MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac10ct Structured version   Visualization version   GIF version

Theorem ac10ct 10057
Description: A proof of the well-ordering theorem weth 10518, an Axiom of Choice equivalent, restricted to sets dominated by some ordinal (in particular finite sets and countable sets), proven in ZF without AC. (Contributed by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
ac10ct (∃𝑦 ∈ On 𝐴𝑦 → ∃𝑥 𝑥 We 𝐴)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem ac10ct
Dummy variables 𝑓 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3468 . . . . . 6 𝑦 ∈ V
21brdom 8984 . . . . 5 (𝐴𝑦 ↔ ∃𝑓 𝑓:𝐴1-1𝑦)
3 f1f 6785 . . . . . . . . . . . 12 (𝑓:𝐴1-1𝑦𝑓:𝐴𝑦)
43frnd 6725 . . . . . . . . . . 11 (𝑓:𝐴1-1𝑦 → ran 𝑓𝑦)
5 onss 7788 . . . . . . . . . . 11 (𝑦 ∈ On → 𝑦 ⊆ On)
6 sstr2 3972 . . . . . . . . . . 11 (ran 𝑓𝑦 → (𝑦 ⊆ On → ran 𝑓 ⊆ On))
74, 5, 6syl2im 40 . . . . . . . . . 10 (𝑓:𝐴1-1𝑦 → (𝑦 ∈ On → ran 𝑓 ⊆ On))
8 epweon 7778 . . . . . . . . . 10 E We On
9 wess 5653 . . . . . . . . . 10 (ran 𝑓 ⊆ On → ( E We On → E We ran 𝑓))
107, 8, 9syl6mpi 67 . . . . . . . . 9 (𝑓:𝐴1-1𝑦 → (𝑦 ∈ On → E We ran 𝑓))
1110adantl 481 . . . . . . . 8 ((𝐴𝑦𝑓:𝐴1-1𝑦) → (𝑦 ∈ On → E We ran 𝑓))
12 f1f1orn 6840 . . . . . . . . . 10 (𝑓:𝐴1-1𝑦𝑓:𝐴1-1-onto→ran 𝑓)
13 eqid 2734 . . . . . . . . . . 11 {⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} = {⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)}
1413f1owe 7356 . . . . . . . . . 10 (𝑓:𝐴1-1-onto→ran 𝑓 → ( E We ran 𝑓 → {⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} We 𝐴))
1512, 14syl 17 . . . . . . . . 9 (𝑓:𝐴1-1𝑦 → ( E We ran 𝑓 → {⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} We 𝐴))
16 weinxp 5752 . . . . . . . . . 10 ({⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} We 𝐴 ↔ ({⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} ∩ (𝐴 × 𝐴)) We 𝐴)
17 reldom 8974 . . . . . . . . . . . 12 Rel ≼
1817brrelex1i 5723 . . . . . . . . . . 11 (𝐴𝑦𝐴 ∈ V)
19 sqxpexg 7758 . . . . . . . . . . 11 (𝐴 ∈ V → (𝐴 × 𝐴) ∈ V)
20 incom 4191 . . . . . . . . . . . 12 ((𝐴 × 𝐴) ∩ {⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)}) = ({⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} ∩ (𝐴 × 𝐴))
21 inex1g 5301 . . . . . . . . . . . 12 ((𝐴 × 𝐴) ∈ V → ((𝐴 × 𝐴) ∩ {⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)}) ∈ V)
2220, 21eqeltrrid 2838 . . . . . . . . . . 11 ((𝐴 × 𝐴) ∈ V → ({⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} ∩ (𝐴 × 𝐴)) ∈ V)
23 weeq1 5654 . . . . . . . . . . . 12 (𝑥 = ({⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} ∩ (𝐴 × 𝐴)) → (𝑥 We 𝐴 ↔ ({⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} ∩ (𝐴 × 𝐴)) We 𝐴))
2423spcegv 3581 . . . . . . . . . . 11 (({⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} ∩ (𝐴 × 𝐴)) ∈ V → (({⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} ∩ (𝐴 × 𝐴)) We 𝐴 → ∃𝑥 𝑥 We 𝐴))
2518, 19, 22, 244syl 19 . . . . . . . . . 10 (𝐴𝑦 → (({⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} ∩ (𝐴 × 𝐴)) We 𝐴 → ∃𝑥 𝑥 We 𝐴))
2616, 25biimtrid 242 . . . . . . . . 9 (𝐴𝑦 → ({⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} We 𝐴 → ∃𝑥 𝑥 We 𝐴))
2715, 26sylan9r 508 . . . . . . . 8 ((𝐴𝑦𝑓:𝐴1-1𝑦) → ( E We ran 𝑓 → ∃𝑥 𝑥 We 𝐴))
2811, 27syld 47 . . . . . . 7 ((𝐴𝑦𝑓:𝐴1-1𝑦) → (𝑦 ∈ On → ∃𝑥 𝑥 We 𝐴))
2928impancom 451 . . . . . 6 ((𝐴𝑦𝑦 ∈ On) → (𝑓:𝐴1-1𝑦 → ∃𝑥 𝑥 We 𝐴))
3029exlimdv 1932 . . . . 5 ((𝐴𝑦𝑦 ∈ On) → (∃𝑓 𝑓:𝐴1-1𝑦 → ∃𝑥 𝑥 We 𝐴))
312, 30biimtrid 242 . . . 4 ((𝐴𝑦𝑦 ∈ On) → (𝐴𝑦 → ∃𝑥 𝑥 We 𝐴))
3231ex 412 . . 3 (𝐴𝑦 → (𝑦 ∈ On → (𝐴𝑦 → ∃𝑥 𝑥 We 𝐴)))
3332pm2.43b 55 . 2 (𝑦 ∈ On → (𝐴𝑦 → ∃𝑥 𝑥 We 𝐴))
3433rexlimiv 3135 1 (∃𝑦 ∈ On 𝐴𝑦 → ∃𝑥 𝑥 We 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1778  wcel 2107  wrex 3059  Vcvv 3464  cin 3932  wss 3933   class class class wbr 5125  {copab 5187   E cep 5565   We wwe 5618   × cxp 5665  ran crn 5668  Oncon0 6365  1-1wf1 6539  1-1-ontowf1o 6541  cfv 6542  cdom 8966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ord 6368  df-on 6369  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-dom 8970
This theorem is referenced by:  ondomen  10060
  Copyright terms: Public domain W3C validator