 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjen Structured version   Visualization version   GIF version

Theorem disjen 8462
 Description: A stronger form of pwuninel 7737. We can use pwuninel 7737, 2pwuninel 8460 to create one or two sets disjoint from a given set 𝐴, but here we show that in fact such constructions exist for arbitrarily large disjoint extensions, which is to say that for any set 𝐵 we can construct a set 𝑥 that is equinumerous to it and disjoint from 𝐴. (Contributed by Mario Carneiro, 7-Feb-2015.)
Assertion
Ref Expression
disjen ((𝐴𝑉𝐵𝑊) → ((𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})) = ∅ ∧ (𝐵 × {𝒫 ran 𝐴}) ≈ 𝐵))

Proof of Theorem disjen
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1st2nd2 7533 . . . . . . . 8 (𝑥 ∈ (𝐵 × {𝒫 ran 𝐴}) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
21ad2antll 716 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ (𝑥𝐴𝑥 ∈ (𝐵 × {𝒫 ran 𝐴}))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
3 simprl 758 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ (𝑥𝐴𝑥 ∈ (𝐵 × {𝒫 ran 𝐴}))) → 𝑥𝐴)
42, 3eqeltrrd 2861 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ (𝑥𝐴𝑥 ∈ (𝐵 × {𝒫 ran 𝐴}))) → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝐴)
5 fvex 6506 . . . . . . 7 (1st𝑥) ∈ V
6 fvex 6506 . . . . . . 7 (2nd𝑥) ∈ V
75, 6opelrn 5649 . . . . . 6 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝐴 → (2nd𝑥) ∈ ran 𝐴)
84, 7syl 17 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ (𝑥𝐴𝑥 ∈ (𝐵 × {𝒫 ran 𝐴}))) → (2nd𝑥) ∈ ran 𝐴)
9 pwuninel 7737 . . . . . 6 ¬ 𝒫 ran 𝐴 ∈ ran 𝐴
10 xp2nd 7527 . . . . . . . . 9 (𝑥 ∈ (𝐵 × {𝒫 ran 𝐴}) → (2nd𝑥) ∈ {𝒫 ran 𝐴})
1110ad2antll 716 . . . . . . . 8 (((𝐴𝑉𝐵𝑊) ∧ (𝑥𝐴𝑥 ∈ (𝐵 × {𝒫 ran 𝐴}))) → (2nd𝑥) ∈ {𝒫 ran 𝐴})
12 elsni 4452 . . . . . . . 8 ((2nd𝑥) ∈ {𝒫 ran 𝐴} → (2nd𝑥) = 𝒫 ran 𝐴)
1311, 12syl 17 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ (𝑥𝐴𝑥 ∈ (𝐵 × {𝒫 ran 𝐴}))) → (2nd𝑥) = 𝒫 ran 𝐴)
1413eleq1d 2844 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ (𝑥𝐴𝑥 ∈ (𝐵 × {𝒫 ran 𝐴}))) → ((2nd𝑥) ∈ ran 𝐴 ↔ 𝒫 ran 𝐴 ∈ ran 𝐴))
159, 14mtbiri 319 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ (𝑥𝐴𝑥 ∈ (𝐵 × {𝒫 ran 𝐴}))) → ¬ (2nd𝑥) ∈ ran 𝐴)
168, 15pm2.65da 804 . . . 4 ((𝐴𝑉𝐵𝑊) → ¬ (𝑥𝐴𝑥 ∈ (𝐵 × {𝒫 ran 𝐴})))
17 elin 4053 . . . 4 (𝑥 ∈ (𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})) ↔ (𝑥𝐴𝑥 ∈ (𝐵 × {𝒫 ran 𝐴})))
1816, 17sylnibr 321 . . 3 ((𝐴𝑉𝐵𝑊) → ¬ 𝑥 ∈ (𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})))
1918eq0rdv 4237 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})) = ∅)
20 simpr 477 . . 3 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
21 rnexg 7423 . . . . 5 (𝐴𝑉 → ran 𝐴 ∈ V)
2221adantr 473 . . . 4 ((𝐴𝑉𝐵𝑊) → ran 𝐴 ∈ V)
23 uniexg 7279 . . . 4 (ran 𝐴 ∈ V → ran 𝐴 ∈ V)
24 pwexg 5126 . . . 4 ( ran 𝐴 ∈ V → 𝒫 ran 𝐴 ∈ V)
2522, 23, 243syl 18 . . 3 ((𝐴𝑉𝐵𝑊) → 𝒫 ran 𝐴 ∈ V)
26 xpsneng 8390 . . 3 ((𝐵𝑊 ∧ 𝒫 ran 𝐴 ∈ V) → (𝐵 × {𝒫 ran 𝐴}) ≈ 𝐵)
2720, 25, 26syl2anc 576 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵 × {𝒫 ran 𝐴}) ≈ 𝐵)
2819, 27jca 504 1 ((𝐴𝑉𝐵𝑊) → ((𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})) = ∅ ∧ (𝐵 × {𝒫 ran 𝐴}) ≈ 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 387   = wceq 1507   ∈ wcel 2048  Vcvv 3409   ∩ cin 3824  ∅c0 4173  𝒫 cpw 4416  {csn 4435  ⟨cop 4441  ∪ cuni 4706   class class class wbr 4923   × cxp 5398  ran crn 5401  ‘cfv 6182  1st c1st 7492  2nd c2nd 7493   ≈ cen 8295 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273 This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-sbc 3678  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-int 4744  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5305  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-1st 7494  df-2nd 7495  df-en 8299 This theorem is referenced by:  disjenex  8463  domss2  8464
 Copyright terms: Public domain W3C validator