![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnmulcl | Structured version Visualization version GIF version |
Description: Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.) Remove dependency on ax-mulcom 11217 and ax-mulass 11219. (Revised by Steven Nguyen, 24-Sep-2022.) |
Ref | Expression |
---|---|
nnmulcl | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7439 | . . . . 5 ⊢ (𝑥 = 1 → (𝐴 · 𝑥) = (𝐴 · 1)) | |
2 | 1 | eleq1d 2824 | . . . 4 ⊢ (𝑥 = 1 → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · 1) ∈ ℕ)) |
3 | 2 | imbi2d 340 | . . 3 ⊢ (𝑥 = 1 → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · 1) ∈ ℕ))) |
4 | oveq2 7439 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦)) | |
5 | 4 | eleq1d 2824 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · 𝑦) ∈ ℕ)) |
6 | 5 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · 𝑦) ∈ ℕ))) |
7 | oveq2 7439 | . . . . 5 ⊢ (𝑥 = (𝑦 + 1) → (𝐴 · 𝑥) = (𝐴 · (𝑦 + 1))) | |
8 | 7 | eleq1d 2824 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · (𝑦 + 1)) ∈ ℕ)) |
9 | 8 | imbi2d 340 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ))) |
10 | oveq2 7439 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 · 𝑥) = (𝐴 · 𝐵)) | |
11 | 10 | eleq1d 2824 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 · 𝑥) ∈ ℕ ↔ (𝐴 · 𝐵) ∈ ℕ)) |
12 | 11 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ ℕ → (𝐴 · 𝑥) ∈ ℕ) ↔ (𝐴 ∈ ℕ → (𝐴 · 𝐵) ∈ ℕ))) |
13 | nnre 12271 | . . . 4 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
14 | ax-1rid 11223 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | |
15 | 14 | eleq1d 2824 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((𝐴 · 1) ∈ ℕ ↔ 𝐴 ∈ ℕ)) |
16 | 15 | biimprd 248 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 ∈ ℕ → (𝐴 · 1) ∈ ℕ)) |
17 | 13, 16 | mpcom 38 | . . 3 ⊢ (𝐴 ∈ ℕ → (𝐴 · 1) ∈ ℕ) |
18 | nnaddcl 12287 | . . . . . . . 8 ⊢ (((𝐴 · 𝑦) ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 · 𝑦) + 𝐴) ∈ ℕ) | |
19 | 18 | ancoms 458 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ (𝐴 · 𝑦) ∈ ℕ) → ((𝐴 · 𝑦) + 𝐴) ∈ ℕ) |
20 | nncn 12272 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
21 | nncn 12272 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
22 | ax-1cn 11211 | . . . . . . . . . . 11 ⊢ 1 ∈ ℂ | |
23 | adddi 11242 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1))) | |
24 | 22, 23 | mp3an3 1449 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1))) |
25 | 20, 21, 24 | syl2an 596 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + (𝐴 · 1))) |
26 | 13, 14 | syl 17 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℕ → (𝐴 · 1) = 𝐴) |
27 | 26 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 · 1) = 𝐴) |
28 | 27 | oveq2d 7447 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 · 𝑦) + (𝐴 · 1)) = ((𝐴 · 𝑦) + 𝐴)) |
29 | 25, 28 | eqtrd 2775 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 · (𝑦 + 1)) = ((𝐴 · 𝑦) + 𝐴)) |
30 | 29 | eleq1d 2824 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 · (𝑦 + 1)) ∈ ℕ ↔ ((𝐴 · 𝑦) + 𝐴) ∈ ℕ)) |
31 | 19, 30 | imbitrrid 246 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝐴 ∈ ℕ ∧ (𝐴 · 𝑦) ∈ ℕ) → (𝐴 · (𝑦 + 1)) ∈ ℕ)) |
32 | 31 | exp4b 430 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (𝑦 ∈ ℕ → (𝐴 ∈ ℕ → ((𝐴 · 𝑦) ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ)))) |
33 | 32 | pm2.43b 55 | . . . 4 ⊢ (𝑦 ∈ ℕ → (𝐴 ∈ ℕ → ((𝐴 · 𝑦) ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ))) |
34 | 33 | a2d 29 | . . 3 ⊢ (𝑦 ∈ ℕ → ((𝐴 ∈ ℕ → (𝐴 · 𝑦) ∈ ℕ) → (𝐴 ∈ ℕ → (𝐴 · (𝑦 + 1)) ∈ ℕ))) |
35 | 3, 6, 9, 12, 17, 34 | nnind 12282 | . 2 ⊢ (𝐵 ∈ ℕ → (𝐴 ∈ ℕ → (𝐴 · 𝐵) ∈ ℕ)) |
36 | 35 | impcom 407 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 (class class class)co 7431 ℂcc 11151 ℝcr 11152 1c1 11154 + caddc 11156 · cmul 11158 ℕcn 12264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-addass 11218 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rrecex 11225 ax-cnre 11226 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-nn 12265 |
This theorem is referenced by: nnmulcli 12289 nnmtmip 12290 nndivtr 12311 nnmulcld 12317 nn0mulcl 12560 qaddcl 13005 qmulcl 13007 modmulnn 13926 nnexpcl 14112 nnsqcl 14165 expmulnbnd 14271 faccl 14319 facdiv 14323 faclbnd3 14328 faclbnd4lem3 14331 faclbnd5 14334 bcrpcl 14344 trirecip 15896 fprodnncl 15988 nnrisefaccl 16052 lcmgcdlem 16640 lcmgcdnn 16645 pcmptcl 16925 prmreclem1 16950 prmreclem6 16955 4sqlem12 16990 vdwlem3 17017 vdwlem9 17023 vdwlem10 17024 mulgnnass 19140 ovolunlem1a 25545 ovolunlem1 25546 mbfi1fseqlem3 25767 mbfi1fseqlem4 25768 elqaalem2 26377 elqaalem3 26378 log2cnv 27002 log2tlbnd 27003 log2ublem2 27005 log2ub 27007 basellem1 27139 basellem2 27140 basellem3 27141 basellem4 27142 basellem5 27143 basellem6 27144 basellem7 27145 basellem8 27146 basellem9 27147 efnnfsumcl 27161 efchtdvds 27217 mumullem1 27237 mumullem2 27238 fsumdvdscom 27243 dvdsflf1o 27245 chtublem 27270 pcbcctr 27335 bclbnd 27339 bposlem1 27343 bposlem2 27344 bposlem3 27345 bposlem4 27346 bposlem5 27347 bposlem6 27348 lgseisenlem1 27434 lgseisenlem2 27435 lgseisenlem3 27436 lgseisenlem4 27437 lgsquadlem1 27439 lgsquadlem2 27440 chebbnd1lem1 27528 chebbnd1lem3 27530 dchrisumlem1 27548 mulogsum 27591 pntrsumo1 27624 pntrsumbnd 27625 ostth2lem1 27677 subfaclim 35173 jm2.17a 42949 jm2.17b 42950 jm2.17c 42951 acongrep 42969 acongeq 42972 jm2.27a 42994 jm2.27c 42996 |
Copyright terms: Public domain | W3C validator |