| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnmulcl | Structured version Visualization version GIF version | ||
| Description: Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.) Remove dependency on ax-mulcom 11220 and ax-mulass 11222. (Revised by Steven Nguyen, 24-Sep-2022.) |
| Ref | Expression |
|---|---|
| nnmulcl | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7440 | . . . . 5 ⊢ (𝑥 = 1 → (𝐴 · 𝑥) = (𝐴 · 1)) | |
| 2 | 1 | eleq1d 2825 | . . . 4 ⊢ (𝑥 = 1 → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · 1) ∈ ℕ)) |
| 3 | 2 | imbi2d 340 | . . 3 ⊢ (𝑥 = 1 → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · 1) ∈ ℕ))) |
| 4 | oveq2 7440 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦)) | |
| 5 | 4 | eleq1d 2825 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · 𝑦) ∈ ℕ)) |
| 6 | 5 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · 𝑦) ∈ ℕ))) |
| 7 | oveq2 7440 | . . . . 5 ⊢ (𝑥 = (𝑦 + 1) → (𝐴 · 𝑥) = (𝐴 · (𝑦 + 1))) | |
| 8 | 7 | eleq1d 2825 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · (𝑦 + 1)) ∈ ℕ)) |
| 9 | 8 | imbi2d 340 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ))) |
| 10 | oveq2 7440 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 · 𝑥) = (𝐴 · 𝐵)) | |
| 11 | 10 | eleq1d 2825 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · 𝐵) ∈ ℕ)) |
| 12 | 11 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · 𝐵) ∈ ℕ))) |
| 13 | nnre 12274 | . . . 4 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 14 | ax-1rid 11226 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | |
| 15 | 14 | eleq1d 2825 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((𝐴 · 1) ∈ ℕ ↔ 𝐴 ∈ ℕ)) |
| 16 | 15 | biimprd 248 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 ∈ ℕ → (𝐴 · 1) ∈ ℕ)) |
| 17 | 13, 16 | mpcom 38 | . . 3 ⊢ (𝐴 ∈ ℕ → (𝐴 · 1) ∈ ℕ) |
| 18 | nnaddcl 12290 | . . . . . . . 8 ⊢ (((𝐴 · 𝑦) ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 · 𝑦) + 𝐴) ∈ ℕ) | |
| 19 | 18 | ancoms 458 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ (𝐴 · 𝑦) ∈ ℕ) → ((𝐴 · 𝑦) + 𝐴) ∈ ℕ) |
| 20 | nncn 12275 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
| 21 | nncn 12275 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
| 22 | ax-1cn 11214 | . . . . . . . . . . 11 ⊢ 1 ∈ ℂ | |
| 23 | adddi 11245 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1))) | |
| 24 | 22, 23 | mp3an3 1451 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1))) |
| 25 | 20, 21, 24 | syl2an 596 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1))) |
| 26 | 13, 14 | syl 17 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℕ → (𝐴 · 1) = 𝐴) |
| 27 | 26 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 · 1) = 𝐴) |
| 28 | 27 | oveq2d 7448 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 · 𝑦) + (𝐴 · 1)) = ((𝐴 · 𝑦) + 𝐴)) |
| 29 | 25, 28 | eqtrd 2776 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + 𝐴)) |
| 30 | 29 | eleq1d 2825 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 · (𝑦 + 1)) ∈ ℕ ↔ ((𝐴 · 𝑦) + 𝐴) ∈ ℕ)) |
| 31 | 19, 30 | imbitrrid 246 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 ∈ ℕ ∧ (𝐴 · 𝑦) ∈ ℕ) → (𝐴 · (𝑦 + 1)) ∈ ℕ)) |
| 32 | 31 | exp4b 430 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (𝑦 ∈ ℕ → (𝐴 ∈ ℕ → ((𝐴 · 𝑦) ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ)))) |
| 33 | 32 | pm2.43b 55 | . . . 4 ⊢ (𝑦 ∈ ℕ → (𝐴 ∈ ℕ → ((𝐴 · 𝑦) ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ))) |
| 34 | 33 | a2d 29 | . . 3 ⊢ (𝑦 ∈ ℕ → ((𝐴 ∈ ℕ → (𝐴 · 𝑦) ∈ ℕ) → (𝐴 ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ))) |
| 35 | 3, 6, 9, 12, 17, 34 | nnind 12285 | . 2 ⊢ (𝐵 ∈ ℕ → (𝐴 ∈ ℕ → (𝐴 · 𝐵) ∈ ℕ)) |
| 36 | 35 | impcom 407 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 (class class class)co 7432 ℂcc 11154 ℝcr 11155 1c1 11157 + caddc 11159 · cmul 11161 ℕcn 12267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-addass 11221 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rrecex 11228 ax-cnre 11229 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-nn 12268 |
| This theorem is referenced by: nnmulcli 12292 nnmtmip 12293 nndivtr 12314 nnmulcld 12320 nn0mulcl 12564 qaddcl 13008 qmulcl 13010 modmulnn 13930 nnexpcl 14116 nnsqcl 14169 expmulnbnd 14275 faccl 14323 facdiv 14327 faclbnd3 14332 faclbnd4lem3 14335 faclbnd5 14338 bcrpcl 14348 trirecip 15900 fprodnncl 15992 nnrisefaccl 16056 lcmgcdlem 16644 lcmgcdnn 16649 pcmptcl 16930 prmreclem1 16955 prmreclem6 16960 4sqlem12 16995 vdwlem3 17022 vdwlem9 17028 vdwlem10 17029 mulgnnass 19128 ovolunlem1a 25532 ovolunlem1 25533 mbfi1fseqlem3 25753 mbfi1fseqlem4 25754 elqaalem2 26363 elqaalem3 26364 log2cnv 26988 log2tlbnd 26989 log2ublem2 26991 log2ub 26993 basellem1 27125 basellem2 27126 basellem3 27127 basellem4 27128 basellem5 27129 basellem6 27130 basellem7 27131 basellem8 27132 basellem9 27133 efnnfsumcl 27147 efchtdvds 27203 mumullem1 27223 mumullem2 27224 fsumdvdscom 27229 dvdsflf1o 27231 chtublem 27256 pcbcctr 27321 bclbnd 27325 bposlem1 27329 bposlem2 27330 bposlem3 27331 bposlem4 27332 bposlem5 27333 bposlem6 27334 lgseisenlem1 27420 lgseisenlem2 27421 lgseisenlem3 27422 lgseisenlem4 27423 lgsquadlem1 27425 lgsquadlem2 27426 chebbnd1lem1 27514 chebbnd1lem3 27516 dchrisumlem1 27534 mulogsum 27577 pntrsumo1 27610 pntrsumbnd 27611 ostth2lem1 27663 subfaclim 35194 jm2.17a 42977 jm2.17b 42978 jm2.17c 42979 acongrep 42997 acongeq 43000 jm2.27a 43022 jm2.27c 43024 |
| Copyright terms: Public domain | W3C validator |