Step | Hyp | Ref
| Expression |
1 | | ssrab2 4013 |
. . . 4
⊢ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)} ⊆ ran 𝑅 |
2 | | sxbrsiga.0 |
. . . . . . . 8
⊢ 𝐽 = (topGen‘ran
(,)) |
3 | | dya2ioc.1 |
. . . . . . . 8
⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
4 | | dya2ioc.2 |
. . . . . . . 8
⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) |
5 | 2, 3, 4 | dya2iocrfn 32246 |
. . . . . . 7
⊢ 𝑅 Fn (ran 𝐼 × ran 𝐼) |
6 | | zex 12328 |
. . . . . . . . . . 11
⊢ ℤ
∈ V |
7 | 6, 6 | mpoex 7920 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ∈ V |
8 | 3, 7 | eqeltri 2835 |
. . . . . . . . 9
⊢ 𝐼 ∈ V |
9 | 8 | rnex 7759 |
. . . . . . . 8
⊢ ran 𝐼 ∈ V |
10 | 9, 9 | xpex 7603 |
. . . . . . 7
⊢ (ran
𝐼 × ran 𝐼) ∈ V |
11 | | fnex 7093 |
. . . . . . 7
⊢ ((𝑅 Fn (ran 𝐼 × ran 𝐼) ∧ (ran 𝐼 × ran 𝐼) ∈ V) → 𝑅 ∈ V) |
12 | 5, 10, 11 | mp2an 689 |
. . . . . 6
⊢ 𝑅 ∈ V |
13 | 12 | rnex 7759 |
. . . . 5
⊢ ran 𝑅 ∈ V |
14 | 13 | elpw2 5269 |
. . . 4
⊢ ({𝑏 ∈ ran 𝑅 ∣ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)} ∈ 𝒫 ran 𝑅 ↔ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)} ⊆ ran 𝑅) |
15 | 1, 14 | mpbir 230 |
. . 3
⊢ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)} ∈ 𝒫 ran 𝑅 |
16 | 15 | a1i 11 |
. 2
⊢ (𝐴 ∈ (𝐽 ×t 𝐽) → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)} ∈ 𝒫 ran 𝑅) |
17 | | rex0 4291 |
. . . . . . . . . . 11
⊢ ¬
∃𝑧 ∈ ∅
(𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴) |
18 | | rexeq 3343 |
. . . . . . . . . . 11
⊢ (𝐴 = ∅ → (∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴) ↔ ∃𝑧 ∈ ∅ (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴))) |
19 | 17, 18 | mtbiri 327 |
. . . . . . . . . 10
⊢ (𝐴 = ∅ → ¬
∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) |
20 | 19 | ralrimivw 3104 |
. . . . . . . . 9
⊢ (𝐴 = ∅ → ∀𝑏 ∈ ran 𝑅 ¬ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) |
21 | | rabeq0 4318 |
. . . . . . . . 9
⊢ ({𝑏 ∈ ran 𝑅 ∣ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)} = ∅ ↔ ∀𝑏 ∈ ran 𝑅 ¬ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) |
22 | 20, 21 | sylibr 233 |
. . . . . . . 8
⊢ (𝐴 = ∅ → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)} = ∅) |
23 | 22 | unieqd 4853 |
. . . . . . 7
⊢ (𝐴 = ∅ → ∪ {𝑏
∈ ran 𝑅 ∣
∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)} = ∪
∅) |
24 | | uni0 4869 |
. . . . . . 7
⊢ ∪ ∅ = ∅ |
25 | 23, 24 | eqtrdi 2794 |
. . . . . 6
⊢ (𝐴 = ∅ → ∪ {𝑏
∈ ran 𝑅 ∣
∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)} = ∅) |
26 | | 0ss 4330 |
. . . . . 6
⊢ ∅
⊆ 𝐴 |
27 | 25, 26 | eqsstrdi 3975 |
. . . . 5
⊢ (𝐴 = ∅ → ∪ {𝑏
∈ ran 𝑅 ∣
∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)} ⊆ 𝐴) |
28 | | elequ2 2121 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑝 → (𝑧 ∈ 𝑏 ↔ 𝑧 ∈ 𝑝)) |
29 | | sseq1 3946 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑝 → (𝑏 ⊆ 𝐴 ↔ 𝑝 ⊆ 𝐴)) |
30 | 28, 29 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑝 → ((𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴) ↔ (𝑧 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴))) |
31 | 30 | rexbidv 3226 |
. . . . . . . . 9
⊢ (𝑏 = 𝑝 → (∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴) ↔ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴))) |
32 | 31 | elrab 3624 |
. . . . . . . 8
⊢ (𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)} ↔ (𝑝 ∈ ran 𝑅 ∧ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴))) |
33 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴) → 𝑝 ⊆ 𝐴) |
34 | 33 | reximi 3178 |
. . . . . . . . . 10
⊢
(∃𝑧 ∈
𝐴 (𝑧 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴) → ∃𝑧 ∈ 𝐴 𝑝 ⊆ 𝐴) |
35 | | r19.9rzv 4430 |
. . . . . . . . . 10
⊢ (𝐴 ≠ ∅ → (𝑝 ⊆ 𝐴 ↔ ∃𝑧 ∈ 𝐴 𝑝 ⊆ 𝐴)) |
36 | 34, 35 | syl5ibr 245 |
. . . . . . . . 9
⊢ (𝐴 ≠ ∅ →
(∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴) → 𝑝 ⊆ 𝐴)) |
37 | 36 | adantld 491 |
. . . . . . . 8
⊢ (𝐴 ≠ ∅ → ((𝑝 ∈ ran 𝑅 ∧ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴)) → 𝑝 ⊆ 𝐴)) |
38 | 32, 37 | syl5bi 241 |
. . . . . . 7
⊢ (𝐴 ≠ ∅ → (𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)} → 𝑝 ⊆ 𝐴)) |
39 | 38 | ralrimiv 3102 |
. . . . . 6
⊢ (𝐴 ≠ ∅ →
∀𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)}𝑝 ⊆ 𝐴) |
40 | | unissb 4873 |
. . . . . 6
⊢ (∪ {𝑏
∈ ran 𝑅 ∣
∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)} ⊆ 𝐴 ↔ ∀𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)}𝑝 ⊆ 𝐴) |
41 | 39, 40 | sylibr 233 |
. . . . 5
⊢ (𝐴 ≠ ∅ → ∪ {𝑏
∈ ran 𝑅 ∣
∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)} ⊆ 𝐴) |
42 | 27, 41 | pm2.61ine 3028 |
. . . 4
⊢ ∪ {𝑏
∈ ran 𝑅 ∣
∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)} ⊆ 𝐴 |
43 | 42 | a1i 11 |
. . 3
⊢ (𝐴 ∈ (𝐽 ×t 𝐽) → ∪ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)} ⊆ 𝐴) |
44 | 2, 3, 4 | dya2iocnei 32249 |
. . . . 5
⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑚 ∈ 𝐴) → ∃𝑝 ∈ ran 𝑅(𝑚 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴)) |
45 | | simpl 483 |
. . . . . . . . 9
⊢ ((𝑝 ∈ ran 𝑅 ∧ (𝑚 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴)) → 𝑝 ∈ ran 𝑅) |
46 | | ssel2 3916 |
. . . . . . . . . . . 12
⊢ ((𝑝 ⊆ 𝐴 ∧ 𝑚 ∈ 𝑝) → 𝑚 ∈ 𝐴) |
47 | 46 | ancoms 459 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴) → 𝑚 ∈ 𝐴) |
48 | 47 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑝 ∈ ran 𝑅 ∧ (𝑚 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴)) → 𝑚 ∈ 𝐴) |
49 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝑝 ∈ ran 𝑅 ∧ (𝑚 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴)) → (𝑚 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴)) |
50 | | elequ1 2113 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑚 → (𝑧 ∈ 𝑝 ↔ 𝑚 ∈ 𝑝)) |
51 | 50 | anbi1d 630 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑚 → ((𝑧 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴) ↔ (𝑚 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴))) |
52 | 51 | rspcev 3561 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ 𝐴 ∧ (𝑚 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴)) → ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴)) |
53 | 48, 49, 52 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝑝 ∈ ran 𝑅 ∧ (𝑚 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴)) → ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴)) |
54 | 45, 53 | jca 512 |
. . . . . . . 8
⊢ ((𝑝 ∈ ran 𝑅 ∧ (𝑚 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴)) → (𝑝 ∈ ran 𝑅 ∧ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴))) |
55 | 54, 32 | sylibr 233 |
. . . . . . 7
⊢ ((𝑝 ∈ ran 𝑅 ∧ (𝑚 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴)) → 𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)}) |
56 | | simprl 768 |
. . . . . . 7
⊢ ((𝑝 ∈ ran 𝑅 ∧ (𝑚 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴)) → 𝑚 ∈ 𝑝) |
57 | 55, 56 | jca 512 |
. . . . . 6
⊢ ((𝑝 ∈ ran 𝑅 ∧ (𝑚 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴)) → (𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)} ∧ 𝑚 ∈ 𝑝)) |
58 | 57 | reximi2 3175 |
. . . . 5
⊢
(∃𝑝 ∈ ran
𝑅(𝑚 ∈ 𝑝 ∧ 𝑝 ⊆ 𝐴) → ∃𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)}𝑚 ∈ 𝑝) |
59 | 44, 58 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑚 ∈ 𝐴) → ∃𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)}𝑚 ∈ 𝑝) |
60 | | eluni2 4843 |
. . . 4
⊢ (𝑚 ∈ ∪ {𝑏
∈ ran 𝑅 ∣
∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)} ↔ ∃𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)}𝑚 ∈ 𝑝) |
61 | 59, 60 | sylibr 233 |
. . 3
⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑚 ∈ 𝐴) → 𝑚 ∈ ∪ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)}) |
62 | 43, 61 | eqelssd 3942 |
. 2
⊢ (𝐴 ∈ (𝐽 ×t 𝐽) → ∪ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)} = 𝐴) |
63 | | unieq 4850 |
. . . 4
⊢ (𝑐 = {𝑏 ∈ ran 𝑅 ∣ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)} → ∪ 𝑐 = ∪
{𝑏 ∈ ran 𝑅 ∣ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)}) |
64 | 63 | eqeq1d 2740 |
. . 3
⊢ (𝑐 = {𝑏 ∈ ran 𝑅 ∣ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)} → (∪
𝑐 = 𝐴 ↔ ∪ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)} = 𝐴)) |
65 | 64 | rspcev 3561 |
. 2
⊢ (({𝑏 ∈ ran 𝑅 ∣ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)} ∈ 𝒫 ran 𝑅 ∧ ∪ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧 ∈ 𝐴 (𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)} = 𝐴) → ∃𝑐 ∈ 𝒫 ran 𝑅∪ 𝑐 = 𝐴) |
66 | 16, 62, 65 | syl2anc 584 |
1
⊢ (𝐴 ∈ (𝐽 ×t 𝐽) → ∃𝑐 ∈ 𝒫 ran 𝑅∪ 𝑐 = 𝐴) |