Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2iocuni Structured version   Visualization version   GIF version

Theorem dya2iocuni 34281
Description: Every open set of (ℝ × ℝ) is a union of closed-below open-above dyadic rational rectangular subsets of (ℝ × ℝ). This union must be a countable union by dya2iocct 34278. (Contributed by Thierry Arnoux, 18-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2ioc.2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
Assertion
Ref Expression
dya2iocuni (𝐴 ∈ (𝐽 ×t 𝐽) → ∃𝑐 ∈ 𝒫 ran 𝑅 𝑐 = 𝐴)
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑣,𝑢,𝐼,𝑥   𝑢,𝑐,𝑣,𝐴   𝑅,𝑐
Allowed substitution hints:   𝐴(𝑥,𝑛)   𝑅(𝑥,𝑣,𝑢,𝑛)   𝐼(𝑛,𝑐)   𝐽(𝑥,𝑣,𝑢,𝑛,𝑐)

Proof of Theorem dya2iocuni
Dummy variables 𝑚 𝑝 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4046 . . . 4 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ ran 𝑅
2 sxbrsiga.0 . . . . . . . 8 𝐽 = (topGen‘ran (,))
3 dya2ioc.1 . . . . . . . 8 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
4 dya2ioc.2 . . . . . . . 8 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
52, 3, 4dya2iocrfn 34277 . . . . . . 7 𝑅 Fn (ran 𝐼 × ran 𝐼)
6 zex 12545 . . . . . . . . . . 11 ℤ ∈ V
76, 6mpoex 8061 . . . . . . . . . 10 (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ∈ V
83, 7eqeltri 2825 . . . . . . . . 9 𝐼 ∈ V
98rnex 7889 . . . . . . . 8 ran 𝐼 ∈ V
109, 9xpex 7732 . . . . . . 7 (ran 𝐼 × ran 𝐼) ∈ V
11 fnex 7194 . . . . . . 7 ((𝑅 Fn (ran 𝐼 × ran 𝐼) ∧ (ran 𝐼 × ran 𝐼) ∈ V) → 𝑅 ∈ V)
125, 10, 11mp2an 692 . . . . . 6 𝑅 ∈ V
1312rnex 7889 . . . . 5 ran 𝑅 ∈ V
1413elpw2 5292 . . . 4 ({𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ∈ 𝒫 ran 𝑅 ↔ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ ran 𝑅)
151, 14mpbir 231 . . 3 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ∈ 𝒫 ran 𝑅
1615a1i 11 . 2 (𝐴 ∈ (𝐽 ×t 𝐽) → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ∈ 𝒫 ran 𝑅)
17 rex0 4326 . . . . . . . . . . 11 ¬ ∃𝑧 ∈ ∅ (𝑧𝑏𝑏𝐴)
18 rexeq 3297 . . . . . . . . . . 11 (𝐴 = ∅ → (∃𝑧𝐴 (𝑧𝑏𝑏𝐴) ↔ ∃𝑧 ∈ ∅ (𝑧𝑏𝑏𝐴)))
1917, 18mtbiri 327 . . . . . . . . . 10 (𝐴 = ∅ → ¬ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴))
2019ralrimivw 3130 . . . . . . . . 9 (𝐴 = ∅ → ∀𝑏 ∈ ran 𝑅 ¬ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴))
21 rabeq0 4354 . . . . . . . . 9 ({𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = ∅ ↔ ∀𝑏 ∈ ran 𝑅 ¬ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴))
2220, 21sylibr 234 . . . . . . . 8 (𝐴 = ∅ → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = ∅)
2322unieqd 4887 . . . . . . 7 (𝐴 = ∅ → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = ∅)
24 uni0 4902 . . . . . . 7 ∅ = ∅
2523, 24eqtrdi 2781 . . . . . 6 (𝐴 = ∅ → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = ∅)
26 0ss 4366 . . . . . 6 ∅ ⊆ 𝐴
2725, 26eqsstrdi 3994 . . . . 5 (𝐴 = ∅ → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ 𝐴)
28 elequ2 2124 . . . . . . . . . . 11 (𝑏 = 𝑝 → (𝑧𝑏𝑧𝑝))
29 sseq1 3975 . . . . . . . . . . 11 (𝑏 = 𝑝 → (𝑏𝐴𝑝𝐴))
3028, 29anbi12d 632 . . . . . . . . . 10 (𝑏 = 𝑝 → ((𝑧𝑏𝑏𝐴) ↔ (𝑧𝑝𝑝𝐴)))
3130rexbidv 3158 . . . . . . . . 9 (𝑏 = 𝑝 → (∃𝑧𝐴 (𝑧𝑏𝑏𝐴) ↔ ∃𝑧𝐴 (𝑧𝑝𝑝𝐴)))
3231elrab 3662 . . . . . . . 8 (𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ↔ (𝑝 ∈ ran 𝑅 ∧ ∃𝑧𝐴 (𝑧𝑝𝑝𝐴)))
33 simpr 484 . . . . . . . . . . 11 ((𝑧𝑝𝑝𝐴) → 𝑝𝐴)
3433reximi 3068 . . . . . . . . . 10 (∃𝑧𝐴 (𝑧𝑝𝑝𝐴) → ∃𝑧𝐴 𝑝𝐴)
35 r19.9rzv 4466 . . . . . . . . . 10 (𝐴 ≠ ∅ → (𝑝𝐴 ↔ ∃𝑧𝐴 𝑝𝐴))
3634, 35imbitrrid 246 . . . . . . . . 9 (𝐴 ≠ ∅ → (∃𝑧𝐴 (𝑧𝑝𝑝𝐴) → 𝑝𝐴))
3736adantld 490 . . . . . . . 8 (𝐴 ≠ ∅ → ((𝑝 ∈ ran 𝑅 ∧ ∃𝑧𝐴 (𝑧𝑝𝑝𝐴)) → 𝑝𝐴))
3832, 37biimtrid 242 . . . . . . 7 (𝐴 ≠ ∅ → (𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} → 𝑝𝐴))
3938ralrimiv 3125 . . . . . 6 (𝐴 ≠ ∅ → ∀𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)}𝑝𝐴)
40 unissb 4906 . . . . . 6 ( {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ 𝐴 ↔ ∀𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)}𝑝𝐴)
4139, 40sylibr 234 . . . . 5 (𝐴 ≠ ∅ → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ 𝐴)
4227, 41pm2.61ine 3009 . . . 4 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ 𝐴
4342a1i 11 . . 3 (𝐴 ∈ (𝐽 ×t 𝐽) → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ 𝐴)
442, 3, 4dya2iocnei 34280 . . . . 5 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑚𝐴) → ∃𝑝 ∈ ran 𝑅(𝑚𝑝𝑝𝐴))
45 simpl 482 . . . . . . . . 9 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → 𝑝 ∈ ran 𝑅)
46 ssel2 3944 . . . . . . . . . . . 12 ((𝑝𝐴𝑚𝑝) → 𝑚𝐴)
4746ancoms 458 . . . . . . . . . . 11 ((𝑚𝑝𝑝𝐴) → 𝑚𝐴)
4847adantl 481 . . . . . . . . . 10 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → 𝑚𝐴)
49 simpr 484 . . . . . . . . . 10 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → (𝑚𝑝𝑝𝐴))
50 elequ1 2116 . . . . . . . . . . . 12 (𝑧 = 𝑚 → (𝑧𝑝𝑚𝑝))
5150anbi1d 631 . . . . . . . . . . 11 (𝑧 = 𝑚 → ((𝑧𝑝𝑝𝐴) ↔ (𝑚𝑝𝑝𝐴)))
5251rspcev 3591 . . . . . . . . . 10 ((𝑚𝐴 ∧ (𝑚𝑝𝑝𝐴)) → ∃𝑧𝐴 (𝑧𝑝𝑝𝐴))
5348, 49, 52syl2anc 584 . . . . . . . . 9 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → ∃𝑧𝐴 (𝑧𝑝𝑝𝐴))
5445, 53jca 511 . . . . . . . 8 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → (𝑝 ∈ ran 𝑅 ∧ ∃𝑧𝐴 (𝑧𝑝𝑝𝐴)))
5554, 32sylibr 234 . . . . . . 7 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → 𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)})
56 simprl 770 . . . . . . 7 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → 𝑚𝑝)
5755, 56jca 511 . . . . . 6 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → (𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ∧ 𝑚𝑝))
5857reximi2 3063 . . . . 5 (∃𝑝 ∈ ran 𝑅(𝑚𝑝𝑝𝐴) → ∃𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)}𝑚𝑝)
5944, 58syl 17 . . . 4 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑚𝐴) → ∃𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)}𝑚𝑝)
60 eluni2 4878 . . . 4 (𝑚 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ↔ ∃𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)}𝑚𝑝)
6159, 60sylibr 234 . . 3 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑚𝐴) → 𝑚 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)})
6243, 61eqelssd 3971 . 2 (𝐴 ∈ (𝐽 ×t 𝐽) → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = 𝐴)
63 unieq 4885 . . . 4 (𝑐 = {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} → 𝑐 = {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)})
6463eqeq1d 2732 . . 3 (𝑐 = {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} → ( 𝑐 = 𝐴 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = 𝐴))
6564rspcev 3591 . 2 (({𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ∈ 𝒫 ran 𝑅 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = 𝐴) → ∃𝑐 ∈ 𝒫 ran 𝑅 𝑐 = 𝐴)
6616, 62, 65syl2anc 584 1 (𝐴 ∈ (𝐽 ×t 𝐽) → ∃𝑐 ∈ 𝒫 ran 𝑅 𝑐 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  wss 3917  c0 4299  𝒫 cpw 4566   cuni 4874   × cxp 5639  ran crn 5642   Fn wfn 6509  cfv 6514  (class class class)co 7390  cmpo 7392  1c1 11076   + caddc 11078   / cdiv 11842  2c2 12248  cz 12536  (,)cioo 13313  [,)cico 13315  cexp 14033  topGenctg 17407   ×t ctx 23454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-refld 21521  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-fcls 23835  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-cfil 25162  df-cmet 25164  df-cms 25242  df-limc 25774  df-dv 25775  df-log 26472  df-cxp 26473  df-logb 26682
This theorem is referenced by:  dya2iocucvr  34282  sxbrsigalem1  34283
  Copyright terms: Public domain W3C validator