![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > undefnel2 | Structured version Visualization version GIF version |
Description: The undefined value generated from a set is not a member of the set. (Contributed by NM, 15-Sep-2011.) |
Ref | Expression |
---|---|
undefnel2 | ⊢ (𝑆 ∈ 𝑉 → ¬ (Undef‘𝑆) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwuninel 8316 | . 2 ⊢ ¬ 𝒫 ∪ 𝑆 ∈ 𝑆 | |
2 | undefval 8317 | . . 3 ⊢ (𝑆 ∈ 𝑉 → (Undef‘𝑆) = 𝒫 ∪ 𝑆) | |
3 | 2 | eleq1d 2829 | . 2 ⊢ (𝑆 ∈ 𝑉 → ((Undef‘𝑆) ∈ 𝑆 ↔ 𝒫 ∪ 𝑆 ∈ 𝑆)) |
4 | 1, 3 | mtbiri 327 | 1 ⊢ (𝑆 ∈ 𝑉 → ¬ (Undef‘𝑆) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 𝒫 cpw 4622 ∪ cuni 4931 ‘cfv 6573 Undefcund 8313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-undef 8314 |
This theorem is referenced by: undefnel 8319 riotaclbgBAD 38910 |
Copyright terms: Public domain | W3C validator |