![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funfvima | Structured version Visualization version GIF version |
Description: A function's value in a preimage belongs to the image. (Contributed by NM, 23-Sep-2003.) |
Ref | Expression |
---|---|
funfvima | ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 5763 | . . . . . . 7 ⊢ dom (𝐹 ↾ 𝐴) = (𝐴 ∩ dom 𝐹) | |
2 | 1 | elin2 4101 | . . . . . 6 ⊢ (𝐵 ∈ dom (𝐹 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ∈ dom 𝐹)) |
3 | funres 6274 | . . . . . . . . 9 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
4 | fvelrn 6716 | . . . . . . . . 9 ⊢ ((Fun (𝐹 ↾ 𝐴) ∧ 𝐵 ∈ dom (𝐹 ↾ 𝐴)) → ((𝐹 ↾ 𝐴)‘𝐵) ∈ ran (𝐹 ↾ 𝐴)) | |
5 | 3, 4 | sylan 580 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom (𝐹 ↾ 𝐴)) → ((𝐹 ↾ 𝐴)‘𝐵) ∈ ran (𝐹 ↾ 𝐴)) |
6 | fvres 6564 | . . . . . . . . . 10 ⊢ (𝐵 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝐵) = (𝐹‘𝐵)) | |
7 | 6 | eleq1d 2869 | . . . . . . . . 9 ⊢ (𝐵 ∈ 𝐴 → (((𝐹 ↾ 𝐴)‘𝐵) ∈ ran (𝐹 ↾ 𝐴) ↔ (𝐹‘𝐵) ∈ ran (𝐹 ↾ 𝐴))) |
8 | df-ima 5463 | . . . . . . . . . 10 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
9 | 8 | eleq2i 2876 | . . . . . . . . 9 ⊢ ((𝐹‘𝐵) ∈ (𝐹 “ 𝐴) ↔ (𝐹‘𝐵) ∈ ran (𝐹 ↾ 𝐴)) |
10 | 7, 9 | syl6rbbr 291 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝐴 → ((𝐹‘𝐵) ∈ (𝐹 “ 𝐴) ↔ ((𝐹 ↾ 𝐴)‘𝐵) ∈ ran (𝐹 ↾ 𝐴))) |
11 | 5, 10 | syl5ibrcom 248 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom (𝐹 ↾ 𝐴)) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
12 | 11 | ex 413 | . . . . . 6 ⊢ (Fun 𝐹 → (𝐵 ∈ dom (𝐹 ↾ 𝐴) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
13 | 2, 12 | syl5bir 244 | . . . . 5 ⊢ (Fun 𝐹 → ((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
14 | 13 | expd 416 | . . . 4 ⊢ (Fun 𝐹 → (𝐵 ∈ 𝐴 → (𝐵 ∈ dom 𝐹 → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))))) |
15 | 14 | com12 32 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (Fun 𝐹 → (𝐵 ∈ dom 𝐹 → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))))) |
16 | 15 | impd 411 | . 2 ⊢ (𝐵 ∈ 𝐴 → ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
17 | 16 | pm2.43b 55 | 1 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2083 dom cdm 5450 ran crn 5451 ↾ cres 5452 “ cima 5453 Fun wfun 6226 ‘cfv 6232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pr 5228 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ral 3112 df-rex 3113 df-rab 3116 df-v 3442 df-sbc 3712 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-sn 4479 df-pr 4481 df-op 4485 df-uni 4752 df-br 4969 df-opab 5031 df-id 5355 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-iota 6196 df-fun 6234 df-fn 6235 df-fv 6240 |
This theorem is referenced by: funfvima2 6866 elovimad 7070 tz7.48-2 7936 tz9.12lem3 9071 djuun 9208 swrdwrdsymb 13864 lindff1 20650 txcnp 21916 c1liplem1 24280 pthdivtx 27196 htthlem 28381 tpr2rico 30768 brsiga 31055 erdszelem8 32055 relowlpssretop 34197 limsuppnfdlem 41545 limsupresxr 41610 liminfresxr 41611 liminfvalxr 41627 |
Copyright terms: Public domain | W3C validator |