| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnmulcl | Structured version Visualization version GIF version | ||
| Description: Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.) Remove dependency on ax-mulcom 11198 and ax-mulass 11200. (Revised by Steven Nguyen, 24-Sep-2022.) |
| Ref | Expression |
|---|---|
| nnmulcl | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7418 | . . . . 5 ⊢ (𝑥 = 1 → (𝐴 · 𝑥) = (𝐴 · 1)) | |
| 2 | 1 | eleq1d 2820 | . . . 4 ⊢ (𝑥 = 1 → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · 1) ∈ ℕ)) |
| 3 | 2 | imbi2d 340 | . . 3 ⊢ (𝑥 = 1 → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · 1) ∈ ℕ))) |
| 4 | oveq2 7418 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦)) | |
| 5 | 4 | eleq1d 2820 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · 𝑦) ∈ ℕ)) |
| 6 | 5 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · 𝑦) ∈ ℕ))) |
| 7 | oveq2 7418 | . . . . 5 ⊢ (𝑥 = (𝑦 + 1) → (𝐴 · 𝑥) = (𝐴 · (𝑦 + 1))) | |
| 8 | 7 | eleq1d 2820 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · (𝑦 + 1)) ∈ ℕ)) |
| 9 | 8 | imbi2d 340 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ))) |
| 10 | oveq2 7418 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 · 𝑥) = (𝐴 · 𝐵)) | |
| 11 | 10 | eleq1d 2820 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · 𝐵) ∈ ℕ)) |
| 12 | 11 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · 𝐵) ∈ ℕ))) |
| 13 | nnre 12252 | . . . 4 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 14 | ax-1rid 11204 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | |
| 15 | 14 | eleq1d 2820 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((𝐴 · 1) ∈ ℕ ↔ 𝐴 ∈ ℕ)) |
| 16 | 15 | biimprd 248 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 ∈ ℕ → (𝐴 · 1) ∈ ℕ)) |
| 17 | 13, 16 | mpcom 38 | . . 3 ⊢ (𝐴 ∈ ℕ → (𝐴 · 1) ∈ ℕ) |
| 18 | nnaddcl 12268 | . . . . . . . 8 ⊢ (((𝐴 · 𝑦) ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 · 𝑦) + 𝐴) ∈ ℕ) | |
| 19 | 18 | ancoms 458 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ (𝐴 · 𝑦) ∈ ℕ) → ((𝐴 · 𝑦) + 𝐴) ∈ ℕ) |
| 20 | nncn 12253 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
| 21 | nncn 12253 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
| 22 | ax-1cn 11192 | . . . . . . . . . . 11 ⊢ 1 ∈ ℂ | |
| 23 | adddi 11223 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1))) | |
| 24 | 22, 23 | mp3an3 1452 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1))) |
| 25 | 20, 21, 24 | syl2an 596 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1))) |
| 26 | 13, 14 | syl 17 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℕ → (𝐴 · 1) = 𝐴) |
| 27 | 26 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 · 1) = 𝐴) |
| 28 | 27 | oveq2d 7426 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 · 𝑦) + (𝐴 · 1)) = ((𝐴 · 𝑦) + 𝐴)) |
| 29 | 25, 28 | eqtrd 2771 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + 𝐴)) |
| 30 | 29 | eleq1d 2820 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 · (𝑦 + 1)) ∈ ℕ ↔ ((𝐴 · 𝑦) + 𝐴) ∈ ℕ)) |
| 31 | 19, 30 | imbitrrid 246 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 ∈ ℕ ∧ (𝐴 · 𝑦) ∈ ℕ) → (𝐴 · (𝑦 + 1)) ∈ ℕ)) |
| 32 | 31 | exp4b 430 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (𝑦 ∈ ℕ → (𝐴 ∈ ℕ → ((𝐴 · 𝑦) ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ)))) |
| 33 | 32 | pm2.43b 55 | . . . 4 ⊢ (𝑦 ∈ ℕ → (𝐴 ∈ ℕ → ((𝐴 · 𝑦) ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ))) |
| 34 | 33 | a2d 29 | . . 3 ⊢ (𝑦 ∈ ℕ → ((𝐴 ∈ ℕ → (𝐴 · 𝑦) ∈ ℕ) → (𝐴 ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ))) |
| 35 | 3, 6, 9, 12, 17, 34 | nnind 12263 | . 2 ⊢ (𝐵 ∈ ℕ → (𝐴 ∈ ℕ → (𝐴 · 𝐵) ∈ ℕ)) |
| 36 | 35 | impcom 407 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7410 ℂcc 11132 ℝcr 11133 1c1 11135 + caddc 11137 · cmul 11139 ℕcn 12245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-addass 11199 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rrecex 11206 ax-cnre 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-nn 12246 |
| This theorem is referenced by: nnmulcli 12270 nnmtmip 12271 nndivtr 12292 nnmulcld 12298 nn0mulcl 12542 qaddcl 12986 qmulcl 12988 modmulnn 13911 nnexpcl 14097 nnsqcl 14151 expmulnbnd 14258 faccl 14306 facdiv 14310 faclbnd3 14315 faclbnd4lem3 14318 faclbnd5 14321 bcrpcl 14331 trirecip 15884 fprodnncl 15976 nnrisefaccl 16040 lcmgcdlem 16630 lcmgcdnn 16635 pcmptcl 16916 prmreclem1 16941 prmreclem6 16946 4sqlem12 16981 vdwlem3 17008 vdwlem9 17014 vdwlem10 17015 mulgnnass 19097 ovolunlem1a 25454 ovolunlem1 25455 mbfi1fseqlem3 25675 mbfi1fseqlem4 25676 elqaalem2 26285 elqaalem3 26286 log2cnv 26911 log2tlbnd 26912 log2ublem2 26914 log2ub 26916 basellem1 27048 basellem2 27049 basellem3 27050 basellem4 27051 basellem5 27052 basellem6 27053 basellem7 27054 basellem8 27055 basellem9 27056 efnnfsumcl 27070 efchtdvds 27126 mumullem1 27146 mumullem2 27147 fsumdvdscom 27152 dvdsflf1o 27154 chtublem 27179 pcbcctr 27244 bclbnd 27248 bposlem1 27252 bposlem2 27253 bposlem3 27254 bposlem4 27255 bposlem5 27256 bposlem6 27257 lgseisenlem1 27343 lgseisenlem2 27344 lgseisenlem3 27345 lgseisenlem4 27346 lgsquadlem1 27348 lgsquadlem2 27349 chebbnd1lem1 27437 chebbnd1lem3 27439 dchrisumlem1 27457 mulogsum 27500 pntrsumo1 27533 pntrsumbnd 27534 ostth2lem1 27586 subfaclim 35215 jm2.17a 42959 jm2.17b 42960 jm2.17c 42961 acongrep 42979 acongeq 42982 jm2.27a 43004 jm2.27c 43006 |
| Copyright terms: Public domain | W3C validator |