Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kelac2 Structured version   Visualization version   GIF version

Theorem kelac2 41086
Description: Kelley's choice, most common form: compactness of a product of knob topologies recovers choice. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
kelac2.s ((𝜑𝑥𝐼) → 𝑆𝑉)
kelac2.z ((𝜑𝑥𝐼) → 𝑆 ≠ ∅)
kelac2.k (𝜑 → (∏t‘(𝑥𝐼 ↦ (topGen‘{𝑆, {𝒫 𝑆}}))) ∈ Comp)
Assertion
Ref Expression
kelac2 (𝜑X𝑥𝐼 𝑆 ≠ ∅)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐼
Allowed substitution hints:   𝑆(𝑥)   𝑉(𝑥)

Proof of Theorem kelac2
StepHypRef Expression
1 kelac2.z . 2 ((𝜑𝑥𝐼) → 𝑆 ≠ ∅)
2 kelac2.s . . 3 ((𝜑𝑥𝐼) → 𝑆𝑉)
3 kelac2lem 41085 . . 3 (𝑆𝑉 → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Comp)
4 cmptop 22595 . . 3 ((topGen‘{𝑆, {𝒫 𝑆}}) ∈ Comp → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Top)
52, 3, 43syl 18 . 2 ((𝜑𝑥𝐼) → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Top)
6 uncom 4093 . . . . . . 7 (𝑆 ∪ {𝒫 𝑆}) = ({𝒫 𝑆} ∪ 𝑆)
76difeq1i 4059 . . . . . 6 ((𝑆 ∪ {𝒫 𝑆}) ∖ 𝑆) = (({𝒫 𝑆} ∪ 𝑆) ∖ 𝑆)
8 difun2 4420 . . . . . 6 (({𝒫 𝑆} ∪ 𝑆) ∖ 𝑆) = ({𝒫 𝑆} ∖ 𝑆)
97, 8eqtri 2764 . . . . 5 ((𝑆 ∪ {𝒫 𝑆}) ∖ 𝑆) = ({𝒫 𝑆} ∖ 𝑆)
10 snex 5363 . . . . . . 7 {𝒫 𝑆} ∈ V
11 uniprg 4861 . . . . . . 7 ((𝑆𝑉 ∧ {𝒫 𝑆} ∈ V) → {𝑆, {𝒫 𝑆}} = (𝑆 ∪ {𝒫 𝑆}))
122, 10, 11sylancl 587 . . . . . 6 ((𝜑𝑥𝐼) → {𝑆, {𝒫 𝑆}} = (𝑆 ∪ {𝒫 𝑆}))
1312difeq1d 4062 . . . . 5 ((𝜑𝑥𝐼) → ( {𝑆, {𝒫 𝑆}} ∖ 𝑆) = ((𝑆 ∪ {𝒫 𝑆}) ∖ 𝑆))
14 incom 4141 . . . . . . 7 ({𝒫 𝑆} ∩ 𝑆) = (𝑆 ∩ {𝒫 𝑆})
15 pwuninel 8122 . . . . . . . . 9 ¬ 𝒫 𝑆𝑆
1615a1i 11 . . . . . . . 8 ((𝜑𝑥𝐼) → ¬ 𝒫 𝑆𝑆)
17 disjsn 4651 . . . . . . . 8 ((𝑆 ∩ {𝒫 𝑆}) = ∅ ↔ ¬ 𝒫 𝑆𝑆)
1816, 17sylibr 233 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑆 ∩ {𝒫 𝑆}) = ∅)
1914, 18eqtrid 2788 . . . . . 6 ((𝜑𝑥𝐼) → ({𝒫 𝑆} ∩ 𝑆) = ∅)
20 disj3 4393 . . . . . 6 (({𝒫 𝑆} ∩ 𝑆) = ∅ ↔ {𝒫 𝑆} = ({𝒫 𝑆} ∖ 𝑆))
2119, 20sylib 217 . . . . 5 ((𝜑𝑥𝐼) → {𝒫 𝑆} = ({𝒫 𝑆} ∖ 𝑆))
229, 13, 213eqtr4a 2802 . . . 4 ((𝜑𝑥𝐼) → ( {𝑆, {𝒫 𝑆}} ∖ 𝑆) = {𝒫 𝑆})
23 prex 5364 . . . . . 6 {𝑆, {𝒫 𝑆}} ∈ V
24 bastg 22165 . . . . . 6 ({𝑆, {𝒫 𝑆}} ∈ V → {𝑆, {𝒫 𝑆}} ⊆ (topGen‘{𝑆, {𝒫 𝑆}}))
2523, 24mp1i 13 . . . . 5 ((𝜑𝑥𝐼) → {𝑆, {𝒫 𝑆}} ⊆ (topGen‘{𝑆, {𝒫 𝑆}}))
2610prid2 4703 . . . . . 6 {𝒫 𝑆} ∈ {𝑆, {𝒫 𝑆}}
2726a1i 11 . . . . 5 ((𝜑𝑥𝐼) → {𝒫 𝑆} ∈ {𝑆, {𝒫 𝑆}})
2825, 27sseldd 3927 . . . 4 ((𝜑𝑥𝐼) → {𝒫 𝑆} ∈ (topGen‘{𝑆, {𝒫 𝑆}}))
2922, 28eqeltrd 2837 . . 3 ((𝜑𝑥𝐼) → ( {𝑆, {𝒫 𝑆}} ∖ 𝑆) ∈ (topGen‘{𝑆, {𝒫 𝑆}}))
30 prid1g 4700 . . . . 5 (𝑆𝑉𝑆 ∈ {𝑆, {𝒫 𝑆}})
31 elssuni 4877 . . . . 5 (𝑆 ∈ {𝑆, {𝒫 𝑆}} → 𝑆 {𝑆, {𝒫 𝑆}})
322, 30, 313syl 18 . . . 4 ((𝜑𝑥𝐼) → 𝑆 {𝑆, {𝒫 𝑆}})
33 unitg 22166 . . . . . . 7 ({𝑆, {𝒫 𝑆}} ∈ V → (topGen‘{𝑆, {𝒫 𝑆}}) = {𝑆, {𝒫 𝑆}})
3423, 33ax-mp 5 . . . . . 6 (topGen‘{𝑆, {𝒫 𝑆}}) = {𝑆, {𝒫 𝑆}}
3534eqcomi 2745 . . . . 5 {𝑆, {𝒫 𝑆}} = (topGen‘{𝑆, {𝒫 𝑆}})
3635iscld2 22228 . . . 4 (((topGen‘{𝑆, {𝒫 𝑆}}) ∈ Top ∧ 𝑆 {𝑆, {𝒫 𝑆}}) → (𝑆 ∈ (Clsd‘(topGen‘{𝑆, {𝒫 𝑆}})) ↔ ( {𝑆, {𝒫 𝑆}} ∖ 𝑆) ∈ (topGen‘{𝑆, {𝒫 𝑆}})))
375, 32, 36syl2anc 585 . . 3 ((𝜑𝑥𝐼) → (𝑆 ∈ (Clsd‘(topGen‘{𝑆, {𝒫 𝑆}})) ↔ ( {𝑆, {𝒫 𝑆}} ∖ 𝑆) ∈ (topGen‘{𝑆, {𝒫 𝑆}})))
3829, 37mpbird 257 . 2 ((𝜑𝑥𝐼) → 𝑆 ∈ (Clsd‘(topGen‘{𝑆, {𝒫 𝑆}})))
39 f1oi 6784 . . 3 ( I ↾ 𝑆):𝑆1-1-onto𝑆
4039a1i 11 . 2 ((𝜑𝑥𝐼) → ( I ↾ 𝑆):𝑆1-1-onto𝑆)
41 elssuni 4877 . . . . 5 ({𝒫 𝑆} ∈ {𝑆, {𝒫 𝑆}} → {𝒫 𝑆} ⊆ {𝑆, {𝒫 𝑆}})
4226, 41mp1i 13 . . . 4 ((𝜑𝑥𝐼) → {𝒫 𝑆} ⊆ {𝑆, {𝒫 𝑆}})
43 uniexg 7625 . . . . 5 (𝑆𝑉 𝑆 ∈ V)
44 pwexg 5310 . . . . 5 ( 𝑆 ∈ V → 𝒫 𝑆 ∈ V)
45 snidg 4599 . . . . 5 (𝒫 𝑆 ∈ V → 𝒫 𝑆 ∈ {𝒫 𝑆})
462, 43, 44, 454syl 19 . . . 4 ((𝜑𝑥𝐼) → 𝒫 𝑆 ∈ {𝒫 𝑆})
4742, 46sseldd 3927 . . 3 ((𝜑𝑥𝐼) → 𝒫 𝑆 {𝑆, {𝒫 𝑆}})
4847, 34eleqtrrdi 2848 . 2 ((𝜑𝑥𝐼) → 𝒫 𝑆 (topGen‘{𝑆, {𝒫 𝑆}}))
49 kelac2.k . 2 (𝜑 → (∏t‘(𝑥𝐼 ↦ (topGen‘{𝑆, {𝒫 𝑆}}))) ∈ Comp)
501, 5, 38, 40, 48, 49kelac1 41084 1 (𝜑X𝑥𝐼 𝑆 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104  wne 2941  Vcvv 3437  cdif 3889  cun 3890  cin 3891  wss 3892  c0 4262  𝒫 cpw 4539  {csn 4565  {cpr 4567   cuni 4844  cmpt 5164   I cid 5499  cres 5602  1-1-ontowf1o 6457  cfv 6458  Xcixp 8716  topGenctg 17197  tcpt 17198  Topctop 22091  Clsdccld 22216  Compccmp 22586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-iin 4934  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-om 7745  df-1o 8328  df-er 8529  df-ixp 8717  df-en 8765  df-dom 8766  df-fin 8768  df-fi 9218  df-topgen 17203  df-pt 17204  df-top 22092  df-bases 22145  df-cld 22219  df-cmp 22587
This theorem is referenced by:  dfac21  41087
  Copyright terms: Public domain W3C validator