Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  voliune Structured version   Visualization version   GIF version

Theorem voliune 34230
Description: The Lebesgue measure function is countably additive. This formulation on the extended reals, allows for +∞ for the measure of any set in the sum. Cf. ovoliun 25540 and voliun 25589. (Contributed by Thierry Arnoux, 16-Oct-2017.)
Assertion
Ref Expression
voliune ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ 𝑛 ∈ ℕ 𝐴) = Σ*𝑛 ∈ ℕ(vol‘𝐴))

Proof of Theorem voliune
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 r19.26 3111 . . . . 5 (∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ↔ (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ))
2 eqid 2737 . . . . . 6 seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴)))
3 eqid 2737 . . . . . 6 (𝑛 ∈ ℕ ↦ (vol‘𝐴)) = (𝑛 ∈ ℕ ↦ (vol‘𝐴))
42, 3voliun 25589 . . . . 5 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ 𝑛 ∈ ℕ 𝐴) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, < ))
51, 4sylanbr 582 . . . 4 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ 𝑛 ∈ ℕ 𝐴) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, < ))
65an32s 652 . . 3 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → (vol‘ 𝑛 ∈ ℕ 𝐴) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, < ))
7 nfra1 3284 . . . . . . 7 𝑛𝑛 ∈ ℕ 𝐴 ∈ dom vol
8 nfra1 3284 . . . . . . 7 𝑛𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ
97, 8nfan 1899 . . . . . 6 𝑛(∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ)
10 simpr 484 . . . . . . . . . 10 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
11 rspa 3248 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ dom vol)
12 volf 25564 . . . . . . . . . . . 12 vol:dom vol⟶(0[,]+∞)
1312ffvelcdmi 7103 . . . . . . . . . . 11 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ (0[,]+∞))
1411, 13syl 17 . . . . . . . . . 10 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑛 ∈ ℕ) → (vol‘𝐴) ∈ (0[,]+∞))
153fvmpt2 7027 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (vol‘𝐴) ∈ (0[,]+∞)) → ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = (vol‘𝐴))
1610, 14, 15syl2anc 584 . . . . . . . . 9 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = (vol‘𝐴))
1716adantlr 715 . . . . . . . 8 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = (vol‘𝐴))
1817ex 412 . . . . . . 7 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = (vol‘𝐴)))
199, 18ralrimi 3257 . . . . . 6 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → ∀𝑛 ∈ ℕ ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = (vol‘𝐴))
209, 19esumeq2d 34038 . . . . 5 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → Σ*𝑛 ∈ ℕ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = Σ*𝑛 ∈ ℕ(vol‘𝐴))
21 simpr 484 . . . . . . . . 9 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ)
2221r19.21bi 3251 . . . . . . . 8 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘𝐴) ∈ ℝ)
2314adantlr 715 . . . . . . . . 9 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘𝐴) ∈ (0[,]+∞))
24 0xr 11308 . . . . . . . . . . 11 0 ∈ ℝ*
25 pnfxr 11315 . . . . . . . . . . 11 +∞ ∈ ℝ*
26 elicc1 13431 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((vol‘𝐴) ∈ (0[,]+∞) ↔ ((vol‘𝐴) ∈ ℝ* ∧ 0 ≤ (vol‘𝐴) ∧ (vol‘𝐴) ≤ +∞)))
2724, 25, 26mp2an 692 . . . . . . . . . 10 ((vol‘𝐴) ∈ (0[,]+∞) ↔ ((vol‘𝐴) ∈ ℝ* ∧ 0 ≤ (vol‘𝐴) ∧ (vol‘𝐴) ≤ +∞))
2827simp2bi 1147 . . . . . . . . 9 ((vol‘𝐴) ∈ (0[,]+∞) → 0 ≤ (vol‘𝐴))
2923, 28syl 17 . . . . . . . 8 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 0 ≤ (vol‘𝐴))
30 ltpnf 13162 . . . . . . . . 9 ((vol‘𝐴) ∈ ℝ → (vol‘𝐴) < +∞)
3122, 30syl 17 . . . . . . . 8 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘𝐴) < +∞)
32 0re 11263 . . . . . . . . 9 0 ∈ ℝ
33 elico2 13451 . . . . . . . . 9 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → ((vol‘𝐴) ∈ (0[,)+∞) ↔ ((vol‘𝐴) ∈ ℝ ∧ 0 ≤ (vol‘𝐴) ∧ (vol‘𝐴) < +∞)))
3432, 25, 33mp2an 692 . . . . . . . 8 ((vol‘𝐴) ∈ (0[,)+∞) ↔ ((vol‘𝐴) ∈ ℝ ∧ 0 ≤ (vol‘𝐴) ∧ (vol‘𝐴) < +∞))
3522, 29, 31, 34syl3anbrc 1344 . . . . . . 7 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘𝐴) ∈ (0[,)+∞))
369, 35, 3fmptdf 7137 . . . . . 6 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → (𝑛 ∈ ℕ ↦ (vol‘𝐴)):ℕ⟶(0[,)+∞))
37 nfmpt1 5250 . . . . . . 7 𝑛(𝑛 ∈ ℕ ↦ (vol‘𝐴))
3837esumfsupre 34072 . . . . . 6 ((𝑛 ∈ ℕ ↦ (vol‘𝐴)):ℕ⟶(0[,)+∞) → Σ*𝑛 ∈ ℕ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, < ))
3936, 38syl 17 . . . . 5 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → Σ*𝑛 ∈ ℕ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, < ))
4020, 39eqtr3d 2779 . . . 4 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → Σ*𝑛 ∈ ℕ(vol‘𝐴) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, < ))
4140adantlr 715 . . 3 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → Σ*𝑛 ∈ ℕ(vol‘𝐴) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, < ))
426, 41eqtr4d 2780 . 2 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → (vol‘ 𝑛 ∈ ℕ 𝐴) = Σ*𝑛 ∈ ℕ(vol‘𝐴))
43 simpr 484 . . . . . . . 8 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞)
44 nfv 1914 . . . . . . . . 9 𝑘(vol‘𝐴) = +∞
45 nfcv 2905 . . . . . . . . . . 11 𝑛vol
46 nfcsb1v 3923 . . . . . . . . . . 11 𝑛𝑘 / 𝑛𝐴
4745, 46nffv 6916 . . . . . . . . . 10 𝑛(vol‘𝑘 / 𝑛𝐴)
4847nfeq1 2921 . . . . . . . . 9 𝑛(vol‘𝑘 / 𝑛𝐴) = +∞
49 csbeq1a 3913 . . . . . . . . . 10 (𝑛 = 𝑘𝐴 = 𝑘 / 𝑛𝐴)
5049fveqeq2d 6914 . . . . . . . . 9 (𝑛 = 𝑘 → ((vol‘𝐴) = +∞ ↔ (vol‘𝑘 / 𝑛𝐴) = +∞))
5144, 48, 50cbvrexw 3307 . . . . . . . 8 (∃𝑛 ∈ ℕ (vol‘𝐴) = +∞ ↔ ∃𝑘 ∈ ℕ (vol‘𝑘 / 𝑛𝐴) = +∞)
5243, 51sylib 218 . . . . . . 7 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → ∃𝑘 ∈ ℕ (vol‘𝑘 / 𝑛𝐴) = +∞)
5346nfel1 2922 . . . . . . . . . . . . 13 𝑛𝑘 / 𝑛𝐴 ∈ dom vol
5449eleq1d 2826 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝐴 ∈ dom vol ↔ 𝑘 / 𝑛𝐴 ∈ dom vol))
5553, 54rspc 3610 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑘 / 𝑛𝐴 ∈ dom vol))
5655impcom 407 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → 𝑘 / 𝑛𝐴 ∈ dom vol)
57 iunmbl 25588 . . . . . . . . . . . 12 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑛 ∈ ℕ 𝐴 ∈ dom vol)
5857adantr 480 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → 𝑛 ∈ ℕ 𝐴 ∈ dom vol)
59 nfcv 2905 . . . . . . . . . . . . 13 𝑛
60 nfcv 2905 . . . . . . . . . . . . 13 𝑛𝑘
6159, 60, 46, 49ssiun2sf 32572 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 / 𝑛𝐴 𝑛 ∈ ℕ 𝐴)
6261adantl 481 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → 𝑘 / 𝑛𝐴 𝑛 ∈ ℕ 𝐴)
63 volss 25568 . . . . . . . . . . 11 ((𝑘 / 𝑛𝐴 ∈ dom vol ∧ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 / 𝑛𝐴 𝑛 ∈ ℕ 𝐴) → (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
6456, 58, 62, 63syl3anc 1373 . . . . . . . . . 10 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
6564adantlr 715 . . . . . . . . 9 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ 𝑘 ∈ ℕ) → (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
6665adantlr 715 . . . . . . . 8 ((((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) ∧ 𝑘 ∈ ℕ) → (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
6766ralrimiva 3146 . . . . . . 7 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → ∀𝑘 ∈ ℕ (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
68 r19.29r 3116 . . . . . . 7 ((∃𝑘 ∈ ℕ (vol‘𝑘 / 𝑛𝐴) = +∞ ∧ ∀𝑘 ∈ ℕ (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴)) → ∃𝑘 ∈ ℕ ((vol‘𝑘 / 𝑛𝐴) = +∞ ∧ (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴)))
6952, 67, 68syl2anc 584 . . . . . 6 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → ∃𝑘 ∈ ℕ ((vol‘𝑘 / 𝑛𝐴) = +∞ ∧ (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴)))
70 breq1 5146 . . . . . . . 8 ((vol‘𝑘 / 𝑛𝐴) = +∞ → ((vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴) ↔ +∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴)))
7170biimpa 476 . . . . . . 7 (((vol‘𝑘 / 𝑛𝐴) = +∞ ∧ (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴)) → +∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
7271reximi 3084 . . . . . 6 (∃𝑘 ∈ ℕ ((vol‘𝑘 / 𝑛𝐴) = +∞ ∧ (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴)) → ∃𝑘 ∈ ℕ +∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
7369, 72syl 17 . . . . 5 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → ∃𝑘 ∈ ℕ +∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
74 1nn 12277 . . . . . 6 1 ∈ ℕ
75 ne0i 4341 . . . . . 6 (1 ∈ ℕ → ℕ ≠ ∅)
76 r19.9rzv 4500 . . . . . 6 (ℕ ≠ ∅ → (+∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴) ↔ ∃𝑘 ∈ ℕ +∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴)))
7774, 75, 76mp2b 10 . . . . 5 (+∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴) ↔ ∃𝑘 ∈ ℕ +∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
7873, 77sylibr 234 . . . 4 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → +∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
79 iccssxr 13470 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
8012ffvelcdmi 7103 . . . . . . . 8 ( 𝑛 ∈ ℕ 𝐴 ∈ dom vol → (vol‘ 𝑛 ∈ ℕ 𝐴) ∈ (0[,]+∞))
8179, 80sselid 3981 . . . . . . 7 ( 𝑛 ∈ ℕ 𝐴 ∈ dom vol → (vol‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ*)
8257, 81syl 17 . . . . . 6 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → (vol‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ*)
8382ad2antrr 726 . . . . 5 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → (vol‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ*)
84 xgepnf 13207 . . . . 5 ((vol‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ* → (+∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴) ↔ (vol‘ 𝑛 ∈ ℕ 𝐴) = +∞))
8583, 84syl 17 . . . 4 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → (+∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴) ↔ (vol‘ 𝑛 ∈ ℕ 𝐴) = +∞))
8678, 85mpbid 232 . . 3 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → (vol‘ 𝑛 ∈ ℕ 𝐴) = +∞)
87 nfdisj1 5124 . . . . . 6 𝑛Disj 𝑛 ∈ ℕ 𝐴
887, 87nfan 1899 . . . . 5 𝑛(∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴)
89 nfre1 3285 . . . . 5 𝑛𝑛 ∈ ℕ (vol‘𝐴) = +∞
9088, 89nfan 1899 . . . 4 𝑛((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞)
91 nnex 12272 . . . . 5 ℕ ∈ V
9291a1i 11 . . . 4 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → ℕ ∈ V)
93143ad2antr3 1191 . . . . 5 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ (Disj 𝑛 ∈ ℕ 𝐴 ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞ ∧ 𝑛 ∈ ℕ)) → (vol‘𝐴) ∈ (0[,]+∞))
94933anassrs 1361 . . . 4 ((((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) ∧ 𝑛 ∈ ℕ) → (vol‘𝐴) ∈ (0[,]+∞))
9590, 92, 94, 43esumpinfval 34074 . . 3 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → Σ*𝑛 ∈ ℕ(vol‘𝐴) = +∞)
9686, 95eqtr4d 2780 . 2 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → (vol‘ 𝑛 ∈ ℕ 𝐴) = Σ*𝑛 ∈ ℕ(vol‘𝐴))
97 exmid 895 . . . . 5 (∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ¬ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ)
98 rexnal 3100 . . . . . 6 (∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈ ℝ ↔ ¬ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ)
9998orbi2i 913 . . . . 5 ((∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈ ℝ) ↔ (∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ¬ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ))
10097, 99mpbir 231 . . . 4 (∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈ ℝ)
101 r19.29 3114 . . . . . . 7 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈ ℝ) → ∃𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ ¬ (vol‘𝐴) ∈ ℝ))
102 xrge0nre 13493 . . . . . . . . 9 (((vol‘𝐴) ∈ (0[,]+∞) ∧ ¬ (vol‘𝐴) ∈ ℝ) → (vol‘𝐴) = +∞)
10313, 102sylan 580 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ ¬ (vol‘𝐴) ∈ ℝ) → (vol‘𝐴) = +∞)
104103reximi 3084 . . . . . . 7 (∃𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ ¬ (vol‘𝐴) ∈ ℝ) → ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞)
105101, 104syl 17 . . . . . 6 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈ ℝ) → ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞)
106105ex 412 . . . . 5 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → (∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈ ℝ → ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞))
107106orim2d 969 . . . 4 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → ((∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈ ℝ) → (∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞)))
108100, 107mpi 20 . . 3 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → (∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞))
109108adantr 480 . 2 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) → (∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞))
11042, 96, 109mpjaodan 961 1 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ 𝑛 ∈ ℕ 𝐴) = Σ*𝑛 ∈ ℕ(vol‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  Vcvv 3480  csb 3899  wss 3951  c0 4333   ciun 4991  Disj wdisj 5110   class class class wbr 5143  cmpt 5225  dom cdm 5685  ran crn 5686  wf 6557  cfv 6561  (class class class)co 7431  supcsup 9480  cr 11154  0cc0 11155  1c1 11156   + caddc 11158  +∞cpnf 11292  *cxr 11294   < clt 11295  cle 11296  cn 12266  [,)cico 13389  [,]cicc 13390  seqcseq 14042  volcvol 25498  Σ*cesum 34028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-ordt 17546  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-ps 18611  df-tsr 18612  df-plusf 18652  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-subrng 20546  df-subrg 20570  df-abv 20810  df-lmod 20860  df-scaf 20861  df-sra 21172  df-rgmod 21173  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-tmd 24080  df-tgp 24081  df-tsms 24135  df-trg 24168  df-xms 24330  df-ms 24331  df-tms 24332  df-nm 24595  df-ngp 24596  df-nrg 24598  df-nlm 24599  df-ii 24903  df-cncf 24904  df-ovol 25499  df-vol 25500  df-limc 25901  df-dv 25902  df-log 26598  df-esum 34029
This theorem is referenced by:  volmeas  34232
  Copyright terms: Public domain W3C validator