Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kelac2 Structured version   Visualization version   GIF version

Theorem kelac2 43168
Description: Kelley's choice, most common form: compactness of a product of knob topologies recovers choice. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
kelac2.s ((𝜑𝑥𝐼) → 𝑆𝑉)
kelac2.z ((𝜑𝑥𝐼) → 𝑆 ≠ ∅)
kelac2.k (𝜑 → (∏t‘(𝑥𝐼 ↦ (topGen‘{𝑆, {𝒫 𝑆}}))) ∈ Comp)
Assertion
Ref Expression
kelac2 (𝜑X𝑥𝐼 𝑆 ≠ ∅)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐼
Allowed substitution hints:   𝑆(𝑥)   𝑉(𝑥)

Proof of Theorem kelac2
StepHypRef Expression
1 kelac2.z . 2 ((𝜑𝑥𝐼) → 𝑆 ≠ ∅)
2 kelac2.s . . 3 ((𝜑𝑥𝐼) → 𝑆𝑉)
3 kelac2lem 43167 . . 3 (𝑆𝑉 → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Comp)
4 cmptop 23310 . . 3 ((topGen‘{𝑆, {𝒫 𝑆}}) ∈ Comp → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Top)
52, 3, 43syl 18 . 2 ((𝜑𝑥𝐼) → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Top)
6 uncom 4105 . . . . . . 7 (𝑆 ∪ {𝒫 𝑆}) = ({𝒫 𝑆} ∪ 𝑆)
76difeq1i 4069 . . . . . 6 ((𝑆 ∪ {𝒫 𝑆}) ∖ 𝑆) = (({𝒫 𝑆} ∪ 𝑆) ∖ 𝑆)
8 difun2 4428 . . . . . 6 (({𝒫 𝑆} ∪ 𝑆) ∖ 𝑆) = ({𝒫 𝑆} ∖ 𝑆)
97, 8eqtri 2754 . . . . 5 ((𝑆 ∪ {𝒫 𝑆}) ∖ 𝑆) = ({𝒫 𝑆} ∖ 𝑆)
10 snex 5372 . . . . . . 7 {𝒫 𝑆} ∈ V
11 uniprg 4872 . . . . . . 7 ((𝑆𝑉 ∧ {𝒫 𝑆} ∈ V) → {𝑆, {𝒫 𝑆}} = (𝑆 ∪ {𝒫 𝑆}))
122, 10, 11sylancl 586 . . . . . 6 ((𝜑𝑥𝐼) → {𝑆, {𝒫 𝑆}} = (𝑆 ∪ {𝒫 𝑆}))
1312difeq1d 4072 . . . . 5 ((𝜑𝑥𝐼) → ( {𝑆, {𝒫 𝑆}} ∖ 𝑆) = ((𝑆 ∪ {𝒫 𝑆}) ∖ 𝑆))
14 incom 4156 . . . . . . 7 ({𝒫 𝑆} ∩ 𝑆) = (𝑆 ∩ {𝒫 𝑆})
15 pwuninel 8205 . . . . . . . . 9 ¬ 𝒫 𝑆𝑆
1615a1i 11 . . . . . . . 8 ((𝜑𝑥𝐼) → ¬ 𝒫 𝑆𝑆)
17 disjsn 4661 . . . . . . . 8 ((𝑆 ∩ {𝒫 𝑆}) = ∅ ↔ ¬ 𝒫 𝑆𝑆)
1816, 17sylibr 234 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑆 ∩ {𝒫 𝑆}) = ∅)
1914, 18eqtrid 2778 . . . . . 6 ((𝜑𝑥𝐼) → ({𝒫 𝑆} ∩ 𝑆) = ∅)
20 disj3 4401 . . . . . 6 (({𝒫 𝑆} ∩ 𝑆) = ∅ ↔ {𝒫 𝑆} = ({𝒫 𝑆} ∖ 𝑆))
2119, 20sylib 218 . . . . 5 ((𝜑𝑥𝐼) → {𝒫 𝑆} = ({𝒫 𝑆} ∖ 𝑆))
229, 13, 213eqtr4a 2792 . . . 4 ((𝜑𝑥𝐼) → ( {𝑆, {𝒫 𝑆}} ∖ 𝑆) = {𝒫 𝑆})
23 prex 5373 . . . . . 6 {𝑆, {𝒫 𝑆}} ∈ V
24 bastg 22881 . . . . . 6 ({𝑆, {𝒫 𝑆}} ∈ V → {𝑆, {𝒫 𝑆}} ⊆ (topGen‘{𝑆, {𝒫 𝑆}}))
2523, 24mp1i 13 . . . . 5 ((𝜑𝑥𝐼) → {𝑆, {𝒫 𝑆}} ⊆ (topGen‘{𝑆, {𝒫 𝑆}}))
2610prid2 4713 . . . . . 6 {𝒫 𝑆} ∈ {𝑆, {𝒫 𝑆}}
2726a1i 11 . . . . 5 ((𝜑𝑥𝐼) → {𝒫 𝑆} ∈ {𝑆, {𝒫 𝑆}})
2825, 27sseldd 3930 . . . 4 ((𝜑𝑥𝐼) → {𝒫 𝑆} ∈ (topGen‘{𝑆, {𝒫 𝑆}}))
2922, 28eqeltrd 2831 . . 3 ((𝜑𝑥𝐼) → ( {𝑆, {𝒫 𝑆}} ∖ 𝑆) ∈ (topGen‘{𝑆, {𝒫 𝑆}}))
30 prid1g 4710 . . . . 5 (𝑆𝑉𝑆 ∈ {𝑆, {𝒫 𝑆}})
31 elssuni 4887 . . . . 5 (𝑆 ∈ {𝑆, {𝒫 𝑆}} → 𝑆 {𝑆, {𝒫 𝑆}})
322, 30, 313syl 18 . . . 4 ((𝜑𝑥𝐼) → 𝑆 {𝑆, {𝒫 𝑆}})
33 unitg 22882 . . . . . . 7 ({𝑆, {𝒫 𝑆}} ∈ V → (topGen‘{𝑆, {𝒫 𝑆}}) = {𝑆, {𝒫 𝑆}})
3423, 33ax-mp 5 . . . . . 6 (topGen‘{𝑆, {𝒫 𝑆}}) = {𝑆, {𝒫 𝑆}}
3534eqcomi 2740 . . . . 5 {𝑆, {𝒫 𝑆}} = (topGen‘{𝑆, {𝒫 𝑆}})
3635iscld2 22943 . . . 4 (((topGen‘{𝑆, {𝒫 𝑆}}) ∈ Top ∧ 𝑆 {𝑆, {𝒫 𝑆}}) → (𝑆 ∈ (Clsd‘(topGen‘{𝑆, {𝒫 𝑆}})) ↔ ( {𝑆, {𝒫 𝑆}} ∖ 𝑆) ∈ (topGen‘{𝑆, {𝒫 𝑆}})))
375, 32, 36syl2anc 584 . . 3 ((𝜑𝑥𝐼) → (𝑆 ∈ (Clsd‘(topGen‘{𝑆, {𝒫 𝑆}})) ↔ ( {𝑆, {𝒫 𝑆}} ∖ 𝑆) ∈ (topGen‘{𝑆, {𝒫 𝑆}})))
3829, 37mpbird 257 . 2 ((𝜑𝑥𝐼) → 𝑆 ∈ (Clsd‘(topGen‘{𝑆, {𝒫 𝑆}})))
39 f1oi 6801 . . 3 ( I ↾ 𝑆):𝑆1-1-onto𝑆
4039a1i 11 . 2 ((𝜑𝑥𝐼) → ( I ↾ 𝑆):𝑆1-1-onto𝑆)
41 elssuni 4887 . . . . 5 ({𝒫 𝑆} ∈ {𝑆, {𝒫 𝑆}} → {𝒫 𝑆} ⊆ {𝑆, {𝒫 𝑆}})
4226, 41mp1i 13 . . . 4 ((𝜑𝑥𝐼) → {𝒫 𝑆} ⊆ {𝑆, {𝒫 𝑆}})
43 uniexg 7673 . . . . 5 (𝑆𝑉 𝑆 ∈ V)
44 pwexg 5314 . . . . 5 ( 𝑆 ∈ V → 𝒫 𝑆 ∈ V)
45 snidg 4610 . . . . 5 (𝒫 𝑆 ∈ V → 𝒫 𝑆 ∈ {𝒫 𝑆})
462, 43, 44, 454syl 19 . . . 4 ((𝜑𝑥𝐼) → 𝒫 𝑆 ∈ {𝒫 𝑆})
4742, 46sseldd 3930 . . 3 ((𝜑𝑥𝐼) → 𝒫 𝑆 {𝑆, {𝒫 𝑆}})
4847, 34eleqtrrdi 2842 . 2 ((𝜑𝑥𝐼) → 𝒫 𝑆 (topGen‘{𝑆, {𝒫 𝑆}}))
49 kelac2.k . 2 (𝜑 → (∏t‘(𝑥𝐼 ↦ (topGen‘{𝑆, {𝒫 𝑆}}))) ∈ Comp)
501, 5, 38, 40, 48, 49kelac1 43166 1 (𝜑X𝑥𝐼 𝑆 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  cdif 3894  cun 3895  cin 3896  wss 3897  c0 4280  𝒫 cpw 4547  {csn 4573  {cpr 4575   cuni 4856  cmpt 5170   I cid 5508  cres 5616  1-1-ontowf1o 6480  cfv 6481  Xcixp 8821  topGenctg 17341  tcpt 17342  Topctop 22808  Clsdccld 22931  Compccmp 23301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1o 8385  df-2o 8386  df-ixp 8822  df-en 8870  df-dom 8871  df-fin 8873  df-fi 9295  df-topgen 17347  df-pt 17348  df-top 22809  df-bases 22861  df-cld 22934  df-cmp 23302
This theorem is referenced by:  dfac21  43169
  Copyright terms: Public domain W3C validator