MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjen Structured version   Visualization version   GIF version

Theorem disjen 8688
Description: A stronger form of pwuninel 7944. We can use pwuninel 7944, 2pwuninel 8686 to create one or two sets disjoint from a given set 𝐴, but here we show that in fact such constructions exist for arbitrarily large disjoint extensions, which is to say that for any set 𝐵 we can construct a set 𝑥 that is equinumerous to it and disjoint from 𝐴. (Contributed by Mario Carneiro, 7-Feb-2015.)
Assertion
Ref Expression
disjen ((𝐴𝑉𝐵𝑊) → ((𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})) = ∅ ∧ (𝐵 × {𝒫 ran 𝐴}) ≈ 𝐵))

Proof of Theorem disjen
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1st2nd2 7725 . . . . . . . 8 (𝑥 ∈ (𝐵 × {𝒫 ran 𝐴}) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
21ad2antll 729 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ (𝑥𝐴𝑥 ∈ (𝐵 × {𝒫 ran 𝐴}))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
3 simprl 771 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ (𝑥𝐴𝑥 ∈ (𝐵 × {𝒫 ran 𝐴}))) → 𝑥𝐴)
42, 3eqeltrrd 2852 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ (𝑥𝐴𝑥 ∈ (𝐵 × {𝒫 ran 𝐴}))) → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝐴)
5 fvex 6664 . . . . . . 7 (1st𝑥) ∈ V
6 fvex 6664 . . . . . . 7 (2nd𝑥) ∈ V
75, 6opelrn 5777 . . . . . 6 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝐴 → (2nd𝑥) ∈ ran 𝐴)
84, 7syl 17 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ (𝑥𝐴𝑥 ∈ (𝐵 × {𝒫 ran 𝐴}))) → (2nd𝑥) ∈ ran 𝐴)
9 pwuninel 7944 . . . . . 6 ¬ 𝒫 ran 𝐴 ∈ ran 𝐴
10 xp2nd 7719 . . . . . . . . 9 (𝑥 ∈ (𝐵 × {𝒫 ran 𝐴}) → (2nd𝑥) ∈ {𝒫 ran 𝐴})
1110ad2antll 729 . . . . . . . 8 (((𝐴𝑉𝐵𝑊) ∧ (𝑥𝐴𝑥 ∈ (𝐵 × {𝒫 ran 𝐴}))) → (2nd𝑥) ∈ {𝒫 ran 𝐴})
12 elsni 4532 . . . . . . . 8 ((2nd𝑥) ∈ {𝒫 ran 𝐴} → (2nd𝑥) = 𝒫 ran 𝐴)
1311, 12syl 17 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ (𝑥𝐴𝑥 ∈ (𝐵 × {𝒫 ran 𝐴}))) → (2nd𝑥) = 𝒫 ran 𝐴)
1413eleq1d 2835 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ (𝑥𝐴𝑥 ∈ (𝐵 × {𝒫 ran 𝐴}))) → ((2nd𝑥) ∈ ran 𝐴 ↔ 𝒫 ran 𝐴 ∈ ran 𝐴))
159, 14mtbiri 331 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ (𝑥𝐴𝑥 ∈ (𝐵 × {𝒫 ran 𝐴}))) → ¬ (2nd𝑥) ∈ ran 𝐴)
168, 15pm2.65da 817 . . . 4 ((𝐴𝑉𝐵𝑊) → ¬ (𝑥𝐴𝑥 ∈ (𝐵 × {𝒫 ran 𝐴})))
17 elin 3870 . . . 4 (𝑥 ∈ (𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})) ↔ (𝑥𝐴𝑥 ∈ (𝐵 × {𝒫 ran 𝐴})))
1816, 17sylnibr 333 . . 3 ((𝐴𝑉𝐵𝑊) → ¬ 𝑥 ∈ (𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})))
1918eq0rdv 4294 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})) = ∅)
20 simpr 489 . . 3 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
21 rnexg 7607 . . . . 5 (𝐴𝑉 → ran 𝐴 ∈ V)
2221adantr 485 . . . 4 ((𝐴𝑉𝐵𝑊) → ran 𝐴 ∈ V)
23 uniexg 7457 . . . 4 (ran 𝐴 ∈ V → ran 𝐴 ∈ V)
24 pwexg 5240 . . . 4 ( ran 𝐴 ∈ V → 𝒫 ran 𝐴 ∈ V)
2522, 23, 243syl 18 . . 3 ((𝐴𝑉𝐵𝑊) → 𝒫 ran 𝐴 ∈ V)
26 xpsneng 8615 . . 3 ((𝐵𝑊 ∧ 𝒫 ran 𝐴 ∈ V) → (𝐵 × {𝒫 ran 𝐴}) ≈ 𝐵)
2720, 25, 26syl2anc 588 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵 × {𝒫 ran 𝐴}) ≈ 𝐵)
2819, 27jca 516 1 ((𝐴𝑉𝐵𝑊) → ((𝐴 ∩ (𝐵 × {𝒫 ran 𝐴})) = ∅ ∧ (𝐵 × {𝒫 ran 𝐴}) ≈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  Vcvv 3407  cin 3853  c0 4221  𝒫 cpw 4487  {csn 4515  cop 4521   cuni 4791   class class class wbr 5025   × cxp 5515  ran crn 5518  cfv 6328  1st c1st 7684  2nd c2nd 7685  cen 8517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-ral 3073  df-rex 3074  df-rab 3077  df-v 3409  df-sbc 3694  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-op 4522  df-uni 4792  df-int 4832  df-br 5026  df-opab 5088  df-mpt 5106  df-id 5423  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-1st 7686  df-2nd 7687  df-en 8521
This theorem is referenced by:  disjenex  8689  domss2  8690
  Copyright terms: Public domain W3C validator