  basellem7  25678  basellem8  25679  basellem9  25680  efnnfsumcl  25694  efchtdvds  25750  mumullem1  25770  mumullem2  25771  fsumdvdscom  25776  dvdsflf1o  25778  chtublem  25801  pcbcctr  25866  bclbnd  25870  bposlem1  25874  bposlem2  25875  bposlem3  25876  bposlem4  25877  bposlem5  25878  bposlem6  25879  lgseisenlem1  25965  lgseisenlem2  25966  lgseisenlem3  25967  lgseisenlem4  25968  lgsquadlem1  25970  lgsquadlem2  25971  chebbnd1lem1  26059  chebbnd1lem3  26061  dchrisumlem1  26079  mulogsum  26122  pntrsumo1  26155  pntrsumbnd  26156  ostth2lem1  26208  subfaclim  32495  jm2.17a  39821  jm2.17b  39822  jm2.17c  39823  acongrep  39841  acongeq  39844  jm2.27a  39866  jm2.27c  39868
  Copyright terms: Public domain W3C validator