MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfvima Structured version   Visualization version   GIF version

Theorem funfvima 7170
Description: A function's value in a preimage belongs to the image. (Contributed by NM, 23-Sep-2003.)
Assertion
Ref Expression
funfvima ((Fun 𝐹𝐵 ∈ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))

Proof of Theorem funfvima
StepHypRef Expression
1 dmres 5965 . . . . . . 7 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
21elin2 4152 . . . . . 6 (𝐵 ∈ dom (𝐹𝐴) ↔ (𝐵𝐴𝐵 ∈ dom 𝐹))
3 funres 6528 . . . . . . . . 9 (Fun 𝐹 → Fun (𝐹𝐴))
4 fvelrn 7015 . . . . . . . . 9 ((Fun (𝐹𝐴) ∧ 𝐵 ∈ dom (𝐹𝐴)) → ((𝐹𝐴)‘𝐵) ∈ ran (𝐹𝐴))
53, 4sylan 580 . . . . . . . 8 ((Fun 𝐹𝐵 ∈ dom (𝐹𝐴)) → ((𝐹𝐴)‘𝐵) ∈ ran (𝐹𝐴))
6 df-ima 5632 . . . . . . . . . 10 (𝐹𝐴) = ran (𝐹𝐴)
76eleq2i 2825 . . . . . . . . 9 ((𝐹𝐵) ∈ (𝐹𝐴) ↔ (𝐹𝐵) ∈ ran (𝐹𝐴))
8 fvres 6847 . . . . . . . . . 10 (𝐵𝐴 → ((𝐹𝐴)‘𝐵) = (𝐹𝐵))
98eleq1d 2818 . . . . . . . . 9 (𝐵𝐴 → (((𝐹𝐴)‘𝐵) ∈ ran (𝐹𝐴) ↔ (𝐹𝐵) ∈ ran (𝐹𝐴)))
107, 9bitr4id 290 . . . . . . . 8 (𝐵𝐴 → ((𝐹𝐵) ∈ (𝐹𝐴) ↔ ((𝐹𝐴)‘𝐵) ∈ ran (𝐹𝐴)))
115, 10syl5ibrcom 247 . . . . . . 7 ((Fun 𝐹𝐵 ∈ dom (𝐹𝐴)) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))
1211ex 412 . . . . . 6 (Fun 𝐹 → (𝐵 ∈ dom (𝐹𝐴) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴))))
132, 12biimtrrid 243 . . . . 5 (Fun 𝐹 → ((𝐵𝐴𝐵 ∈ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴))))
1413expd 415 . . . 4 (Fun 𝐹 → (𝐵𝐴 → (𝐵 ∈ dom 𝐹 → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))))
1514com12 32 . . 3 (𝐵𝐴 → (Fun 𝐹 → (𝐵 ∈ dom 𝐹 → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))))
1615impd 410 . 2 (𝐵𝐴 → ((Fun 𝐹𝐵 ∈ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴))))
1716pm2.43b 55 1 ((Fun 𝐹𝐵 ∈ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  dom cdm 5619  ran crn 5620  cres 5621  cima 5622  Fun wfun 6480  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494
This theorem is referenced by:  funfvima2  7171  elovimad  7402  tz7.48-2  8367  tz9.12lem3  9689  djuun  9826  swrdwrdsymb  14572  lindff1  21759  txcnp  23536  c1liplem1  25929  pthdivtx  29707  htthlem  30899  tpr2rico  33946  brsiga  34217  erdszelem8  35263  relowlpssretop  37429  limsuppnfdlem  45823  limsupresxr  45888  liminfresxr  45889  liminfvalxr  45905
  Copyright terms: Public domain W3C validator