| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > undefnel2 | Structured version Visualization version GIF version | ||
| Description: The undefined value generated from a set is not a member of the set. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| undefnel2 | ⊢ (𝑆 ∈ 𝑉 → ¬ (Undef‘𝑆) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwuninel 8200 | . 2 ⊢ ¬ 𝒫 ∪ 𝑆 ∈ 𝑆 | |
| 2 | undefval 8201 | . . 3 ⊢ (𝑆 ∈ 𝑉 → (Undef‘𝑆) = 𝒫 ∪ 𝑆) | |
| 3 | 2 | eleq1d 2816 | . 2 ⊢ (𝑆 ∈ 𝑉 → ((Undef‘𝑆) ∈ 𝑆 ↔ 𝒫 ∪ 𝑆 ∈ 𝑆)) |
| 4 | 1, 3 | mtbiri 327 | 1 ⊢ (𝑆 ∈ 𝑉 → ¬ (Undef‘𝑆) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2111 𝒫 cpw 4545 ∪ cuni 4854 ‘cfv 6476 Undefcund 8197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-undef 8198 |
| This theorem is referenced by: undefnel 8203 riotaclbgBAD 38993 |
| Copyright terms: Public domain | W3C validator |