MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmulcl Structured version   Visualization version   GIF version

Theorem nnmulcl 12288
Description: Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.) Remove dependency on ax-mulcom 11217 and ax-mulass 11219. (Revised by Steven Nguyen, 24-Sep-2022.)
Assertion
Ref Expression
nnmulcl ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ)

Proof of Theorem nnmulcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7439 . . . . 5 (𝑥 = 1 → (𝐴 · 𝑥) = (𝐴 · 1))
21eleq1d 2824 . . . 4 (𝑥 = 1 → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · 1) ∈ ℕ))
32imbi2d 340 . . 3 (𝑥 = 1 → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · 1) ∈ ℕ)))
4 oveq2 7439 . . . . 5 (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦))
54eleq1d 2824 . . . 4 (𝑥 = 𝑦 → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · 𝑦) ∈ ℕ))
65imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · 𝑦) ∈ ℕ)))
7 oveq2 7439 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐴 · 𝑥) = (𝐴 · (𝑦 + 1)))
87eleq1d 2824 . . . 4 (𝑥 = (𝑦 + 1) → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · (𝑦 + 1)) ∈ ℕ))
98imbi2d 340 . . 3 (𝑥 = (𝑦 + 1) → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ)))
10 oveq2 7439 . . . . 5 (𝑥 = 𝐵 → (𝐴 · 𝑥) = (𝐴 · 𝐵))
1110eleq1d 2824 . . . 4 (𝑥 = 𝐵 → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · 𝐵) ∈ ℕ))
1211imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · 𝐵) ∈ ℕ)))
13 nnre 12271 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
14 ax-1rid 11223 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
1514eleq1d 2824 . . . . 5 (𝐴 ∈ ℝ → ((𝐴 · 1) ∈ ℕ ↔ 𝐴 ∈ ℕ))
1615biimprd 248 . . . 4 (𝐴 ∈ ℝ → (𝐴 ∈ ℕ → (𝐴 · 1) ∈ ℕ))
1713, 16mpcom 38 . . 3 (𝐴 ∈ ℕ → (𝐴 · 1) ∈ ℕ)
18 nnaddcl 12287 . . . . . . . 8 (((𝐴 · 𝑦) ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 · 𝑦) + 𝐴) ∈ ℕ)
1918ancoms 458 . . . . . . 7 ((𝐴 ∈ ℕ ∧ (𝐴 · 𝑦) ∈ ℕ) → ((𝐴 · 𝑦) + 𝐴) ∈ ℕ)
20 nncn 12272 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
21 nncn 12272 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
22 ax-1cn 11211 . . . . . . . . . . 11 1 ∈ ℂ
23 adddi 11242 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1)))
2422, 23mp3an3 1449 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1)))
2520, 21, 24syl2an 596 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1)))
2613, 14syl 17 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (𝐴 · 1) = 𝐴)
2726adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 · 1) = 𝐴)
2827oveq2d 7447 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 · 𝑦) + (𝐴 · 1)) = ((𝐴 · 𝑦) + 𝐴))
2925, 28eqtrd 2775 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + 𝐴))
3029eleq1d 2824 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 · (𝑦 + 1)) ∈ ℕ ↔ ((𝐴 · 𝑦) + 𝐴) ∈ ℕ))
3119, 30imbitrrid 246 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 ∈ ℕ ∧ (𝐴 · 𝑦) ∈ ℕ) → (𝐴 · (𝑦 + 1)) ∈ ℕ))
3231exp4b 430 . . . . 5 (𝐴 ∈ ℕ → (𝑦 ∈ ℕ → (𝐴 ∈ ℕ → ((𝐴 · 𝑦) ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ))))
3332pm2.43b 55 . . . 4 (𝑦 ∈ ℕ → (𝐴 ∈ ℕ → ((𝐴 · 𝑦) ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ)))
3433a2d 29 . . 3 (𝑦 ∈ ℕ → ((𝐴 ∈ ℕ → (𝐴 · 𝑦) ∈ ℕ) → (𝐴 ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ)))
353, 6, 9, 12, 17, 34nnind 12282 . 2 (𝐵 ∈ ℕ → (𝐴 ∈ ℕ → (𝐴 · 𝐵) ∈ ℕ))
3635impcom 407 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  (class class class)co 7431  cc 11151  cr 11152  1c1 11154   + caddc 11156   · cmul 11158  cn 12264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-addass 11218  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rrecex 11225  ax-cnre 11226
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-nn 12265
This theorem is referenced by:  nnmulcli  12289  nnmtmip  12290  nndivtr  12311  nnmulcld  12317  nn0mulcl  12560  qaddcl  13005  qmulcl  13007  modmulnn  13926  nnexpcl  14112  nnsqcl  14165  expmulnbnd  14271  faccl  14319  facdiv  14323  faclbnd3  14328  faclbnd4lem3  14331  faclbnd5  14334  bcrpcl  14344  trirecip  15896  fprodnncl  15988  nnrisefaccl  16052  lcmgcdlem  16640  lcmgcdnn  16645  pcmptcl  16925  prmreclem1  16950  prmreclem6  16955  4sqlem12  16990  vdwlem3  17017  vdwlem9  17023  vdwlem10  17024  mulgnnass  19140  ovolunlem1a  25545  ovolunlem1  25546  mbfi1fseqlem3  25767  mbfi1fseqlem4  25768  elqaalem2  26377  elqaalem3  26378  log2cnv  27002  log2tlbnd  27003  log2ublem2  27005  log2ub  27007  basellem1  27139  basellem2  27140  basellem3  27141  basellem4  27142  basellem5  27143  basellem6  27144  basellem7  27145  basellem8  27146  basellem9  27147  efnnfsumcl  27161  efchtdvds  27217  mumullem1  27237  mumullem2  27238  fsumdvdscom  27243  dvdsflf1o  27245  chtublem  27270  pcbcctr  27335  bclbnd  27339  bposlem1  27343  bposlem2  27344  bposlem3  27345  bposlem4  27346  bposlem5  27347  bposlem6  27348  lgseisenlem1  27434  lgseisenlem2  27435  lgseisenlem3  27436  lgseisenlem4  27437  lgsquadlem1  27439  lgsquadlem2  27440  chebbnd1lem1  27528  chebbnd1lem3  27530  dchrisumlem1  27548  mulogsum  27591  pntrsumo1  27624  pntrsumbnd  27625  ostth2lem1  27677  subfaclim  35173  jm2.17a  42949  jm2.17b  42950  jm2.17c  42951  acongrep  42969  acongeq  42972  jm2.27a  42994  jm2.27c  42996
  Copyright terms: Public domain W3C validator