Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2iocuni Structured version   Visualization version   GIF version

Theorem dya2iocuni 31655
Description: Every open set of (ℝ × ℝ) is a union of closed-below open-above dyadic rational rectangular subsets of (ℝ × ℝ). This union must be a countable union by dya2iocct 31652. (Contributed by Thierry Arnoux, 18-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2ioc.2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
Assertion
Ref Expression
dya2iocuni (𝐴 ∈ (𝐽 ×t 𝐽) → ∃𝑐 ∈ 𝒫 ran 𝑅 𝑐 = 𝐴)
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑣,𝑢,𝐼,𝑥   𝑢,𝑐,𝑣,𝐴   𝑅,𝑐
Allowed substitution hints:   𝐴(𝑥,𝑛)   𝑅(𝑥,𝑣,𝑢,𝑛)   𝐼(𝑛,𝑐)   𝐽(𝑥,𝑣,𝑢,𝑛,𝑐)

Proof of Theorem dya2iocuni
Dummy variables 𝑚 𝑝 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4010 . . . 4 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ ran 𝑅
2 sxbrsiga.0 . . . . . . . 8 𝐽 = (topGen‘ran (,))
3 dya2ioc.1 . . . . . . . 8 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
4 dya2ioc.2 . . . . . . . 8 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
52, 3, 4dya2iocrfn 31651 . . . . . . 7 𝑅 Fn (ran 𝐼 × ran 𝐼)
6 zex 11982 . . . . . . . . . . 11 ℤ ∈ V
76, 6mpoex 7764 . . . . . . . . . 10 (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ∈ V
83, 7eqeltri 2889 . . . . . . . . 9 𝐼 ∈ V
98rnex 7603 . . . . . . . 8 ran 𝐼 ∈ V
109, 9xpex 7460 . . . . . . 7 (ran 𝐼 × ran 𝐼) ∈ V
11 fnex 6961 . . . . . . 7 ((𝑅 Fn (ran 𝐼 × ran 𝐼) ∧ (ran 𝐼 × ran 𝐼) ∈ V) → 𝑅 ∈ V)
125, 10, 11mp2an 691 . . . . . 6 𝑅 ∈ V
1312rnex 7603 . . . . 5 ran 𝑅 ∈ V
1413elpw2 5215 . . . 4 ({𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ∈ 𝒫 ran 𝑅 ↔ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ ran 𝑅)
151, 14mpbir 234 . . 3 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ∈ 𝒫 ran 𝑅
1615a1i 11 . 2 (𝐴 ∈ (𝐽 ×t 𝐽) → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ∈ 𝒫 ran 𝑅)
17 rex0 4274 . . . . . . . . . . 11 ¬ ∃𝑧 ∈ ∅ (𝑧𝑏𝑏𝐴)
18 rexeq 3362 . . . . . . . . . . 11 (𝐴 = ∅ → (∃𝑧𝐴 (𝑧𝑏𝑏𝐴) ↔ ∃𝑧 ∈ ∅ (𝑧𝑏𝑏𝐴)))
1917, 18mtbiri 330 . . . . . . . . . 10 (𝐴 = ∅ → ¬ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴))
2019ralrimivw 3153 . . . . . . . . 9 (𝐴 = ∅ → ∀𝑏 ∈ ran 𝑅 ¬ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴))
21 rabeq0 4295 . . . . . . . . 9 ({𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = ∅ ↔ ∀𝑏 ∈ ran 𝑅 ¬ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴))
2220, 21sylibr 237 . . . . . . . 8 (𝐴 = ∅ → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = ∅)
2322unieqd 4817 . . . . . . 7 (𝐴 = ∅ → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = ∅)
24 uni0 4831 . . . . . . 7 ∅ = ∅
2523, 24eqtrdi 2852 . . . . . 6 (𝐴 = ∅ → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = ∅)
26 0ss 4307 . . . . . 6 ∅ ⊆ 𝐴
2725, 26eqsstrdi 3972 . . . . 5 (𝐴 = ∅ → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ 𝐴)
28 elequ2 2127 . . . . . . . . . . 11 (𝑏 = 𝑝 → (𝑧𝑏𝑧𝑝))
29 sseq1 3943 . . . . . . . . . . 11 (𝑏 = 𝑝 → (𝑏𝐴𝑝𝐴))
3028, 29anbi12d 633 . . . . . . . . . 10 (𝑏 = 𝑝 → ((𝑧𝑏𝑏𝐴) ↔ (𝑧𝑝𝑝𝐴)))
3130rexbidv 3259 . . . . . . . . 9 (𝑏 = 𝑝 → (∃𝑧𝐴 (𝑧𝑏𝑏𝐴) ↔ ∃𝑧𝐴 (𝑧𝑝𝑝𝐴)))
3231elrab 3631 . . . . . . . 8 (𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ↔ (𝑝 ∈ ran 𝑅 ∧ ∃𝑧𝐴 (𝑧𝑝𝑝𝐴)))
33 simpr 488 . . . . . . . . . . 11 ((𝑧𝑝𝑝𝐴) → 𝑝𝐴)
3433reximi 3209 . . . . . . . . . 10 (∃𝑧𝐴 (𝑧𝑝𝑝𝐴) → ∃𝑧𝐴 𝑝𝐴)
35 r19.9rzv 4406 . . . . . . . . . 10 (𝐴 ≠ ∅ → (𝑝𝐴 ↔ ∃𝑧𝐴 𝑝𝐴))
3634, 35syl5ibr 249 . . . . . . . . 9 (𝐴 ≠ ∅ → (∃𝑧𝐴 (𝑧𝑝𝑝𝐴) → 𝑝𝐴))
3736adantld 494 . . . . . . . 8 (𝐴 ≠ ∅ → ((𝑝 ∈ ran 𝑅 ∧ ∃𝑧𝐴 (𝑧𝑝𝑝𝐴)) → 𝑝𝐴))
3832, 37syl5bi 245 . . . . . . 7 (𝐴 ≠ ∅ → (𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} → 𝑝𝐴))
3938ralrimiv 3151 . . . . . 6 (𝐴 ≠ ∅ → ∀𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)}𝑝𝐴)
40 unissb 4835 . . . . . 6 ( {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ 𝐴 ↔ ∀𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)}𝑝𝐴)
4139, 40sylibr 237 . . . . 5 (𝐴 ≠ ∅ → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ 𝐴)
4227, 41pm2.61ine 3073 . . . 4 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ 𝐴
4342a1i 11 . . 3 (𝐴 ∈ (𝐽 ×t 𝐽) → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ 𝐴)
442, 3, 4dya2iocnei 31654 . . . . 5 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑚𝐴) → ∃𝑝 ∈ ran 𝑅(𝑚𝑝𝑝𝐴))
45 simpl 486 . . . . . . . . 9 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → 𝑝 ∈ ran 𝑅)
46 ssel2 3913 . . . . . . . . . . . 12 ((𝑝𝐴𝑚𝑝) → 𝑚𝐴)
4746ancoms 462 . . . . . . . . . . 11 ((𝑚𝑝𝑝𝐴) → 𝑚𝐴)
4847adantl 485 . . . . . . . . . 10 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → 𝑚𝐴)
49 simpr 488 . . . . . . . . . 10 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → (𝑚𝑝𝑝𝐴))
50 elequ1 2119 . . . . . . . . . . . 12 (𝑧 = 𝑚 → (𝑧𝑝𝑚𝑝))
5150anbi1d 632 . . . . . . . . . . 11 (𝑧 = 𝑚 → ((𝑧𝑝𝑝𝐴) ↔ (𝑚𝑝𝑝𝐴)))
5251rspcev 3574 . . . . . . . . . 10 ((𝑚𝐴 ∧ (𝑚𝑝𝑝𝐴)) → ∃𝑧𝐴 (𝑧𝑝𝑝𝐴))
5348, 49, 52syl2anc 587 . . . . . . . . 9 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → ∃𝑧𝐴 (𝑧𝑝𝑝𝐴))
5445, 53jca 515 . . . . . . . 8 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → (𝑝 ∈ ran 𝑅 ∧ ∃𝑧𝐴 (𝑧𝑝𝑝𝐴)))
5554, 32sylibr 237 . . . . . . 7 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → 𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)})
56 simprl 770 . . . . . . 7 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → 𝑚𝑝)
5755, 56jca 515 . . . . . 6 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → (𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ∧ 𝑚𝑝))
5857reximi2 3210 . . . . 5 (∃𝑝 ∈ ran 𝑅(𝑚𝑝𝑝𝐴) → ∃𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)}𝑚𝑝)
5944, 58syl 17 . . . 4 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑚𝐴) → ∃𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)}𝑚𝑝)
60 eluni2 4807 . . . 4 (𝑚 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ↔ ∃𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)}𝑚𝑝)
6159, 60sylibr 237 . . 3 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑚𝐴) → 𝑚 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)})
6243, 61eqelssd 3939 . 2 (𝐴 ∈ (𝐽 ×t 𝐽) → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = 𝐴)
63 unieq 4814 . . . 4 (𝑐 = {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} → 𝑐 = {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)})
6463eqeq1d 2803 . . 3 (𝑐 = {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} → ( 𝑐 = 𝐴 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = 𝐴))
6564rspcev 3574 . 2 (({𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ∈ 𝒫 ran 𝑅 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = 𝐴) → ∃𝑐 ∈ 𝒫 ran 𝑅 𝑐 = 𝐴)
6616, 62, 65syl2anc 587 1 (𝐴 ∈ (𝐽 ×t 𝐽) → ∃𝑐 ∈ 𝒫 ran 𝑅 𝑐 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2112  wne 2990  wral 3109  wrex 3110  {crab 3113  Vcvv 3444  wss 3884  c0 4246  𝒫 cpw 4500   cuni 4803   × cxp 5521  ran crn 5524   Fn wfn 6323  cfv 6328  (class class class)co 7139  cmpo 7141  1c1 10531   + caddc 10533   / cdiv 11290  2c2 11684  cz 11973  (,)cioo 12730  [,)cico 12732  cexp 13429  topGenctg 16707   ×t ctx 22169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-fac 13634  df-bc 13663  df-hash 13691  df-shft 14422  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-limsup 14824  df-clim 14841  df-rlim 14842  df-sum 15039  df-ef 15417  df-sin 15419  df-cos 15420  df-pi 15422  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-hom 16585  df-cco 16586  df-rest 16692  df-topn 16693  df-0g 16711  df-gsum 16712  df-topgen 16713  df-pt 16714  df-prds 16717  df-xrs 16771  df-qtop 16776  df-imas 16777  df-xps 16779  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-mulg 18221  df-cntz 18443  df-cmn 18904  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-fbas 20092  df-fg 20093  df-cnfld 20096  df-refld 20298  df-top 21503  df-topon 21520  df-topsp 21542  df-bases 21555  df-cld 21628  df-ntr 21629  df-cls 21630  df-nei 21707  df-lp 21745  df-perf 21746  df-cn 21836  df-cnp 21837  df-haus 21924  df-cmp 21996  df-tx 22171  df-hmeo 22364  df-fil 22455  df-fm 22547  df-flim 22548  df-flf 22549  df-fcls 22550  df-xms 22931  df-ms 22932  df-tms 22933  df-cncf 23487  df-cfil 23863  df-cmet 23865  df-cms 23943  df-limc 24473  df-dv 24474  df-log 25152  df-cxp 25153  df-logb 25355
This theorem is referenced by:  dya2iocucvr  31656  sxbrsigalem1  31657
  Copyright terms: Public domain W3C validator