Proof of Theorem kelac2
Step | Hyp | Ref
| Expression |
1 | | kelac2.z |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ≠ ∅) |
2 | | kelac2.s |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ∈ 𝑉) |
3 | | kelac2lem 41085 |
. . 3
⊢ (𝑆 ∈ 𝑉 → (topGen‘{𝑆, {𝒫 ∪
𝑆}}) ∈
Comp) |
4 | | cmptop 22595 |
. . 3
⊢
((topGen‘{𝑆,
{𝒫 ∪ 𝑆}}) ∈ Comp → (topGen‘{𝑆, {𝒫 ∪ 𝑆}})
∈ Top) |
5 | 2, 3, 4 | 3syl 18 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (topGen‘{𝑆, {𝒫 ∪
𝑆}}) ∈
Top) |
6 | | uncom 4093 |
. . . . . . 7
⊢ (𝑆 ∪ {𝒫 ∪ 𝑆})
= ({𝒫 ∪ 𝑆} ∪ 𝑆) |
7 | 6 | difeq1i 4059 |
. . . . . 6
⊢ ((𝑆 ∪ {𝒫 ∪ 𝑆})
∖ 𝑆) = (({𝒫
∪ 𝑆} ∪ 𝑆) ∖ 𝑆) |
8 | | difun2 4420 |
. . . . . 6
⊢
(({𝒫 ∪ 𝑆} ∪ 𝑆) ∖ 𝑆) = ({𝒫 ∪
𝑆} ∖ 𝑆) |
9 | 7, 8 | eqtri 2764 |
. . . . 5
⊢ ((𝑆 ∪ {𝒫 ∪ 𝑆})
∖ 𝑆) = ({𝒫
∪ 𝑆} ∖ 𝑆) |
10 | | snex 5363 |
. . . . . . 7
⊢
{𝒫 ∪ 𝑆} ∈ V |
11 | | uniprg 4861 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝑉 ∧ {𝒫 ∪ 𝑆}
∈ V) → ∪ {𝑆, {𝒫 ∪
𝑆}} = (𝑆 ∪ {𝒫 ∪ 𝑆})) |
12 | 2, 10, 11 | sylancl 587 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ∪ {𝑆, {𝒫 ∪ 𝑆}}
= (𝑆 ∪ {𝒫 ∪ 𝑆})) |
13 | 12 | difeq1d 4062 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (∪
{𝑆, {𝒫 ∪ 𝑆}}
∖ 𝑆) = ((𝑆 ∪ {𝒫 ∪ 𝑆})
∖ 𝑆)) |
14 | | incom 4141 |
. . . . . . 7
⊢
({𝒫 ∪ 𝑆} ∩ 𝑆) = (𝑆 ∩ {𝒫 ∪ 𝑆}) |
15 | | pwuninel 8122 |
. . . . . . . . 9
⊢ ¬
𝒫 ∪ 𝑆 ∈ 𝑆 |
16 | 15 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ¬ 𝒫 ∪ 𝑆
∈ 𝑆) |
17 | | disjsn 4651 |
. . . . . . . 8
⊢ ((𝑆 ∩ {𝒫 ∪ 𝑆})
= ∅ ↔ ¬ 𝒫 ∪ 𝑆 ∈ 𝑆) |
18 | 16, 17 | sylibr 233 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑆 ∩ {𝒫 ∪ 𝑆})
= ∅) |
19 | 14, 18 | eqtrid 2788 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ({𝒫 ∪ 𝑆}
∩ 𝑆) =
∅) |
20 | | disj3 4393 |
. . . . . 6
⊢
(({𝒫 ∪ 𝑆} ∩ 𝑆) = ∅ ↔ {𝒫 ∪ 𝑆} =
({𝒫 ∪ 𝑆} ∖ 𝑆)) |
21 | 19, 20 | sylib 217 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → {𝒫 ∪ 𝑆} =
({𝒫 ∪ 𝑆} ∖ 𝑆)) |
22 | 9, 13, 21 | 3eqtr4a 2802 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (∪
{𝑆, {𝒫 ∪ 𝑆}}
∖ 𝑆) = {𝒫
∪ 𝑆}) |
23 | | prex 5364 |
. . . . . 6
⊢ {𝑆, {𝒫 ∪ 𝑆}}
∈ V |
24 | | bastg 22165 |
. . . . . 6
⊢ ({𝑆, {𝒫 ∪ 𝑆}}
∈ V → {𝑆,
{𝒫 ∪ 𝑆}} ⊆ (topGen‘{𝑆, {𝒫 ∪
𝑆}})) |
25 | 23, 24 | mp1i 13 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → {𝑆, {𝒫 ∪
𝑆}} ⊆
(topGen‘{𝑆,
{𝒫 ∪ 𝑆}})) |
26 | 10 | prid2 4703 |
. . . . . 6
⊢
{𝒫 ∪ 𝑆} ∈ {𝑆, {𝒫 ∪
𝑆}} |
27 | 26 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → {𝒫 ∪ 𝑆}
∈ {𝑆, {𝒫 ∪ 𝑆}}) |
28 | 25, 27 | sseldd 3927 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → {𝒫 ∪ 𝑆}
∈ (topGen‘{𝑆,
{𝒫 ∪ 𝑆}})) |
29 | 22, 28 | eqeltrd 2837 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (∪
{𝑆, {𝒫 ∪ 𝑆}}
∖ 𝑆) ∈
(topGen‘{𝑆,
{𝒫 ∪ 𝑆}})) |
30 | | prid1g 4700 |
. . . . 5
⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ {𝑆, {𝒫 ∪
𝑆}}) |
31 | | elssuni 4877 |
. . . . 5
⊢ (𝑆 ∈ {𝑆, {𝒫 ∪
𝑆}} → 𝑆 ⊆ ∪ {𝑆,
{𝒫 ∪ 𝑆}}) |
32 | 2, 30, 31 | 3syl 18 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ⊆ ∪ {𝑆, {𝒫 ∪ 𝑆}}) |
33 | | unitg 22166 |
. . . . . . 7
⊢ ({𝑆, {𝒫 ∪ 𝑆}}
∈ V → ∪ (topGen‘{𝑆, {𝒫 ∪
𝑆}}) = ∪ {𝑆,
{𝒫 ∪ 𝑆}}) |
34 | 23, 33 | ax-mp 5 |
. . . . . 6
⊢ ∪ (topGen‘{𝑆, {𝒫 ∪
𝑆}}) = ∪ {𝑆,
{𝒫 ∪ 𝑆}} |
35 | 34 | eqcomi 2745 |
. . . . 5
⊢ ∪ {𝑆,
{𝒫 ∪ 𝑆}} = ∪
(topGen‘{𝑆,
{𝒫 ∪ 𝑆}}) |
36 | 35 | iscld2 22228 |
. . . 4
⊢
(((topGen‘{𝑆,
{𝒫 ∪ 𝑆}}) ∈ Top ∧ 𝑆 ⊆ ∪ {𝑆, {𝒫 ∪ 𝑆}})
→ (𝑆 ∈
(Clsd‘(topGen‘{𝑆, {𝒫 ∪
𝑆}})) ↔ (∪ {𝑆,
{𝒫 ∪ 𝑆}} ∖ 𝑆) ∈ (topGen‘{𝑆, {𝒫 ∪
𝑆}}))) |
37 | 5, 32, 36 | syl2anc 585 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑆 ∈ (Clsd‘(topGen‘{𝑆, {𝒫 ∪ 𝑆}})) ↔ (∪
{𝑆, {𝒫 ∪ 𝑆}}
∖ 𝑆) ∈
(topGen‘{𝑆,
{𝒫 ∪ 𝑆}}))) |
38 | 29, 37 | mpbird 257 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ∈ (Clsd‘(topGen‘{𝑆, {𝒫 ∪ 𝑆}}))) |
39 | | f1oi 6784 |
. . 3
⊢ ( I
↾ 𝑆):𝑆–1-1-onto→𝑆 |
40 | 39 | a1i 11 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ( I ↾ 𝑆):𝑆–1-1-onto→𝑆) |
41 | | elssuni 4877 |
. . . . 5
⊢
({𝒫 ∪ 𝑆} ∈ {𝑆, {𝒫 ∪
𝑆}} → {𝒫 ∪ 𝑆}
⊆ ∪ {𝑆, {𝒫 ∪
𝑆}}) |
42 | 26, 41 | mp1i 13 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → {𝒫 ∪ 𝑆}
⊆ ∪ {𝑆, {𝒫 ∪
𝑆}}) |
43 | | uniexg 7625 |
. . . . 5
⊢ (𝑆 ∈ 𝑉 → ∪ 𝑆 ∈ V) |
44 | | pwexg 5310 |
. . . . 5
⊢ (∪ 𝑆
∈ V → 𝒫 ∪ 𝑆 ∈ V) |
45 | | snidg 4599 |
. . . . 5
⊢
(𝒫 ∪ 𝑆 ∈ V → 𝒫 ∪ 𝑆
∈ {𝒫 ∪ 𝑆}) |
46 | 2, 43, 44, 45 | 4syl 19 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝒫 ∪ 𝑆
∈ {𝒫 ∪ 𝑆}) |
47 | 42, 46 | sseldd 3927 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝒫 ∪ 𝑆
∈ ∪ {𝑆, {𝒫 ∪
𝑆}}) |
48 | 47, 34 | eleqtrrdi 2848 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝒫 ∪ 𝑆
∈ ∪ (topGen‘{𝑆, {𝒫 ∪
𝑆}})) |
49 | | kelac2.k |
. 2
⊢ (𝜑 →
(∏t‘(𝑥 ∈ 𝐼 ↦ (topGen‘{𝑆, {𝒫 ∪
𝑆}}))) ∈
Comp) |
50 | 1, 5, 38, 40, 48, 49 | kelac1 41084 |
1
⊢ (𝜑 → X𝑥 ∈
𝐼 𝑆 ≠ ∅) |