Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  voliune Structured version   Visualization version   GIF version

Theorem voliune 34214
Description: The Lebesgue measure function is countably additive. This formulation on the extended reals, allows for +∞ for the measure of any set in the sum. Cf. ovoliun 25441 and voliun 25490. (Contributed by Thierry Arnoux, 16-Oct-2017.)
Assertion
Ref Expression
voliune ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ 𝑛 ∈ ℕ 𝐴) = Σ*𝑛 ∈ ℕ(vol‘𝐴))

Proof of Theorem voliune
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 r19.26 3091 . . . . 5 (∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ↔ (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ))
2 eqid 2729 . . . . . 6 seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴)))
3 eqid 2729 . . . . . 6 (𝑛 ∈ ℕ ↦ (vol‘𝐴)) = (𝑛 ∈ ℕ ↦ (vol‘𝐴))
42, 3voliun 25490 . . . . 5 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ 𝑛 ∈ ℕ 𝐴) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, < ))
51, 4sylanbr 582 . . . 4 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ 𝑛 ∈ ℕ 𝐴) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, < ))
65an32s 652 . . 3 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → (vol‘ 𝑛 ∈ ℕ 𝐴) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, < ))
7 nfra1 3259 . . . . . . 7 𝑛𝑛 ∈ ℕ 𝐴 ∈ dom vol
8 nfra1 3259 . . . . . . 7 𝑛𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ
97, 8nfan 1899 . . . . . 6 𝑛(∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ)
10 simpr 484 . . . . . . . . . 10 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
11 rspa 3224 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ dom vol)
12 volf 25465 . . . . . . . . . . . 12 vol:dom vol⟶(0[,]+∞)
1312ffvelcdmi 7038 . . . . . . . . . . 11 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ (0[,]+∞))
1411, 13syl 17 . . . . . . . . . 10 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑛 ∈ ℕ) → (vol‘𝐴) ∈ (0[,]+∞))
153fvmpt2 6962 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (vol‘𝐴) ∈ (0[,]+∞)) → ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = (vol‘𝐴))
1610, 14, 15syl2anc 584 . . . . . . . . 9 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = (vol‘𝐴))
1716adantlr 715 . . . . . . . 8 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = (vol‘𝐴))
1817ex 412 . . . . . . 7 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = (vol‘𝐴)))
199, 18ralrimi 3233 . . . . . 6 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → ∀𝑛 ∈ ℕ ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = (vol‘𝐴))
209, 19esumeq2d 34022 . . . . 5 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → Σ*𝑛 ∈ ℕ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = Σ*𝑛 ∈ ℕ(vol‘𝐴))
21 simpr 484 . . . . . . . . 9 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ)
2221r19.21bi 3227 . . . . . . . 8 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘𝐴) ∈ ℝ)
2314adantlr 715 . . . . . . . . 9 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘𝐴) ∈ (0[,]+∞))
24 0xr 11200 . . . . . . . . . . 11 0 ∈ ℝ*
25 pnfxr 11207 . . . . . . . . . . 11 +∞ ∈ ℝ*
26 elicc1 13329 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((vol‘𝐴) ∈ (0[,]+∞) ↔ ((vol‘𝐴) ∈ ℝ* ∧ 0 ≤ (vol‘𝐴) ∧ (vol‘𝐴) ≤ +∞)))
2724, 25, 26mp2an 692 . . . . . . . . . 10 ((vol‘𝐴) ∈ (0[,]+∞) ↔ ((vol‘𝐴) ∈ ℝ* ∧ 0 ≤ (vol‘𝐴) ∧ (vol‘𝐴) ≤ +∞))
2827simp2bi 1146 . . . . . . . . 9 ((vol‘𝐴) ∈ (0[,]+∞) → 0 ≤ (vol‘𝐴))
2923, 28syl 17 . . . . . . . 8 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 0 ≤ (vol‘𝐴))
30 ltpnf 13059 . . . . . . . . 9 ((vol‘𝐴) ∈ ℝ → (vol‘𝐴) < +∞)
3122, 30syl 17 . . . . . . . 8 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘𝐴) < +∞)
32 0re 11155 . . . . . . . . 9 0 ∈ ℝ
33 elico2 13350 . . . . . . . . 9 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → ((vol‘𝐴) ∈ (0[,)+∞) ↔ ((vol‘𝐴) ∈ ℝ ∧ 0 ≤ (vol‘𝐴) ∧ (vol‘𝐴) < +∞)))
3432, 25, 33mp2an 692 . . . . . . . 8 ((vol‘𝐴) ∈ (0[,)+∞) ↔ ((vol‘𝐴) ∈ ℝ ∧ 0 ≤ (vol‘𝐴) ∧ (vol‘𝐴) < +∞))
3522, 29, 31, 34syl3anbrc 1344 . . . . . . 7 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘𝐴) ∈ (0[,)+∞))
369, 35, 3fmptdf 7072 . . . . . 6 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → (𝑛 ∈ ℕ ↦ (vol‘𝐴)):ℕ⟶(0[,)+∞))
37 nfmpt1 5201 . . . . . . 7 𝑛(𝑛 ∈ ℕ ↦ (vol‘𝐴))
3837esumfsupre 34056 . . . . . 6 ((𝑛 ∈ ℕ ↦ (vol‘𝐴)):ℕ⟶(0[,)+∞) → Σ*𝑛 ∈ ℕ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, < ))
3936, 38syl 17 . . . . 5 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → Σ*𝑛 ∈ ℕ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, < ))
4020, 39eqtr3d 2766 . . . 4 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → Σ*𝑛 ∈ ℕ(vol‘𝐴) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, < ))
4140adantlr 715 . . 3 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → Σ*𝑛 ∈ ℕ(vol‘𝐴) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, < ))
426, 41eqtr4d 2767 . 2 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → (vol‘ 𝑛 ∈ ℕ 𝐴) = Σ*𝑛 ∈ ℕ(vol‘𝐴))
43 simpr 484 . . . . . . . 8 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞)
44 nfv 1914 . . . . . . . . 9 𝑘(vol‘𝐴) = +∞
45 nfcv 2891 . . . . . . . . . . 11 𝑛vol
46 nfcsb1v 3883 . . . . . . . . . . 11 𝑛𝑘 / 𝑛𝐴
4745, 46nffv 6851 . . . . . . . . . 10 𝑛(vol‘𝑘 / 𝑛𝐴)
4847nfeq1 2907 . . . . . . . . 9 𝑛(vol‘𝑘 / 𝑛𝐴) = +∞
49 csbeq1a 3873 . . . . . . . . . 10 (𝑛 = 𝑘𝐴 = 𝑘 / 𝑛𝐴)
5049fveqeq2d 6849 . . . . . . . . 9 (𝑛 = 𝑘 → ((vol‘𝐴) = +∞ ↔ (vol‘𝑘 / 𝑛𝐴) = +∞))
5144, 48, 50cbvrexw 3279 . . . . . . . 8 (∃𝑛 ∈ ℕ (vol‘𝐴) = +∞ ↔ ∃𝑘 ∈ ℕ (vol‘𝑘 / 𝑛𝐴) = +∞)
5243, 51sylib 218 . . . . . . 7 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → ∃𝑘 ∈ ℕ (vol‘𝑘 / 𝑛𝐴) = +∞)
5346nfel1 2908 . . . . . . . . . . . . 13 𝑛𝑘 / 𝑛𝐴 ∈ dom vol
5449eleq1d 2813 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝐴 ∈ dom vol ↔ 𝑘 / 𝑛𝐴 ∈ dom vol))
5553, 54rspc 3573 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑘 / 𝑛𝐴 ∈ dom vol))
5655impcom 407 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → 𝑘 / 𝑛𝐴 ∈ dom vol)
57 iunmbl 25489 . . . . . . . . . . . 12 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑛 ∈ ℕ 𝐴 ∈ dom vol)
5857adantr 480 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → 𝑛 ∈ ℕ 𝐴 ∈ dom vol)
59 nfcv 2891 . . . . . . . . . . . . 13 𝑛
60 nfcv 2891 . . . . . . . . . . . . 13 𝑛𝑘
6159, 60, 46, 49ssiun2sf 32540 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 / 𝑛𝐴 𝑛 ∈ ℕ 𝐴)
6261adantl 481 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → 𝑘 / 𝑛𝐴 𝑛 ∈ ℕ 𝐴)
63 volss 25469 . . . . . . . . . . 11 ((𝑘 / 𝑛𝐴 ∈ dom vol ∧ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 / 𝑛𝐴 𝑛 ∈ ℕ 𝐴) → (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
6456, 58, 62, 63syl3anc 1373 . . . . . . . . . 10 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
6564adantlr 715 . . . . . . . . 9 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ 𝑘 ∈ ℕ) → (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
6665adantlr 715 . . . . . . . 8 ((((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) ∧ 𝑘 ∈ ℕ) → (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
6766ralrimiva 3125 . . . . . . 7 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → ∀𝑘 ∈ ℕ (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
68 r19.29r 3096 . . . . . . 7 ((∃𝑘 ∈ ℕ (vol‘𝑘 / 𝑛𝐴) = +∞ ∧ ∀𝑘 ∈ ℕ (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴)) → ∃𝑘 ∈ ℕ ((vol‘𝑘 / 𝑛𝐴) = +∞ ∧ (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴)))
6952, 67, 68syl2anc 584 . . . . . 6 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → ∃𝑘 ∈ ℕ ((vol‘𝑘 / 𝑛𝐴) = +∞ ∧ (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴)))
70 breq1 5105 . . . . . . . 8 ((vol‘𝑘 / 𝑛𝐴) = +∞ → ((vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴) ↔ +∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴)))
7170biimpa 476 . . . . . . 7 (((vol‘𝑘 / 𝑛𝐴) = +∞ ∧ (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴)) → +∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
7271reximi 3067 . . . . . 6 (∃𝑘 ∈ ℕ ((vol‘𝑘 / 𝑛𝐴) = +∞ ∧ (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴)) → ∃𝑘 ∈ ℕ +∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
7369, 72syl 17 . . . . 5 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → ∃𝑘 ∈ ℕ +∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
74 1nn 12176 . . . . . 6 1 ∈ ℕ
75 ne0i 4300 . . . . . 6 (1 ∈ ℕ → ℕ ≠ ∅)
76 r19.9rzv 4459 . . . . . 6 (ℕ ≠ ∅ → (+∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴) ↔ ∃𝑘 ∈ ℕ +∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴)))
7774, 75, 76mp2b 10 . . . . 5 (+∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴) ↔ ∃𝑘 ∈ ℕ +∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
7873, 77sylibr 234 . . . 4 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → +∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
79 iccssxr 13370 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
8012ffvelcdmi 7038 . . . . . . . 8 ( 𝑛 ∈ ℕ 𝐴 ∈ dom vol → (vol‘ 𝑛 ∈ ℕ 𝐴) ∈ (0[,]+∞))
8179, 80sselid 3941 . . . . . . 7 ( 𝑛 ∈ ℕ 𝐴 ∈ dom vol → (vol‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ*)
8257, 81syl 17 . . . . . 6 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → (vol‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ*)
8382ad2antrr 726 . . . . 5 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → (vol‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ*)
84 xgepnf 13104 . . . . 5 ((vol‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ* → (+∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴) ↔ (vol‘ 𝑛 ∈ ℕ 𝐴) = +∞))
8583, 84syl 17 . . . 4 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → (+∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴) ↔ (vol‘ 𝑛 ∈ ℕ 𝐴) = +∞))
8678, 85mpbid 232 . . 3 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → (vol‘ 𝑛 ∈ ℕ 𝐴) = +∞)
87 nfdisj1 5083 . . . . . 6 𝑛Disj 𝑛 ∈ ℕ 𝐴
887, 87nfan 1899 . . . . 5 𝑛(∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴)
89 nfre1 3260 . . . . 5 𝑛𝑛 ∈ ℕ (vol‘𝐴) = +∞
9088, 89nfan 1899 . . . 4 𝑛((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞)
91 nnex 12171 . . . . 5 ℕ ∈ V
9291a1i 11 . . . 4 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → ℕ ∈ V)
93143ad2antr3 1191 . . . . 5 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ (Disj 𝑛 ∈ ℕ 𝐴 ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞ ∧ 𝑛 ∈ ℕ)) → (vol‘𝐴) ∈ (0[,]+∞))
94933anassrs 1361 . . . 4 ((((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) ∧ 𝑛 ∈ ℕ) → (vol‘𝐴) ∈ (0[,]+∞))
9590, 92, 94, 43esumpinfval 34058 . . 3 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → Σ*𝑛 ∈ ℕ(vol‘𝐴) = +∞)
9686, 95eqtr4d 2767 . 2 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → (vol‘ 𝑛 ∈ ℕ 𝐴) = Σ*𝑛 ∈ ℕ(vol‘𝐴))
97 exmid 894 . . . . 5 (∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ¬ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ)
98 rexnal 3082 . . . . . 6 (∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈ ℝ ↔ ¬ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ)
9998orbi2i 912 . . . . 5 ((∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈ ℝ) ↔ (∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ¬ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ))
10097, 99mpbir 231 . . . 4 (∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈ ℝ)
101 r19.29 3094 . . . . . . 7 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈ ℝ) → ∃𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ ¬ (vol‘𝐴) ∈ ℝ))
102 xrge0nre 13393 . . . . . . . . 9 (((vol‘𝐴) ∈ (0[,]+∞) ∧ ¬ (vol‘𝐴) ∈ ℝ) → (vol‘𝐴) = +∞)
10313, 102sylan 580 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ ¬ (vol‘𝐴) ∈ ℝ) → (vol‘𝐴) = +∞)
104103reximi 3067 . . . . . . 7 (∃𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ ¬ (vol‘𝐴) ∈ ℝ) → ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞)
105101, 104syl 17 . . . . . 6 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈ ℝ) → ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞)
106105ex 412 . . . . 5 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → (∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈ ℝ → ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞))
107106orim2d 968 . . . 4 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → ((∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈ ℝ) → (∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞)))
108100, 107mpi 20 . . 3 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → (∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞))
109108adantr 480 . 2 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) → (∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞))
11042, 96, 109mpjaodan 960 1 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ 𝑛 ∈ ℕ 𝐴) = Σ*𝑛 ∈ ℕ(vol‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3444  csb 3859  wss 3911  c0 4292   ciun 4951  Disj wdisj 5069   class class class wbr 5102  cmpt 5183  dom cdm 5631  ran crn 5632  wf 6496  cfv 6500  (class class class)co 7370  supcsup 9368  cr 11046  0cc0 11047  1c1 11048   + caddc 11050  +∞cpnf 11184  *cxr 11186   < clt 11187  cle 11188  cn 12165  [,)cico 13287  [,]cicc 13288  seqcseq 13945  volcvol 25399  Σ*cesum 34012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692  ax-inf2 9573  ax-cc 10367  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124  ax-pre-sup 11125  ax-addf 11126  ax-mulf 11127
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6263  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-isom 6509  df-riota 7327  df-ov 7373  df-oprab 7374  df-mpo 7375  df-of 7634  df-om 7824  df-1st 7948  df-2nd 7949  df-supp 8118  df-frecs 8238  df-wrecs 8269  df-recs 8318  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8649  df-map 8779  df-pm 8780  df-ixp 8849  df-en 8897  df-dom 8898  df-sdom 8899  df-fin 8900  df-fsupp 9290  df-fi 9339  df-sup 9370  df-inf 9371  df-oi 9440  df-dju 9833  df-card 9871  df-pnf 11189  df-mnf 11190  df-xr 11191  df-ltxr 11192  df-le 11193  df-sub 11386  df-neg 11387  df-div 11815  df-nn 12166  df-2 12228  df-3 12229  df-4 12230  df-5 12231  df-6 12232  df-7 12233  df-8 12234  df-9 12235  df-n0 12422  df-xnn0 12495  df-z 12509  df-dec 12629  df-uz 12773  df-q 12887  df-rp 12931  df-xneg 13051  df-xadd 13052  df-xmul 13053  df-ioo 13289  df-ioc 13290  df-ico 13291  df-icc 13292  df-fz 13448  df-fzo 13595  df-fl 13733  df-mod 13811  df-seq 13946  df-exp 14006  df-fac 14218  df-bc 14247  df-hash 14275  df-shft 15011  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-limsup 15415  df-clim 15432  df-rlim 15433  df-sum 15631  df-ef 16011  df-sin 16013  df-cos 16014  df-pi 16016  df-struct 17095  df-sets 17112  df-slot 17130  df-ndx 17142  df-base 17158  df-ress 17179  df-plusg 17211  df-mulr 17212  df-starv 17213  df-sca 17214  df-vsca 17215  df-ip 17216  df-tset 17217  df-ple 17218  df-ds 17220  df-unif 17221  df-hom 17222  df-cco 17223  df-rest 17363  df-topn 17364  df-0g 17382  df-gsum 17383  df-topgen 17384  df-pt 17385  df-prds 17388  df-ordt 17442  df-xrs 17443  df-qtop 17448  df-imas 17449  df-xps 17451  df-mre 17525  df-mrc 17526  df-acs 17528  df-ps 18509  df-tsr 18510  df-plusf 18550  df-mgm 18551  df-sgrp 18630  df-mnd 18646  df-mhm 18694  df-submnd 18695  df-grp 18852  df-minusg 18853  df-sbg 18854  df-mulg 18984  df-subg 19039  df-cntz 19233  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-ring 20157  df-cring 20158  df-subrng 20468  df-subrg 20492  df-abv 20731  df-lmod 20802  df-scaf 20803  df-sra 21114  df-rgmod 21115  df-psmet 21290  df-xmet 21291  df-met 21292  df-bl 21293  df-mopn 21294  df-fbas 21295  df-fg 21296  df-cnfld 21299  df-top 22816  df-topon 22833  df-topsp 22855  df-bases 22868  df-cld 22941  df-ntr 22942  df-cls 22943  df-nei 23020  df-lp 23058  df-perf 23059  df-cn 23149  df-cnp 23150  df-haus 23237  df-tx 23484  df-hmeo 23677  df-fil 23768  df-fm 23860  df-flim 23861  df-flf 23862  df-tmd 23994  df-tgp 23995  df-tsms 24049  df-trg 24082  df-xms 24243  df-ms 24244  df-tms 24245  df-nm 24505  df-ngp 24506  df-nrg 24508  df-nlm 24509  df-ii 24805  df-cncf 24806  df-ovol 25400  df-vol 25401  df-limc 25802  df-dv 25803  df-log 26500  df-esum 34013
This theorem is referenced by:  volmeas  34216
  Copyright terms: Public domain W3C validator