MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfvima Structured version   Visualization version   GIF version

Theorem funfvima 7162
Description: A function's value in a preimage belongs to the image. (Contributed by NM, 23-Sep-2003.)
Assertion
Ref Expression
funfvima ((Fun 𝐹𝐵 ∈ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))

Proof of Theorem funfvima
StepHypRef Expression
1 dmres 5945 . . . . . . 7 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
21elin2 4144 . . . . . 6 (𝐵 ∈ dom (𝐹𝐴) ↔ (𝐵𝐴𝐵 ∈ dom 𝐹))
3 funres 6526 . . . . . . . . 9 (Fun 𝐹 → Fun (𝐹𝐴))
4 fvelrn 7010 . . . . . . . . 9 ((Fun (𝐹𝐴) ∧ 𝐵 ∈ dom (𝐹𝐴)) → ((𝐹𝐴)‘𝐵) ∈ ran (𝐹𝐴))
53, 4sylan 580 . . . . . . . 8 ((Fun 𝐹𝐵 ∈ dom (𝐹𝐴)) → ((𝐹𝐴)‘𝐵) ∈ ran (𝐹𝐴))
6 df-ima 5633 . . . . . . . . . 10 (𝐹𝐴) = ran (𝐹𝐴)
76eleq2i 2828 . . . . . . . . 9 ((𝐹𝐵) ∈ (𝐹𝐴) ↔ (𝐹𝐵) ∈ ran (𝐹𝐴))
8 fvres 6844 . . . . . . . . . 10 (𝐵𝐴 → ((𝐹𝐴)‘𝐵) = (𝐹𝐵))
98eleq1d 2821 . . . . . . . . 9 (𝐵𝐴 → (((𝐹𝐴)‘𝐵) ∈ ran (𝐹𝐴) ↔ (𝐹𝐵) ∈ ran (𝐹𝐴)))
107, 9bitr4id 289 . . . . . . . 8 (𝐵𝐴 → ((𝐹𝐵) ∈ (𝐹𝐴) ↔ ((𝐹𝐴)‘𝐵) ∈ ran (𝐹𝐴)))
115, 10syl5ibrcom 246 . . . . . . 7 ((Fun 𝐹𝐵 ∈ dom (𝐹𝐴)) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))
1211ex 413 . . . . . 6 (Fun 𝐹 → (𝐵 ∈ dom (𝐹𝐴) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴))))
132, 12syl5bir 242 . . . . 5 (Fun 𝐹 → ((𝐵𝐴𝐵 ∈ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴))))
1413expd 416 . . . 4 (Fun 𝐹 → (𝐵𝐴 → (𝐵 ∈ dom 𝐹 → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))))
1514com12 32 . . 3 (𝐵𝐴 → (Fun 𝐹 → (𝐵 ∈ dom 𝐹 → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))))
1615impd 411 . 2 (𝐵𝐴 → ((Fun 𝐹𝐵 ∈ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴))))
1716pm2.43b 55 1 ((Fun 𝐹𝐵 ∈ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2105  dom cdm 5620  ran crn 5621  cres 5622  cima 5623  Fun wfun 6473  cfv 6479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-fv 6487
This theorem is referenced by:  funfvima2  7163  elovimad  7385  tz7.48-2  8343  tz9.12lem3  9646  djuun  9783  swrdwrdsymb  14473  lindff1  21133  txcnp  22877  c1liplem1  25266  pthdivtx  28385  htthlem  29567  tpr2rico  32160  brsiga  32449  erdszelem8  33459  relowlpssretop  35640  limsuppnfdlem  43578  limsupresxr  43643  liminfresxr  43644  liminfvalxr  43660
  Copyright terms: Public domain W3C validator