MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioc0 Structured version   Visualization version   GIF version

Theorem ioc0 13294
Description: An empty open interval of extended reals. (Contributed by FL, 30-May-2014.)
Assertion
Ref Expression
ioc0 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,]𝐵) = ∅ ↔ 𝐵𝐴))

Proof of Theorem ioc0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iocval 13284 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥𝐵)})
21eqeq1d 2735 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,]𝐵) = ∅ ↔ {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥𝐵)} = ∅))
3 df-ne 2930 . . . . . 6 ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥𝐵)} ≠ ∅ ↔ ¬ {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥𝐵)} = ∅)
4 rabn0 4338 . . . . . 6 ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥𝐵)} ≠ ∅ ↔ ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥𝐵))
53, 4bitr3i 277 . . . . 5 (¬ {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥𝐵)} = ∅ ↔ ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥𝐵))
6 xrltletr 13058 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 < 𝑥𝑥𝐵) → 𝐴 < 𝐵))
763com23 1126 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → ((𝐴 < 𝑥𝑥𝐵) → 𝐴 < 𝐵))
873expa 1118 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → ((𝐴 < 𝑥𝑥𝐵) → 𝐴 < 𝐵))
98rexlimdva 3134 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥𝐵) → 𝐴 < 𝐵))
10 qbtwnxr 13101 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
11 qre 12853 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
1211rexrd 11169 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ*)
1312a1i 11 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵)) → (𝑥 ∈ ℚ → 𝑥 ∈ ℝ*))
14 xrltle 13050 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 < 𝐵𝑥𝐵))
15143ad2antr2 1190 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵)) → (𝑥 < 𝐵𝑥𝐵))
1615anim2d 612 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵)) → ((𝐴 < 𝑥𝑥 < 𝐵) → (𝐴 < 𝑥𝑥𝐵)))
1713, 16anim12d 609 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵)) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴 < 𝑥𝑥𝐵))))
1817ex 412 . . . . . . . . . . . 12 (𝑥 ∈ ℝ* → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴 < 𝑥𝑥𝐵)))))
1912, 18syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℚ → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴 < 𝑥𝑥𝐵)))))
2019adantr 480 . . . . . . . . . 10 ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴 < 𝑥𝑥𝐵)))))
2120pm2.43b 55 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴 < 𝑥𝑥𝐵))))
2221reximdv2 3143 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵) → ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥𝐵)))
2310, 22mpd 15 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥𝐵))
24233expia 1121 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥𝐵)))
259, 24impbid 212 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥𝐵) ↔ 𝐴 < 𝐵))
265, 25bitrid 283 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥𝐵)} = ∅ ↔ 𝐴 < 𝐵))
27 xrltnle 11186 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
2826, 27bitrd 279 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥𝐵)} = ∅ ↔ ¬ 𝐵𝐴))
2928con4bid 317 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥𝐵)} = ∅ ↔ 𝐵𝐴))
302, 29bitrd 279 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,]𝐵) = ∅ ↔ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wrex 3057  {crab 3396  c0 4282   class class class wbr 5093  (class class class)co 7352  *cxr 11152   < clt 11153  cle 11154  cq 12848  (,]cioc 13248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-q 12849  df-ioc 13252
This theorem is referenced by:  iocmbl  43330  volioc  46094
  Copyright terms: Public domain W3C validator