| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnmulcl | Structured version Visualization version GIF version | ||
| Description: Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.) Remove dependency on ax-mulcom 11067 and ax-mulass 11069. (Revised by Steven Nguyen, 24-Sep-2022.) |
| Ref | Expression |
|---|---|
| nnmulcl | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7354 | . . . . 5 ⊢ (𝑥 = 1 → (𝐴 · 𝑥) = (𝐴 · 1)) | |
| 2 | 1 | eleq1d 2816 | . . . 4 ⊢ (𝑥 = 1 → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · 1) ∈ ℕ)) |
| 3 | 2 | imbi2d 340 | . . 3 ⊢ (𝑥 = 1 → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · 1) ∈ ℕ))) |
| 4 | oveq2 7354 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦)) | |
| 5 | 4 | eleq1d 2816 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · 𝑦) ∈ ℕ)) |
| 6 | 5 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · 𝑦) ∈ ℕ))) |
| 7 | oveq2 7354 | . . . . 5 ⊢ (𝑥 = (𝑦 + 1) → (𝐴 · 𝑥) = (𝐴 · (𝑦 + 1))) | |
| 8 | 7 | eleq1d 2816 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · (𝑦 + 1)) ∈ ℕ)) |
| 9 | 8 | imbi2d 340 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ))) |
| 10 | oveq2 7354 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 · 𝑥) = (𝐴 · 𝐵)) | |
| 11 | 10 | eleq1d 2816 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · 𝐵) ∈ ℕ)) |
| 12 | 11 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · 𝐵) ∈ ℕ))) |
| 13 | nnre 12129 | . . . 4 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 14 | ax-1rid 11073 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | |
| 15 | 14 | eleq1d 2816 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((𝐴 · 1) ∈ ℕ ↔ 𝐴 ∈ ℕ)) |
| 16 | 15 | biimprd 248 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 ∈ ℕ → (𝐴 · 1) ∈ ℕ)) |
| 17 | 13, 16 | mpcom 38 | . . 3 ⊢ (𝐴 ∈ ℕ → (𝐴 · 1) ∈ ℕ) |
| 18 | nnaddcl 12145 | . . . . . . . 8 ⊢ (((𝐴 · 𝑦) ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 · 𝑦) + 𝐴) ∈ ℕ) | |
| 19 | 18 | ancoms 458 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ (𝐴 · 𝑦) ∈ ℕ) → ((𝐴 · 𝑦) + 𝐴) ∈ ℕ) |
| 20 | nncn 12130 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
| 21 | nncn 12130 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
| 22 | ax-1cn 11061 | . . . . . . . . . . 11 ⊢ 1 ∈ ℂ | |
| 23 | adddi 11092 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1))) | |
| 24 | 22, 23 | mp3an3 1452 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1))) |
| 25 | 20, 21, 24 | syl2an 596 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1))) |
| 26 | 13, 14 | syl 17 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℕ → (𝐴 · 1) = 𝐴) |
| 27 | 26 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 · 1) = 𝐴) |
| 28 | 27 | oveq2d 7362 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 · 𝑦) + (𝐴 · 1)) = ((𝐴 · 𝑦) + 𝐴)) |
| 29 | 25, 28 | eqtrd 2766 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + 𝐴)) |
| 30 | 29 | eleq1d 2816 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 · (𝑦 + 1)) ∈ ℕ ↔ ((𝐴 · 𝑦) + 𝐴) ∈ ℕ)) |
| 31 | 19, 30 | imbitrrid 246 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 ∈ ℕ ∧ (𝐴 · 𝑦) ∈ ℕ) → (𝐴 · (𝑦 + 1)) ∈ ℕ)) |
| 32 | 31 | exp4b 430 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (𝑦 ∈ ℕ → (𝐴 ∈ ℕ → ((𝐴 · 𝑦) ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ)))) |
| 33 | 32 | pm2.43b 55 | . . . 4 ⊢ (𝑦 ∈ ℕ → (𝐴 ∈ ℕ → ((𝐴 · 𝑦) ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ))) |
| 34 | 33 | a2d 29 | . . 3 ⊢ (𝑦 ∈ ℕ → ((𝐴 ∈ ℕ → (𝐴 · 𝑦) ∈ ℕ) → (𝐴 ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ))) |
| 35 | 3, 6, 9, 12, 17, 34 | nnind 12140 | . 2 ⊢ (𝐵 ∈ ℕ → (𝐴 ∈ ℕ → (𝐴 · 𝐵) ∈ ℕ)) |
| 36 | 35 | impcom 407 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11001 ℝcr 11002 1c1 11004 + caddc 11006 · cmul 11008 ℕcn 12122 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-addass 11068 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rrecex 11075 ax-cnre 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12123 |
| This theorem is referenced by: nnmulcli 12147 nnmtmip 12148 nndivtr 12169 nnmulcld 12175 nn0mulcl 12414 qaddcl 12860 qmulcl 12862 modmulnn 13790 nnexpcl 13978 nnsqcl 14032 expmulnbnd 14139 faccl 14187 facdiv 14191 faclbnd3 14196 faclbnd4lem3 14199 faclbnd5 14202 bcrpcl 14212 trirecip 15767 fprodnncl 15859 nnrisefaccl 15923 lcmgcdlem 16514 lcmgcdnn 16519 pcmptcl 16800 prmreclem1 16825 prmreclem6 16830 4sqlem12 16865 vdwlem3 16892 vdwlem9 16898 vdwlem10 16899 mulgnnass 19019 ovolunlem1a 25422 ovolunlem1 25423 mbfi1fseqlem3 25643 mbfi1fseqlem4 25644 elqaalem2 26253 elqaalem3 26254 log2cnv 26879 log2tlbnd 26880 log2ublem2 26882 log2ub 26884 basellem1 27016 basellem2 27017 basellem3 27018 basellem4 27019 basellem5 27020 basellem6 27021 basellem7 27022 basellem8 27023 basellem9 27024 efnnfsumcl 27038 efchtdvds 27094 mumullem1 27114 mumullem2 27115 fsumdvdscom 27120 dvdsflf1o 27122 chtublem 27147 pcbcctr 27212 bclbnd 27216 bposlem1 27220 bposlem2 27221 bposlem3 27222 bposlem4 27223 bposlem5 27224 bposlem6 27225 lgseisenlem1 27311 lgseisenlem2 27312 lgseisenlem3 27313 lgseisenlem4 27314 lgsquadlem1 27316 lgsquadlem2 27317 chebbnd1lem1 27405 chebbnd1lem3 27407 dchrisumlem1 27425 mulogsum 27468 pntrsumo1 27501 pntrsumbnd 27502 ostth2lem1 27554 subfaclim 35220 jm2.17a 42992 jm2.17b 42993 jm2.17c 42994 acongrep 43012 acongeq 43015 jm2.27a 43037 jm2.27c 43039 |
| Copyright terms: Public domain | W3C validator |