Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kelac2 Structured version   Visualization version   GIF version

Theorem kelac2 43077
Description: Kelley's choice, most common form: compactness of a product of knob topologies recovers choice. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
kelac2.s ((𝜑𝑥𝐼) → 𝑆𝑉)
kelac2.z ((𝜑𝑥𝐼) → 𝑆 ≠ ∅)
kelac2.k (𝜑 → (∏t‘(𝑥𝐼 ↦ (topGen‘{𝑆, {𝒫 𝑆}}))) ∈ Comp)
Assertion
Ref Expression
kelac2 (𝜑X𝑥𝐼 𝑆 ≠ ∅)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐼
Allowed substitution hints:   𝑆(𝑥)   𝑉(𝑥)

Proof of Theorem kelac2
StepHypRef Expression
1 kelac2.z . 2 ((𝜑𝑥𝐼) → 𝑆 ≠ ∅)
2 kelac2.s . . 3 ((𝜑𝑥𝐼) → 𝑆𝑉)
3 kelac2lem 43076 . . 3 (𝑆𝑉 → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Comp)
4 cmptop 23403 . . 3 ((topGen‘{𝑆, {𝒫 𝑆}}) ∈ Comp → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Top)
52, 3, 43syl 18 . 2 ((𝜑𝑥𝐼) → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Top)
6 uncom 4158 . . . . . . 7 (𝑆 ∪ {𝒫 𝑆}) = ({𝒫 𝑆} ∪ 𝑆)
76difeq1i 4122 . . . . . 6 ((𝑆 ∪ {𝒫 𝑆}) ∖ 𝑆) = (({𝒫 𝑆} ∪ 𝑆) ∖ 𝑆)
8 difun2 4481 . . . . . 6 (({𝒫 𝑆} ∪ 𝑆) ∖ 𝑆) = ({𝒫 𝑆} ∖ 𝑆)
97, 8eqtri 2765 . . . . 5 ((𝑆 ∪ {𝒫 𝑆}) ∖ 𝑆) = ({𝒫 𝑆} ∖ 𝑆)
10 snex 5436 . . . . . . 7 {𝒫 𝑆} ∈ V
11 uniprg 4923 . . . . . . 7 ((𝑆𝑉 ∧ {𝒫 𝑆} ∈ V) → {𝑆, {𝒫 𝑆}} = (𝑆 ∪ {𝒫 𝑆}))
122, 10, 11sylancl 586 . . . . . 6 ((𝜑𝑥𝐼) → {𝑆, {𝒫 𝑆}} = (𝑆 ∪ {𝒫 𝑆}))
1312difeq1d 4125 . . . . 5 ((𝜑𝑥𝐼) → ( {𝑆, {𝒫 𝑆}} ∖ 𝑆) = ((𝑆 ∪ {𝒫 𝑆}) ∖ 𝑆))
14 incom 4209 . . . . . . 7 ({𝒫 𝑆} ∩ 𝑆) = (𝑆 ∩ {𝒫 𝑆})
15 pwuninel 8300 . . . . . . . . 9 ¬ 𝒫 𝑆𝑆
1615a1i 11 . . . . . . . 8 ((𝜑𝑥𝐼) → ¬ 𝒫 𝑆𝑆)
17 disjsn 4711 . . . . . . . 8 ((𝑆 ∩ {𝒫 𝑆}) = ∅ ↔ ¬ 𝒫 𝑆𝑆)
1816, 17sylibr 234 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑆 ∩ {𝒫 𝑆}) = ∅)
1914, 18eqtrid 2789 . . . . . 6 ((𝜑𝑥𝐼) → ({𝒫 𝑆} ∩ 𝑆) = ∅)
20 disj3 4454 . . . . . 6 (({𝒫 𝑆} ∩ 𝑆) = ∅ ↔ {𝒫 𝑆} = ({𝒫 𝑆} ∖ 𝑆))
2119, 20sylib 218 . . . . 5 ((𝜑𝑥𝐼) → {𝒫 𝑆} = ({𝒫 𝑆} ∖ 𝑆))
229, 13, 213eqtr4a 2803 . . . 4 ((𝜑𝑥𝐼) → ( {𝑆, {𝒫 𝑆}} ∖ 𝑆) = {𝒫 𝑆})
23 prex 5437 . . . . . 6 {𝑆, {𝒫 𝑆}} ∈ V
24 bastg 22973 . . . . . 6 ({𝑆, {𝒫 𝑆}} ∈ V → {𝑆, {𝒫 𝑆}} ⊆ (topGen‘{𝑆, {𝒫 𝑆}}))
2523, 24mp1i 13 . . . . 5 ((𝜑𝑥𝐼) → {𝑆, {𝒫 𝑆}} ⊆ (topGen‘{𝑆, {𝒫 𝑆}}))
2610prid2 4763 . . . . . 6 {𝒫 𝑆} ∈ {𝑆, {𝒫 𝑆}}
2726a1i 11 . . . . 5 ((𝜑𝑥𝐼) → {𝒫 𝑆} ∈ {𝑆, {𝒫 𝑆}})
2825, 27sseldd 3984 . . . 4 ((𝜑𝑥𝐼) → {𝒫 𝑆} ∈ (topGen‘{𝑆, {𝒫 𝑆}}))
2922, 28eqeltrd 2841 . . 3 ((𝜑𝑥𝐼) → ( {𝑆, {𝒫 𝑆}} ∖ 𝑆) ∈ (topGen‘{𝑆, {𝒫 𝑆}}))
30 prid1g 4760 . . . . 5 (𝑆𝑉𝑆 ∈ {𝑆, {𝒫 𝑆}})
31 elssuni 4937 . . . . 5 (𝑆 ∈ {𝑆, {𝒫 𝑆}} → 𝑆 {𝑆, {𝒫 𝑆}})
322, 30, 313syl 18 . . . 4 ((𝜑𝑥𝐼) → 𝑆 {𝑆, {𝒫 𝑆}})
33 unitg 22974 . . . . . . 7 ({𝑆, {𝒫 𝑆}} ∈ V → (topGen‘{𝑆, {𝒫 𝑆}}) = {𝑆, {𝒫 𝑆}})
3423, 33ax-mp 5 . . . . . 6 (topGen‘{𝑆, {𝒫 𝑆}}) = {𝑆, {𝒫 𝑆}}
3534eqcomi 2746 . . . . 5 {𝑆, {𝒫 𝑆}} = (topGen‘{𝑆, {𝒫 𝑆}})
3635iscld2 23036 . . . 4 (((topGen‘{𝑆, {𝒫 𝑆}}) ∈ Top ∧ 𝑆 {𝑆, {𝒫 𝑆}}) → (𝑆 ∈ (Clsd‘(topGen‘{𝑆, {𝒫 𝑆}})) ↔ ( {𝑆, {𝒫 𝑆}} ∖ 𝑆) ∈ (topGen‘{𝑆, {𝒫 𝑆}})))
375, 32, 36syl2anc 584 . . 3 ((𝜑𝑥𝐼) → (𝑆 ∈ (Clsd‘(topGen‘{𝑆, {𝒫 𝑆}})) ↔ ( {𝑆, {𝒫 𝑆}} ∖ 𝑆) ∈ (topGen‘{𝑆, {𝒫 𝑆}})))
3829, 37mpbird 257 . 2 ((𝜑𝑥𝐼) → 𝑆 ∈ (Clsd‘(topGen‘{𝑆, {𝒫 𝑆}})))
39 f1oi 6886 . . 3 ( I ↾ 𝑆):𝑆1-1-onto𝑆
4039a1i 11 . 2 ((𝜑𝑥𝐼) → ( I ↾ 𝑆):𝑆1-1-onto𝑆)
41 elssuni 4937 . . . . 5 ({𝒫 𝑆} ∈ {𝑆, {𝒫 𝑆}} → {𝒫 𝑆} ⊆ {𝑆, {𝒫 𝑆}})
4226, 41mp1i 13 . . . 4 ((𝜑𝑥𝐼) → {𝒫 𝑆} ⊆ {𝑆, {𝒫 𝑆}})
43 uniexg 7760 . . . . 5 (𝑆𝑉 𝑆 ∈ V)
44 pwexg 5378 . . . . 5 ( 𝑆 ∈ V → 𝒫 𝑆 ∈ V)
45 snidg 4660 . . . . 5 (𝒫 𝑆 ∈ V → 𝒫 𝑆 ∈ {𝒫 𝑆})
462, 43, 44, 454syl 19 . . . 4 ((𝜑𝑥𝐼) → 𝒫 𝑆 ∈ {𝒫 𝑆})
4742, 46sseldd 3984 . . 3 ((𝜑𝑥𝐼) → 𝒫 𝑆 {𝑆, {𝒫 𝑆}})
4847, 34eleqtrrdi 2852 . 2 ((𝜑𝑥𝐼) → 𝒫 𝑆 (topGen‘{𝑆, {𝒫 𝑆}}))
49 kelac2.k . 2 (𝜑 → (∏t‘(𝑥𝐼 ↦ (topGen‘{𝑆, {𝒫 𝑆}}))) ∈ Comp)
501, 5, 38, 40, 48, 49kelac1 43075 1 (𝜑X𝑥𝐼 𝑆 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  Vcvv 3480  cdif 3948  cun 3949  cin 3950  wss 3951  c0 4333  𝒫 cpw 4600  {csn 4626  {cpr 4628   cuni 4907  cmpt 5225   I cid 5577  cres 5687  1-1-ontowf1o 6560  cfv 6561  Xcixp 8937  topGenctg 17482  tcpt 17483  Topctop 22899  Clsdccld 23024  Compccmp 23394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-om 7888  df-1o 8506  df-2o 8507  df-ixp 8938  df-en 8986  df-dom 8987  df-fin 8989  df-fi 9451  df-topgen 17488  df-pt 17489  df-top 22900  df-bases 22953  df-cld 23027  df-cmp 23395
This theorem is referenced by:  dfac21  43078
  Copyright terms: Public domain W3C validator