Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funfvima | Structured version Visualization version GIF version |
Description: A function's value in a preimage belongs to the image. (Contributed by NM, 23-Sep-2003.) |
Ref | Expression |
---|---|
funfvima | ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 5902 | . . . . . . 7 ⊢ dom (𝐹 ↾ 𝐴) = (𝐴 ∩ dom 𝐹) | |
2 | 1 | elin2 4127 | . . . . . 6 ⊢ (𝐵 ∈ dom (𝐹 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ∈ dom 𝐹)) |
3 | funres 6460 | . . . . . . . . 9 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
4 | fvelrn 6936 | . . . . . . . . 9 ⊢ ((Fun (𝐹 ↾ 𝐴) ∧ 𝐵 ∈ dom (𝐹 ↾ 𝐴)) → ((𝐹 ↾ 𝐴)‘𝐵) ∈ ran (𝐹 ↾ 𝐴)) | |
5 | 3, 4 | sylan 579 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom (𝐹 ↾ 𝐴)) → ((𝐹 ↾ 𝐴)‘𝐵) ∈ ran (𝐹 ↾ 𝐴)) |
6 | df-ima 5593 | . . . . . . . . . 10 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
7 | 6 | eleq2i 2830 | . . . . . . . . 9 ⊢ ((𝐹‘𝐵) ∈ (𝐹 “ 𝐴) ↔ (𝐹‘𝐵) ∈ ran (𝐹 ↾ 𝐴)) |
8 | fvres 6775 | . . . . . . . . . 10 ⊢ (𝐵 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝐵) = (𝐹‘𝐵)) | |
9 | 8 | eleq1d 2823 | . . . . . . . . 9 ⊢ (𝐵 ∈ 𝐴 → (((𝐹 ↾ 𝐴)‘𝐵) ∈ ran (𝐹 ↾ 𝐴) ↔ (𝐹‘𝐵) ∈ ran (𝐹 ↾ 𝐴))) |
10 | 7, 9 | bitr4id 289 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝐴 → ((𝐹‘𝐵) ∈ (𝐹 “ 𝐴) ↔ ((𝐹 ↾ 𝐴)‘𝐵) ∈ ran (𝐹 ↾ 𝐴))) |
11 | 5, 10 | syl5ibrcom 246 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom (𝐹 ↾ 𝐴)) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
12 | 11 | ex 412 | . . . . . 6 ⊢ (Fun 𝐹 → (𝐵 ∈ dom (𝐹 ↾ 𝐴) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
13 | 2, 12 | syl5bir 242 | . . . . 5 ⊢ (Fun 𝐹 → ((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
14 | 13 | expd 415 | . . . 4 ⊢ (Fun 𝐹 → (𝐵 ∈ 𝐴 → (𝐵 ∈ dom 𝐹 → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))))) |
15 | 14 | com12 32 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (Fun 𝐹 → (𝐵 ∈ dom 𝐹 → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))))) |
16 | 15 | impd 410 | . 2 ⊢ (𝐵 ∈ 𝐴 → ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
17 | 16 | pm2.43b 55 | 1 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 dom cdm 5580 ran crn 5581 ↾ cres 5582 “ cima 5583 Fun wfun 6412 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: funfvima2 7089 elovimad 7303 tz7.48-2 8243 tz9.12lem3 9478 djuun 9615 swrdwrdsymb 14303 lindff1 20937 txcnp 22679 c1liplem1 25065 pthdivtx 27998 htthlem 29180 tpr2rico 31764 brsiga 32051 erdszelem8 33060 relowlpssretop 35462 limsuppnfdlem 43132 limsupresxr 43197 liminfresxr 43198 liminfvalxr 43214 |
Copyright terms: Public domain | W3C validator |