Step | Hyp | Ref
| Expression |
1 | | vex 3414 |
. . . . . 6
⊢ 𝑦 ∈ V |
2 | 1 | brdom 8553 |
. . . . 5
⊢ (𝐴 ≼ 𝑦 ↔ ∃𝑓 𝑓:𝐴–1-1→𝑦) |
3 | | f1f 6566 |
. . . . . . . . . . . 12
⊢ (𝑓:𝐴–1-1→𝑦 → 𝑓:𝐴⟶𝑦) |
4 | 3 | frnd 6511 |
. . . . . . . . . . 11
⊢ (𝑓:𝐴–1-1→𝑦 → ran 𝑓 ⊆ 𝑦) |
5 | | onss 7511 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ On → 𝑦 ⊆ On) |
6 | | sstr2 3902 |
. . . . . . . . . . 11
⊢ (ran
𝑓 ⊆ 𝑦 → (𝑦 ⊆ On → ran 𝑓 ⊆ On)) |
7 | 4, 5, 6 | syl2im 40 |
. . . . . . . . . 10
⊢ (𝑓:𝐴–1-1→𝑦 → (𝑦 ∈ On → ran 𝑓 ⊆ On)) |
8 | | epweon 7503 |
. . . . . . . . . 10
⊢ E We
On |
9 | | wess 5516 |
. . . . . . . . . 10
⊢ (ran
𝑓 ⊆ On → ( E We
On → E We ran 𝑓)) |
10 | 7, 8, 9 | syl6mpi 67 |
. . . . . . . . 9
⊢ (𝑓:𝐴–1-1→𝑦 → (𝑦 ∈ On → E We ran 𝑓)) |
11 | 10 | adantl 485 |
. . . . . . . 8
⊢ ((𝐴 ≼ 𝑦 ∧ 𝑓:𝐴–1-1→𝑦) → (𝑦 ∈ On → E We ran 𝑓)) |
12 | | f1f1orn 6619 |
. . . . . . . . . 10
⊢ (𝑓:𝐴–1-1→𝑦 → 𝑓:𝐴–1-1-onto→ran
𝑓) |
13 | | eqid 2759 |
. . . . . . . . . . 11
⊢
{〈𝑤, 𝑧〉 ∣ (𝑓‘𝑤) E (𝑓‘𝑧)} = {〈𝑤, 𝑧〉 ∣ (𝑓‘𝑤) E (𝑓‘𝑧)} |
14 | 13 | f1owe 7107 |
. . . . . . . . . 10
⊢ (𝑓:𝐴–1-1-onto→ran
𝑓 → ( E We ran 𝑓 → {〈𝑤, 𝑧〉 ∣ (𝑓‘𝑤) E (𝑓‘𝑧)} We 𝐴)) |
15 | 12, 14 | syl 17 |
. . . . . . . . 9
⊢ (𝑓:𝐴–1-1→𝑦 → ( E We ran 𝑓 → {〈𝑤, 𝑧〉 ∣ (𝑓‘𝑤) E (𝑓‘𝑧)} We 𝐴)) |
16 | | weinxp 5611 |
. . . . . . . . . 10
⊢
({〈𝑤, 𝑧〉 ∣ (𝑓‘𝑤) E (𝑓‘𝑧)} We 𝐴 ↔ ({〈𝑤, 𝑧〉 ∣ (𝑓‘𝑤) E (𝑓‘𝑧)} ∩ (𝐴 × 𝐴)) We 𝐴) |
17 | | reldom 8547 |
. . . . . . . . . . . 12
⊢ Rel
≼ |
18 | 17 | brrelex1i 5583 |
. . . . . . . . . . 11
⊢ (𝐴 ≼ 𝑦 → 𝐴 ∈ V) |
19 | | sqxpexg 7483 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ V → (𝐴 × 𝐴) ∈ V) |
20 | | incom 4109 |
. . . . . . . . . . . 12
⊢ ((𝐴 × 𝐴) ∩ {〈𝑤, 𝑧〉 ∣ (𝑓‘𝑤) E (𝑓‘𝑧)}) = ({〈𝑤, 𝑧〉 ∣ (𝑓‘𝑤) E (𝑓‘𝑧)} ∩ (𝐴 × 𝐴)) |
21 | | inex1g 5194 |
. . . . . . . . . . . 12
⊢ ((𝐴 × 𝐴) ∈ V → ((𝐴 × 𝐴) ∩ {〈𝑤, 𝑧〉 ∣ (𝑓‘𝑤) E (𝑓‘𝑧)}) ∈ V) |
22 | 20, 21 | eqeltrrid 2858 |
. . . . . . . . . . 11
⊢ ((𝐴 × 𝐴) ∈ V → ({〈𝑤, 𝑧〉 ∣ (𝑓‘𝑤) E (𝑓‘𝑧)} ∩ (𝐴 × 𝐴)) ∈ V) |
23 | | weeq1 5517 |
. . . . . . . . . . . 12
⊢ (𝑥 = ({〈𝑤, 𝑧〉 ∣ (𝑓‘𝑤) E (𝑓‘𝑧)} ∩ (𝐴 × 𝐴)) → (𝑥 We 𝐴 ↔ ({〈𝑤, 𝑧〉 ∣ (𝑓‘𝑤) E (𝑓‘𝑧)} ∩ (𝐴 × 𝐴)) We 𝐴)) |
24 | 23 | spcegv 3518 |
. . . . . . . . . . 11
⊢
(({〈𝑤, 𝑧〉 ∣ (𝑓‘𝑤) E (𝑓‘𝑧)} ∩ (𝐴 × 𝐴)) ∈ V → (({〈𝑤, 𝑧〉 ∣ (𝑓‘𝑤) E (𝑓‘𝑧)} ∩ (𝐴 × 𝐴)) We 𝐴 → ∃𝑥 𝑥 We 𝐴)) |
25 | 18, 19, 22, 24 | 4syl 19 |
. . . . . . . . . 10
⊢ (𝐴 ≼ 𝑦 → (({〈𝑤, 𝑧〉 ∣ (𝑓‘𝑤) E (𝑓‘𝑧)} ∩ (𝐴 × 𝐴)) We 𝐴 → ∃𝑥 𝑥 We 𝐴)) |
26 | 16, 25 | syl5bi 245 |
. . . . . . . . 9
⊢ (𝐴 ≼ 𝑦 → ({〈𝑤, 𝑧〉 ∣ (𝑓‘𝑤) E (𝑓‘𝑧)} We 𝐴 → ∃𝑥 𝑥 We 𝐴)) |
27 | 15, 26 | sylan9r 512 |
. . . . . . . 8
⊢ ((𝐴 ≼ 𝑦 ∧ 𝑓:𝐴–1-1→𝑦) → ( E We ran 𝑓 → ∃𝑥 𝑥 We 𝐴)) |
28 | 11, 27 | syld 47 |
. . . . . . 7
⊢ ((𝐴 ≼ 𝑦 ∧ 𝑓:𝐴–1-1→𝑦) → (𝑦 ∈ On → ∃𝑥 𝑥 We 𝐴)) |
29 | 28 | impancom 455 |
. . . . . 6
⊢ ((𝐴 ≼ 𝑦 ∧ 𝑦 ∈ On) → (𝑓:𝐴–1-1→𝑦 → ∃𝑥 𝑥 We 𝐴)) |
30 | 29 | exlimdv 1935 |
. . . . 5
⊢ ((𝐴 ≼ 𝑦 ∧ 𝑦 ∈ On) → (∃𝑓 𝑓:𝐴–1-1→𝑦 → ∃𝑥 𝑥 We 𝐴)) |
31 | 2, 30 | syl5bi 245 |
. . . 4
⊢ ((𝐴 ≼ 𝑦 ∧ 𝑦 ∈ On) → (𝐴 ≼ 𝑦 → ∃𝑥 𝑥 We 𝐴)) |
32 | 31 | ex 416 |
. . 3
⊢ (𝐴 ≼ 𝑦 → (𝑦 ∈ On → (𝐴 ≼ 𝑦 → ∃𝑥 𝑥 We 𝐴))) |
33 | 32 | pm2.43b 55 |
. 2
⊢ (𝑦 ∈ On → (𝐴 ≼ 𝑦 → ∃𝑥 𝑥 We 𝐴)) |
34 | 33 | rexlimiv 3205 |
1
⊢
(∃𝑦 ∈ On
𝐴 ≼ 𝑦 → ∃𝑥 𝑥 We 𝐴) |