Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kelac2 Structured version   Visualization version   GIF version

Theorem kelac2 43054
Description: Kelley's choice, most common form: compactness of a product of knob topologies recovers choice. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
kelac2.s ((𝜑𝑥𝐼) → 𝑆𝑉)
kelac2.z ((𝜑𝑥𝐼) → 𝑆 ≠ ∅)
kelac2.k (𝜑 → (∏t‘(𝑥𝐼 ↦ (topGen‘{𝑆, {𝒫 𝑆}}))) ∈ Comp)
Assertion
Ref Expression
kelac2 (𝜑X𝑥𝐼 𝑆 ≠ ∅)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐼
Allowed substitution hints:   𝑆(𝑥)   𝑉(𝑥)

Proof of Theorem kelac2
StepHypRef Expression
1 kelac2.z . 2 ((𝜑𝑥𝐼) → 𝑆 ≠ ∅)
2 kelac2.s . . 3 ((𝜑𝑥𝐼) → 𝑆𝑉)
3 kelac2lem 43053 . . 3 (𝑆𝑉 → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Comp)
4 cmptop 23419 . . 3 ((topGen‘{𝑆, {𝒫 𝑆}}) ∈ Comp → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Top)
52, 3, 43syl 18 . 2 ((𝜑𝑥𝐼) → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Top)
6 uncom 4168 . . . . . . 7 (𝑆 ∪ {𝒫 𝑆}) = ({𝒫 𝑆} ∪ 𝑆)
76difeq1i 4132 . . . . . 6 ((𝑆 ∪ {𝒫 𝑆}) ∖ 𝑆) = (({𝒫 𝑆} ∪ 𝑆) ∖ 𝑆)
8 difun2 4487 . . . . . 6 (({𝒫 𝑆} ∪ 𝑆) ∖ 𝑆) = ({𝒫 𝑆} ∖ 𝑆)
97, 8eqtri 2763 . . . . 5 ((𝑆 ∪ {𝒫 𝑆}) ∖ 𝑆) = ({𝒫 𝑆} ∖ 𝑆)
10 snex 5442 . . . . . . 7 {𝒫 𝑆} ∈ V
11 uniprg 4928 . . . . . . 7 ((𝑆𝑉 ∧ {𝒫 𝑆} ∈ V) → {𝑆, {𝒫 𝑆}} = (𝑆 ∪ {𝒫 𝑆}))
122, 10, 11sylancl 586 . . . . . 6 ((𝜑𝑥𝐼) → {𝑆, {𝒫 𝑆}} = (𝑆 ∪ {𝒫 𝑆}))
1312difeq1d 4135 . . . . 5 ((𝜑𝑥𝐼) → ( {𝑆, {𝒫 𝑆}} ∖ 𝑆) = ((𝑆 ∪ {𝒫 𝑆}) ∖ 𝑆))
14 incom 4217 . . . . . . 7 ({𝒫 𝑆} ∩ 𝑆) = (𝑆 ∩ {𝒫 𝑆})
15 pwuninel 8299 . . . . . . . . 9 ¬ 𝒫 𝑆𝑆
1615a1i 11 . . . . . . . 8 ((𝜑𝑥𝐼) → ¬ 𝒫 𝑆𝑆)
17 disjsn 4716 . . . . . . . 8 ((𝑆 ∩ {𝒫 𝑆}) = ∅ ↔ ¬ 𝒫 𝑆𝑆)
1816, 17sylibr 234 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑆 ∩ {𝒫 𝑆}) = ∅)
1914, 18eqtrid 2787 . . . . . 6 ((𝜑𝑥𝐼) → ({𝒫 𝑆} ∩ 𝑆) = ∅)
20 disj3 4460 . . . . . 6 (({𝒫 𝑆} ∩ 𝑆) = ∅ ↔ {𝒫 𝑆} = ({𝒫 𝑆} ∖ 𝑆))
2119, 20sylib 218 . . . . 5 ((𝜑𝑥𝐼) → {𝒫 𝑆} = ({𝒫 𝑆} ∖ 𝑆))
229, 13, 213eqtr4a 2801 . . . 4 ((𝜑𝑥𝐼) → ( {𝑆, {𝒫 𝑆}} ∖ 𝑆) = {𝒫 𝑆})
23 prex 5443 . . . . . 6 {𝑆, {𝒫 𝑆}} ∈ V
24 bastg 22989 . . . . . 6 ({𝑆, {𝒫 𝑆}} ∈ V → {𝑆, {𝒫 𝑆}} ⊆ (topGen‘{𝑆, {𝒫 𝑆}}))
2523, 24mp1i 13 . . . . 5 ((𝜑𝑥𝐼) → {𝑆, {𝒫 𝑆}} ⊆ (topGen‘{𝑆, {𝒫 𝑆}}))
2610prid2 4768 . . . . . 6 {𝒫 𝑆} ∈ {𝑆, {𝒫 𝑆}}
2726a1i 11 . . . . 5 ((𝜑𝑥𝐼) → {𝒫 𝑆} ∈ {𝑆, {𝒫 𝑆}})
2825, 27sseldd 3996 . . . 4 ((𝜑𝑥𝐼) → {𝒫 𝑆} ∈ (topGen‘{𝑆, {𝒫 𝑆}}))
2922, 28eqeltrd 2839 . . 3 ((𝜑𝑥𝐼) → ( {𝑆, {𝒫 𝑆}} ∖ 𝑆) ∈ (topGen‘{𝑆, {𝒫 𝑆}}))
30 prid1g 4765 . . . . 5 (𝑆𝑉𝑆 ∈ {𝑆, {𝒫 𝑆}})
31 elssuni 4942 . . . . 5 (𝑆 ∈ {𝑆, {𝒫 𝑆}} → 𝑆 {𝑆, {𝒫 𝑆}})
322, 30, 313syl 18 . . . 4 ((𝜑𝑥𝐼) → 𝑆 {𝑆, {𝒫 𝑆}})
33 unitg 22990 . . . . . . 7 ({𝑆, {𝒫 𝑆}} ∈ V → (topGen‘{𝑆, {𝒫 𝑆}}) = {𝑆, {𝒫 𝑆}})
3423, 33ax-mp 5 . . . . . 6 (topGen‘{𝑆, {𝒫 𝑆}}) = {𝑆, {𝒫 𝑆}}
3534eqcomi 2744 . . . . 5 {𝑆, {𝒫 𝑆}} = (topGen‘{𝑆, {𝒫 𝑆}})
3635iscld2 23052 . . . 4 (((topGen‘{𝑆, {𝒫 𝑆}}) ∈ Top ∧ 𝑆 {𝑆, {𝒫 𝑆}}) → (𝑆 ∈ (Clsd‘(topGen‘{𝑆, {𝒫 𝑆}})) ↔ ( {𝑆, {𝒫 𝑆}} ∖ 𝑆) ∈ (topGen‘{𝑆, {𝒫 𝑆}})))
375, 32, 36syl2anc 584 . . 3 ((𝜑𝑥𝐼) → (𝑆 ∈ (Clsd‘(topGen‘{𝑆, {𝒫 𝑆}})) ↔ ( {𝑆, {𝒫 𝑆}} ∖ 𝑆) ∈ (topGen‘{𝑆, {𝒫 𝑆}})))
3829, 37mpbird 257 . 2 ((𝜑𝑥𝐼) → 𝑆 ∈ (Clsd‘(topGen‘{𝑆, {𝒫 𝑆}})))
39 f1oi 6887 . . 3 ( I ↾ 𝑆):𝑆1-1-onto𝑆
4039a1i 11 . 2 ((𝜑𝑥𝐼) → ( I ↾ 𝑆):𝑆1-1-onto𝑆)
41 elssuni 4942 . . . . 5 ({𝒫 𝑆} ∈ {𝑆, {𝒫 𝑆}} → {𝒫 𝑆} ⊆ {𝑆, {𝒫 𝑆}})
4226, 41mp1i 13 . . . 4 ((𝜑𝑥𝐼) → {𝒫 𝑆} ⊆ {𝑆, {𝒫 𝑆}})
43 uniexg 7759 . . . . 5 (𝑆𝑉 𝑆 ∈ V)
44 pwexg 5384 . . . . 5 ( 𝑆 ∈ V → 𝒫 𝑆 ∈ V)
45 snidg 4665 . . . . 5 (𝒫 𝑆 ∈ V → 𝒫 𝑆 ∈ {𝒫 𝑆})
462, 43, 44, 454syl 19 . . . 4 ((𝜑𝑥𝐼) → 𝒫 𝑆 ∈ {𝒫 𝑆})
4742, 46sseldd 3996 . . 3 ((𝜑𝑥𝐼) → 𝒫 𝑆 {𝑆, {𝒫 𝑆}})
4847, 34eleqtrrdi 2850 . 2 ((𝜑𝑥𝐼) → 𝒫 𝑆 (topGen‘{𝑆, {𝒫 𝑆}}))
49 kelac2.k . 2 (𝜑 → (∏t‘(𝑥𝐼 ↦ (topGen‘{𝑆, {𝒫 𝑆}}))) ∈ Comp)
501, 5, 38, 40, 48, 49kelac1 43052 1 (𝜑X𝑥𝐼 𝑆 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  cdif 3960  cun 3961  cin 3962  wss 3963  c0 4339  𝒫 cpw 4605  {csn 4631  {cpr 4633   cuni 4912  cmpt 5231   I cid 5582  cres 5691  1-1-ontowf1o 6562  cfv 6563  Xcixp 8936  topGenctg 17484  tcpt 17485  Topctop 22915  Clsdccld 23040  Compccmp 23410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-om 7888  df-1o 8505  df-2o 8506  df-ixp 8937  df-en 8985  df-dom 8986  df-fin 8988  df-fi 9449  df-topgen 17490  df-pt 17491  df-top 22916  df-bases 22969  df-cld 23043  df-cmp 23411
This theorem is referenced by:  dfac21  43055
  Copyright terms: Public domain W3C validator