MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac10ct Structured version   Visualization version   GIF version

Theorem ac10ct 9947
Description: A proof of the well-ordering theorem weth 10408, an Axiom of Choice equivalent, restricted to sets dominated by some ordinal (in particular finite sets and countable sets), proven in ZF without AC. (Contributed by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
ac10ct (∃𝑦 ∈ On 𝐴𝑦 → ∃𝑥 𝑥 We 𝐴)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem ac10ct
Dummy variables 𝑓 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3442 . . . . . 6 𝑦 ∈ V
21brdom 8893 . . . . 5 (𝐴𝑦 ↔ ∃𝑓 𝑓:𝐴1-1𝑦)
3 f1f 6724 . . . . . . . . . . . 12 (𝑓:𝐴1-1𝑦𝑓:𝐴𝑦)
43frnd 6664 . . . . . . . . . . 11 (𝑓:𝐴1-1𝑦 → ran 𝑓𝑦)
5 onss 7725 . . . . . . . . . . 11 (𝑦 ∈ On → 𝑦 ⊆ On)
6 sstr2 3944 . . . . . . . . . . 11 (ran 𝑓𝑦 → (𝑦 ⊆ On → ran 𝑓 ⊆ On))
74, 5, 6syl2im 40 . . . . . . . . . 10 (𝑓:𝐴1-1𝑦 → (𝑦 ∈ On → ran 𝑓 ⊆ On))
8 epweon 7715 . . . . . . . . . 10 E We On
9 wess 5609 . . . . . . . . . 10 (ran 𝑓 ⊆ On → ( E We On → E We ran 𝑓))
107, 8, 9syl6mpi 67 . . . . . . . . 9 (𝑓:𝐴1-1𝑦 → (𝑦 ∈ On → E We ran 𝑓))
1110adantl 481 . . . . . . . 8 ((𝐴𝑦𝑓:𝐴1-1𝑦) → (𝑦 ∈ On → E We ran 𝑓))
12 f1f1orn 6779 . . . . . . . . . 10 (𝑓:𝐴1-1𝑦𝑓:𝐴1-1-onto→ran 𝑓)
13 eqid 2729 . . . . . . . . . . 11 {⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} = {⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)}
1413f1owe 7294 . . . . . . . . . 10 (𝑓:𝐴1-1-onto→ran 𝑓 → ( E We ran 𝑓 → {⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} We 𝐴))
1512, 14syl 17 . . . . . . . . 9 (𝑓:𝐴1-1𝑦 → ( E We ran 𝑓 → {⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} We 𝐴))
16 weinxp 5708 . . . . . . . . . 10 ({⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} We 𝐴 ↔ ({⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} ∩ (𝐴 × 𝐴)) We 𝐴)
17 reldom 8885 . . . . . . . . . . . 12 Rel ≼
1817brrelex1i 5679 . . . . . . . . . . 11 (𝐴𝑦𝐴 ∈ V)
19 sqxpexg 7695 . . . . . . . . . . 11 (𝐴 ∈ V → (𝐴 × 𝐴) ∈ V)
20 incom 4162 . . . . . . . . . . . 12 ((𝐴 × 𝐴) ∩ {⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)}) = ({⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} ∩ (𝐴 × 𝐴))
21 inex1g 5261 . . . . . . . . . . . 12 ((𝐴 × 𝐴) ∈ V → ((𝐴 × 𝐴) ∩ {⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)}) ∈ V)
2220, 21eqeltrrid 2833 . . . . . . . . . . 11 ((𝐴 × 𝐴) ∈ V → ({⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} ∩ (𝐴 × 𝐴)) ∈ V)
23 weeq1 5610 . . . . . . . . . . . 12 (𝑥 = ({⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} ∩ (𝐴 × 𝐴)) → (𝑥 We 𝐴 ↔ ({⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} ∩ (𝐴 × 𝐴)) We 𝐴))
2423spcegv 3554 . . . . . . . . . . 11 (({⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} ∩ (𝐴 × 𝐴)) ∈ V → (({⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} ∩ (𝐴 × 𝐴)) We 𝐴 → ∃𝑥 𝑥 We 𝐴))
2518, 19, 22, 244syl 19 . . . . . . . . . 10 (𝐴𝑦 → (({⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} ∩ (𝐴 × 𝐴)) We 𝐴 → ∃𝑥 𝑥 We 𝐴))
2616, 25biimtrid 242 . . . . . . . . 9 (𝐴𝑦 → ({⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} We 𝐴 → ∃𝑥 𝑥 We 𝐴))
2715, 26sylan9r 508 . . . . . . . 8 ((𝐴𝑦𝑓:𝐴1-1𝑦) → ( E We ran 𝑓 → ∃𝑥 𝑥 We 𝐴))
2811, 27syld 47 . . . . . . 7 ((𝐴𝑦𝑓:𝐴1-1𝑦) → (𝑦 ∈ On → ∃𝑥 𝑥 We 𝐴))
2928impancom 451 . . . . . 6 ((𝐴𝑦𝑦 ∈ On) → (𝑓:𝐴1-1𝑦 → ∃𝑥 𝑥 We 𝐴))
3029exlimdv 1933 . . . . 5 ((𝐴𝑦𝑦 ∈ On) → (∃𝑓 𝑓:𝐴1-1𝑦 → ∃𝑥 𝑥 We 𝐴))
312, 30biimtrid 242 . . . 4 ((𝐴𝑦𝑦 ∈ On) → (𝐴𝑦 → ∃𝑥 𝑥 We 𝐴))
3231ex 412 . . 3 (𝐴𝑦 → (𝑦 ∈ On → (𝐴𝑦 → ∃𝑥 𝑥 We 𝐴)))
3332pm2.43b 55 . 2 (𝑦 ∈ On → (𝐴𝑦 → ∃𝑥 𝑥 We 𝐴))
3433rexlimiv 3123 1 (∃𝑦 ∈ On 𝐴𝑦 → ∃𝑥 𝑥 We 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2109  wrex 3053  Vcvv 3438  cin 3904  wss 3905   class class class wbr 5095  {copab 5157   E cep 5522   We wwe 5575   × cxp 5621  ran crn 5624  Oncon0 6311  1-1wf1 6483  1-1-ontowf1o 6485  cfv 6486  cdom 8877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-dom 8881
This theorem is referenced by:  ondomen  9950
  Copyright terms: Public domain W3C validator