![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdsr02 | Structured version Visualization version GIF version |
Description: Only zero is divisible by zero. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
Ref | Expression |
---|---|
dvdsr0.b | ⊢ 𝐵 = (Base‘𝑅) |
dvdsr0.d | ⊢ ∥ = (∥r‘𝑅) |
dvdsr0.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
dvdsr02 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 ∥ 𝑋 ↔ 𝑋 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsr0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
2 | dvdsr0.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
3 | 1, 2 | ring0cl 20203 | . . . 4 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
5 | dvdsr0.d | . . . 4 ⊢ ∥ = (∥r‘𝑅) | |
6 | eqid 2728 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
7 | 1, 5, 6 | dvdsr2 20302 | . . 3 ⊢ ( 0 ∈ 𝐵 → ( 0 ∥ 𝑋 ↔ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅) 0 ) = 𝑋)) |
8 | 4, 7 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 ∥ 𝑋 ↔ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅) 0 ) = 𝑋)) |
9 | 1, 6, 2 | ringrz 20230 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) → (𝑥(.r‘𝑅) 0 ) = 0 ) |
10 | 9 | eqeq1d 2730 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) → ((𝑥(.r‘𝑅) 0 ) = 𝑋 ↔ 0 = 𝑋)) |
11 | eqcom 2735 | . . . . . 6 ⊢ ( 0 = 𝑋 ↔ 𝑋 = 0 ) | |
12 | 10, 11 | bitrdi 287 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) → ((𝑥(.r‘𝑅) 0 ) = 𝑋 ↔ 𝑋 = 0 )) |
13 | 12 | rexbidva 3173 | . . . 4 ⊢ (𝑅 ∈ Ring → (∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅) 0 ) = 𝑋 ↔ ∃𝑥 ∈ 𝐵 𝑋 = 0 )) |
14 | ringgrp 20178 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
15 | 1 | grpbn0 18923 | . . . . 5 ⊢ (𝑅 ∈ Grp → 𝐵 ≠ ∅) |
16 | r19.9rzv 4500 | . . . . 5 ⊢ (𝐵 ≠ ∅ → (𝑋 = 0 ↔ ∃𝑥 ∈ 𝐵 𝑋 = 0 )) | |
17 | 14, 15, 16 | 3syl 18 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑋 = 0 ↔ ∃𝑥 ∈ 𝐵 𝑋 = 0 )) |
18 | 13, 17 | bitr4d 282 | . . 3 ⊢ (𝑅 ∈ Ring → (∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅) 0 ) = 𝑋 ↔ 𝑋 = 0 )) |
19 | 18 | adantr 480 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅) 0 ) = 𝑋 ↔ 𝑋 = 0 )) |
20 | 8, 19 | bitrd 279 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 ∥ 𝑋 ↔ 𝑋 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 ∃wrex 3067 ∅c0 4323 class class class wbr 5148 ‘cfv 6548 (class class class)co 7420 Basecbs 17180 .rcmulr 17234 0gc0g 17421 Grpcgrp 18890 Ringcrg 20173 ∥rcdsr 20293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-plusg 17246 df-0g 17423 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-grp 18893 df-minusg 18894 df-cmn 19737 df-abl 19738 df-mgp 20075 df-rng 20093 df-ur 20122 df-ring 20175 df-dvdsr 20296 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |