Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2iocuni Structured version   Visualization version   GIF version

Theorem dya2iocuni 32883
Description: Every open set of (ℝ × ℝ) is a union of closed-below open-above dyadic rational rectangular subsets of (ℝ × ℝ). This union must be a countable union by dya2iocct 32880. (Contributed by Thierry Arnoux, 18-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2ioc.2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
Assertion
Ref Expression
dya2iocuni (𝐴 ∈ (𝐽 ×t 𝐽) → ∃𝑐 ∈ 𝒫 ran 𝑅 𝑐 = 𝐴)
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑣,𝑢,𝐼,𝑥   𝑢,𝑐,𝑣,𝐴   𝑅,𝑐
Allowed substitution hints:   𝐴(𝑥,𝑛)   𝑅(𝑥,𝑣,𝑢,𝑛)   𝐼(𝑛,𝑐)   𝐽(𝑥,𝑣,𝑢,𝑛,𝑐)

Proof of Theorem dya2iocuni
Dummy variables 𝑚 𝑝 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4037 . . . 4 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ ran 𝑅
2 sxbrsiga.0 . . . . . . . 8 𝐽 = (topGen‘ran (,))
3 dya2ioc.1 . . . . . . . 8 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
4 dya2ioc.2 . . . . . . . 8 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
52, 3, 4dya2iocrfn 32879 . . . . . . 7 𝑅 Fn (ran 𝐼 × ran 𝐼)
6 zex 12508 . . . . . . . . . . 11 ℤ ∈ V
76, 6mpoex 8012 . . . . . . . . . 10 (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ∈ V
83, 7eqeltri 2834 . . . . . . . . 9 𝐼 ∈ V
98rnex 7849 . . . . . . . 8 ran 𝐼 ∈ V
109, 9xpex 7687 . . . . . . 7 (ran 𝐼 × ran 𝐼) ∈ V
11 fnex 7167 . . . . . . 7 ((𝑅 Fn (ran 𝐼 × ran 𝐼) ∧ (ran 𝐼 × ran 𝐼) ∈ V) → 𝑅 ∈ V)
125, 10, 11mp2an 690 . . . . . 6 𝑅 ∈ V
1312rnex 7849 . . . . 5 ran 𝑅 ∈ V
1413elpw2 5302 . . . 4 ({𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ∈ 𝒫 ran 𝑅 ↔ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ ran 𝑅)
151, 14mpbir 230 . . 3 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ∈ 𝒫 ran 𝑅
1615a1i 11 . 2 (𝐴 ∈ (𝐽 ×t 𝐽) → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ∈ 𝒫 ran 𝑅)
17 rex0 4317 . . . . . . . . . . 11 ¬ ∃𝑧 ∈ ∅ (𝑧𝑏𝑏𝐴)
18 rexeq 3310 . . . . . . . . . . 11 (𝐴 = ∅ → (∃𝑧𝐴 (𝑧𝑏𝑏𝐴) ↔ ∃𝑧 ∈ ∅ (𝑧𝑏𝑏𝐴)))
1917, 18mtbiri 326 . . . . . . . . . 10 (𝐴 = ∅ → ¬ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴))
2019ralrimivw 3147 . . . . . . . . 9 (𝐴 = ∅ → ∀𝑏 ∈ ran 𝑅 ¬ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴))
21 rabeq0 4344 . . . . . . . . 9 ({𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = ∅ ↔ ∀𝑏 ∈ ran 𝑅 ¬ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴))
2220, 21sylibr 233 . . . . . . . 8 (𝐴 = ∅ → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = ∅)
2322unieqd 4879 . . . . . . 7 (𝐴 = ∅ → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = ∅)
24 uni0 4896 . . . . . . 7 ∅ = ∅
2523, 24eqtrdi 2792 . . . . . 6 (𝐴 = ∅ → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = ∅)
26 0ss 4356 . . . . . 6 ∅ ⊆ 𝐴
2725, 26eqsstrdi 3998 . . . . 5 (𝐴 = ∅ → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ 𝐴)
28 elequ2 2121 . . . . . . . . . . 11 (𝑏 = 𝑝 → (𝑧𝑏𝑧𝑝))
29 sseq1 3969 . . . . . . . . . . 11 (𝑏 = 𝑝 → (𝑏𝐴𝑝𝐴))
3028, 29anbi12d 631 . . . . . . . . . 10 (𝑏 = 𝑝 → ((𝑧𝑏𝑏𝐴) ↔ (𝑧𝑝𝑝𝐴)))
3130rexbidv 3175 . . . . . . . . 9 (𝑏 = 𝑝 → (∃𝑧𝐴 (𝑧𝑏𝑏𝐴) ↔ ∃𝑧𝐴 (𝑧𝑝𝑝𝐴)))
3231elrab 3645 . . . . . . . 8 (𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ↔ (𝑝 ∈ ran 𝑅 ∧ ∃𝑧𝐴 (𝑧𝑝𝑝𝐴)))
33 simpr 485 . . . . . . . . . . 11 ((𝑧𝑝𝑝𝐴) → 𝑝𝐴)
3433reximi 3087 . . . . . . . . . 10 (∃𝑧𝐴 (𝑧𝑝𝑝𝐴) → ∃𝑧𝐴 𝑝𝐴)
35 r19.9rzv 4457 . . . . . . . . . 10 (𝐴 ≠ ∅ → (𝑝𝐴 ↔ ∃𝑧𝐴 𝑝𝐴))
3634, 35syl5ibr 245 . . . . . . . . 9 (𝐴 ≠ ∅ → (∃𝑧𝐴 (𝑧𝑝𝑝𝐴) → 𝑝𝐴))
3736adantld 491 . . . . . . . 8 (𝐴 ≠ ∅ → ((𝑝 ∈ ran 𝑅 ∧ ∃𝑧𝐴 (𝑧𝑝𝑝𝐴)) → 𝑝𝐴))
3832, 37biimtrid 241 . . . . . . 7 (𝐴 ≠ ∅ → (𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} → 𝑝𝐴))
3938ralrimiv 3142 . . . . . 6 (𝐴 ≠ ∅ → ∀𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)}𝑝𝐴)
40 unissb 4900 . . . . . 6 ( {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ 𝐴 ↔ ∀𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)}𝑝𝐴)
4139, 40sylibr 233 . . . . 5 (𝐴 ≠ ∅ → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ 𝐴)
4227, 41pm2.61ine 3028 . . . 4 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ 𝐴
4342a1i 11 . . 3 (𝐴 ∈ (𝐽 ×t 𝐽) → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ 𝐴)
442, 3, 4dya2iocnei 32882 . . . . 5 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑚𝐴) → ∃𝑝 ∈ ran 𝑅(𝑚𝑝𝑝𝐴))
45 simpl 483 . . . . . . . . 9 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → 𝑝 ∈ ran 𝑅)
46 ssel2 3939 . . . . . . . . . . . 12 ((𝑝𝐴𝑚𝑝) → 𝑚𝐴)
4746ancoms 459 . . . . . . . . . . 11 ((𝑚𝑝𝑝𝐴) → 𝑚𝐴)
4847adantl 482 . . . . . . . . . 10 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → 𝑚𝐴)
49 simpr 485 . . . . . . . . . 10 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → (𝑚𝑝𝑝𝐴))
50 elequ1 2113 . . . . . . . . . . . 12 (𝑧 = 𝑚 → (𝑧𝑝𝑚𝑝))
5150anbi1d 630 . . . . . . . . . . 11 (𝑧 = 𝑚 → ((𝑧𝑝𝑝𝐴) ↔ (𝑚𝑝𝑝𝐴)))
5251rspcev 3581 . . . . . . . . . 10 ((𝑚𝐴 ∧ (𝑚𝑝𝑝𝐴)) → ∃𝑧𝐴 (𝑧𝑝𝑝𝐴))
5348, 49, 52syl2anc 584 . . . . . . . . 9 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → ∃𝑧𝐴 (𝑧𝑝𝑝𝐴))
5445, 53jca 512 . . . . . . . 8 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → (𝑝 ∈ ran 𝑅 ∧ ∃𝑧𝐴 (𝑧𝑝𝑝𝐴)))
5554, 32sylibr 233 . . . . . . 7 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → 𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)})
56 simprl 769 . . . . . . 7 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → 𝑚𝑝)
5755, 56jca 512 . . . . . 6 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → (𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ∧ 𝑚𝑝))
5857reximi2 3082 . . . . 5 (∃𝑝 ∈ ran 𝑅(𝑚𝑝𝑝𝐴) → ∃𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)}𝑚𝑝)
5944, 58syl 17 . . . 4 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑚𝐴) → ∃𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)}𝑚𝑝)
60 eluni2 4869 . . . 4 (𝑚 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ↔ ∃𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)}𝑚𝑝)
6159, 60sylibr 233 . . 3 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑚𝐴) → 𝑚 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)})
6243, 61eqelssd 3965 . 2 (𝐴 ∈ (𝐽 ×t 𝐽) → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = 𝐴)
63 unieq 4876 . . . 4 (𝑐 = {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} → 𝑐 = {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)})
6463eqeq1d 2738 . . 3 (𝑐 = {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} → ( 𝑐 = 𝐴 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = 𝐴))
6564rspcev 3581 . 2 (({𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ∈ 𝒫 ran 𝑅 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = 𝐴) → ∃𝑐 ∈ 𝒫 ran 𝑅 𝑐 = 𝐴)
6616, 62, 65syl2anc 584 1 (𝐴 ∈ (𝐽 ×t 𝐽) → ∃𝑐 ∈ 𝒫 ran 𝑅 𝑐 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  wss 3910  c0 4282  𝒫 cpw 4560   cuni 4865   × cxp 5631  ran crn 5634   Fn wfn 6491  cfv 6496  (class class class)co 7357  cmpo 7359  1c1 11052   + caddc 11054   / cdiv 11812  2c2 12208  cz 12499  (,)cioo 13264  [,)cico 13266  cexp 13967  topGenctg 17319   ×t ctx 22911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-refld 21009  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-fcls 23292  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-cfil 24619  df-cmet 24621  df-cms 24699  df-limc 25230  df-dv 25231  df-log 25912  df-cxp 25913  df-logb 26115
This theorem is referenced by:  dya2iocucvr  32884  sxbrsigalem1  32885
  Copyright terms: Public domain W3C validator