MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac10ct Structured version   Visualization version   GIF version

Theorem ac10ct 9454
Description: A proof of the well-ordering theorem weth 9911, an Axiom of Choice equivalent, restricted to sets dominated by some ordinal (in particular finite sets and countable sets), proven in ZF without AC. (Contributed by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
ac10ct (∃𝑦 ∈ On 𝐴𝑦 → ∃𝑥 𝑥 We 𝐴)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem ac10ct
Dummy variables 𝑓 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3498 . . . . . 6 𝑦 ∈ V
21brdom 8515 . . . . 5 (𝐴𝑦 ↔ ∃𝑓 𝑓:𝐴1-1𝑦)
3 f1f 6570 . . . . . . . . . . . 12 (𝑓:𝐴1-1𝑦𝑓:𝐴𝑦)
43frnd 6516 . . . . . . . . . . 11 (𝑓:𝐴1-1𝑦 → ran 𝑓𝑦)
5 onss 7499 . . . . . . . . . . 11 (𝑦 ∈ On → 𝑦 ⊆ On)
6 sstr2 3974 . . . . . . . . . . 11 (ran 𝑓𝑦 → (𝑦 ⊆ On → ran 𝑓 ⊆ On))
74, 5, 6syl2im 40 . . . . . . . . . 10 (𝑓:𝐴1-1𝑦 → (𝑦 ∈ On → ran 𝑓 ⊆ On))
8 epweon 7491 . . . . . . . . . 10 E We On
9 wess 5537 . . . . . . . . . 10 (ran 𝑓 ⊆ On → ( E We On → E We ran 𝑓))
107, 8, 9syl6mpi 67 . . . . . . . . 9 (𝑓:𝐴1-1𝑦 → (𝑦 ∈ On → E We ran 𝑓))
1110adantl 484 . . . . . . . 8 ((𝐴𝑦𝑓:𝐴1-1𝑦) → (𝑦 ∈ On → E We ran 𝑓))
12 f1f1orn 6621 . . . . . . . . . 10 (𝑓:𝐴1-1𝑦𝑓:𝐴1-1-onto→ran 𝑓)
13 eqid 2821 . . . . . . . . . . 11 {⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} = {⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)}
1413f1owe 7100 . . . . . . . . . 10 (𝑓:𝐴1-1-onto→ran 𝑓 → ( E We ran 𝑓 → {⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} We 𝐴))
1512, 14syl 17 . . . . . . . . 9 (𝑓:𝐴1-1𝑦 → ( E We ran 𝑓 → {⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} We 𝐴))
16 weinxp 5631 . . . . . . . . . 10 ({⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} We 𝐴 ↔ ({⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} ∩ (𝐴 × 𝐴)) We 𝐴)
17 reldom 8509 . . . . . . . . . . . 12 Rel ≼
1817brrelex1i 5603 . . . . . . . . . . 11 (𝐴𝑦𝐴 ∈ V)
19 sqxpexg 7471 . . . . . . . . . . 11 (𝐴 ∈ V → (𝐴 × 𝐴) ∈ V)
20 incom 4178 . . . . . . . . . . . 12 ((𝐴 × 𝐴) ∩ {⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)}) = ({⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} ∩ (𝐴 × 𝐴))
21 inex1g 5216 . . . . . . . . . . . 12 ((𝐴 × 𝐴) ∈ V → ((𝐴 × 𝐴) ∩ {⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)}) ∈ V)
2220, 21eqeltrrid 2918 . . . . . . . . . . 11 ((𝐴 × 𝐴) ∈ V → ({⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} ∩ (𝐴 × 𝐴)) ∈ V)
23 weeq1 5538 . . . . . . . . . . . 12 (𝑥 = ({⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} ∩ (𝐴 × 𝐴)) → (𝑥 We 𝐴 ↔ ({⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} ∩ (𝐴 × 𝐴)) We 𝐴))
2423spcegv 3597 . . . . . . . . . . 11 (({⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} ∩ (𝐴 × 𝐴)) ∈ V → (({⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} ∩ (𝐴 × 𝐴)) We 𝐴 → ∃𝑥 𝑥 We 𝐴))
2518, 19, 22, 244syl 19 . . . . . . . . . 10 (𝐴𝑦 → (({⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} ∩ (𝐴 × 𝐴)) We 𝐴 → ∃𝑥 𝑥 We 𝐴))
2616, 25syl5bi 244 . . . . . . . . 9 (𝐴𝑦 → ({⟨𝑤, 𝑧⟩ ∣ (𝑓𝑤) E (𝑓𝑧)} We 𝐴 → ∃𝑥 𝑥 We 𝐴))
2715, 26sylan9r 511 . . . . . . . 8 ((𝐴𝑦𝑓:𝐴1-1𝑦) → ( E We ran 𝑓 → ∃𝑥 𝑥 We 𝐴))
2811, 27syld 47 . . . . . . 7 ((𝐴𝑦𝑓:𝐴1-1𝑦) → (𝑦 ∈ On → ∃𝑥 𝑥 We 𝐴))
2928impancom 454 . . . . . 6 ((𝐴𝑦𝑦 ∈ On) → (𝑓:𝐴1-1𝑦 → ∃𝑥 𝑥 We 𝐴))
3029exlimdv 1930 . . . . 5 ((𝐴𝑦𝑦 ∈ On) → (∃𝑓 𝑓:𝐴1-1𝑦 → ∃𝑥 𝑥 We 𝐴))
312, 30syl5bi 244 . . . 4 ((𝐴𝑦𝑦 ∈ On) → (𝐴𝑦 → ∃𝑥 𝑥 We 𝐴))
3231ex 415 . . 3 (𝐴𝑦 → (𝑦 ∈ On → (𝐴𝑦 → ∃𝑥 𝑥 We 𝐴)))
3332pm2.43b 55 . 2 (𝑦 ∈ On → (𝐴𝑦 → ∃𝑥 𝑥 We 𝐴))
3433rexlimiv 3280 1 (∃𝑦 ∈ On 𝐴𝑦 → ∃𝑥 𝑥 We 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wex 1776  wcel 2110  wrex 3139  Vcvv 3495  cin 3935  wss 3936   class class class wbr 5059  {copab 5121   E cep 5459   We wwe 5508   × cxp 5548  ran crn 5551  Oncon0 6186  1-1wf1 6347  1-1-ontowf1o 6349  cfv 6350  cdom 8501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-ord 6189  df-on 6190  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-dom 8505
This theorem is referenced by:  ondomen  9457
  Copyright terms: Public domain W3C validator