MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undefnel2 Structured version   Visualization version   GIF version

Theorem undefnel2 8265
Description: The undefined value generated from a set is not a member of the set. (Contributed by NM, 15-Sep-2011.)
Assertion
Ref Expression
undefnel2 (𝑆𝑉 → ¬ (Undef‘𝑆) ∈ 𝑆)

Proof of Theorem undefnel2
StepHypRef Expression
1 pwuninel 8263 . 2 ¬ 𝒫 𝑆𝑆
2 undefval 8264 . . 3 (𝑆𝑉 → (Undef‘𝑆) = 𝒫 𝑆)
32eleq1d 2814 . 2 (𝑆𝑉 → ((Undef‘𝑆) ∈ 𝑆 ↔ 𝒫 𝑆𝑆))
41, 3mtbiri 327 1 (𝑆𝑉 → ¬ (Undef‘𝑆) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  𝒫 cpw 4571   cuni 4879  cfv 6519  Undefcund 8260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-iota 6472  df-fun 6521  df-fv 6527  df-undef 8261
This theorem is referenced by:  undefnel  8266  riotaclbgBAD  38939
  Copyright terms: Public domain W3C validator