Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  voliune Structured version   Visualization version   GIF version

Theorem voliune 34226
Description: The Lebesgue measure function is countably additive. This formulation on the extended reals, allows for +∞ for the measure of any set in the sum. Cf. ovoliun 25413 and voliun 25462. (Contributed by Thierry Arnoux, 16-Oct-2017.)
Assertion
Ref Expression
voliune ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ 𝑛 ∈ ℕ 𝐴) = Σ*𝑛 ∈ ℕ(vol‘𝐴))

Proof of Theorem voliune
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 r19.26 3092 . . . . 5 (∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ↔ (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ))
2 eqid 2730 . . . . . 6 seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴)))
3 eqid 2730 . . . . . 6 (𝑛 ∈ ℕ ↦ (vol‘𝐴)) = (𝑛 ∈ ℕ ↦ (vol‘𝐴))
42, 3voliun 25462 . . . . 5 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ 𝑛 ∈ ℕ 𝐴) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, < ))
51, 4sylanbr 582 . . . 4 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ 𝑛 ∈ ℕ 𝐴) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, < ))
65an32s 652 . . 3 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → (vol‘ 𝑛 ∈ ℕ 𝐴) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, < ))
7 nfra1 3262 . . . . . . 7 𝑛𝑛 ∈ ℕ 𝐴 ∈ dom vol
8 nfra1 3262 . . . . . . 7 𝑛𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ
97, 8nfan 1899 . . . . . 6 𝑛(∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ)
10 simpr 484 . . . . . . . . . 10 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
11 rspa 3227 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ dom vol)
12 volf 25437 . . . . . . . . . . . 12 vol:dom vol⟶(0[,]+∞)
1312ffvelcdmi 7058 . . . . . . . . . . 11 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ (0[,]+∞))
1411, 13syl 17 . . . . . . . . . 10 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑛 ∈ ℕ) → (vol‘𝐴) ∈ (0[,]+∞))
153fvmpt2 6982 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (vol‘𝐴) ∈ (0[,]+∞)) → ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = (vol‘𝐴))
1610, 14, 15syl2anc 584 . . . . . . . . 9 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = (vol‘𝐴))
1716adantlr 715 . . . . . . . 8 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = (vol‘𝐴))
1817ex 412 . . . . . . 7 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = (vol‘𝐴)))
199, 18ralrimi 3236 . . . . . 6 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → ∀𝑛 ∈ ℕ ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = (vol‘𝐴))
209, 19esumeq2d 34034 . . . . 5 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → Σ*𝑛 ∈ ℕ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = Σ*𝑛 ∈ ℕ(vol‘𝐴))
21 simpr 484 . . . . . . . . 9 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ)
2221r19.21bi 3230 . . . . . . . 8 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘𝐴) ∈ ℝ)
2314adantlr 715 . . . . . . . . 9 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘𝐴) ∈ (0[,]+∞))
24 0xr 11228 . . . . . . . . . . 11 0 ∈ ℝ*
25 pnfxr 11235 . . . . . . . . . . 11 +∞ ∈ ℝ*
26 elicc1 13357 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((vol‘𝐴) ∈ (0[,]+∞) ↔ ((vol‘𝐴) ∈ ℝ* ∧ 0 ≤ (vol‘𝐴) ∧ (vol‘𝐴) ≤ +∞)))
2724, 25, 26mp2an 692 . . . . . . . . . 10 ((vol‘𝐴) ∈ (0[,]+∞) ↔ ((vol‘𝐴) ∈ ℝ* ∧ 0 ≤ (vol‘𝐴) ∧ (vol‘𝐴) ≤ +∞))
2827simp2bi 1146 . . . . . . . . 9 ((vol‘𝐴) ∈ (0[,]+∞) → 0 ≤ (vol‘𝐴))
2923, 28syl 17 . . . . . . . 8 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 0 ≤ (vol‘𝐴))
30 ltpnf 13087 . . . . . . . . 9 ((vol‘𝐴) ∈ ℝ → (vol‘𝐴) < +∞)
3122, 30syl 17 . . . . . . . 8 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘𝐴) < +∞)
32 0re 11183 . . . . . . . . 9 0 ∈ ℝ
33 elico2 13378 . . . . . . . . 9 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → ((vol‘𝐴) ∈ (0[,)+∞) ↔ ((vol‘𝐴) ∈ ℝ ∧ 0 ≤ (vol‘𝐴) ∧ (vol‘𝐴) < +∞)))
3432, 25, 33mp2an 692 . . . . . . . 8 ((vol‘𝐴) ∈ (0[,)+∞) ↔ ((vol‘𝐴) ∈ ℝ ∧ 0 ≤ (vol‘𝐴) ∧ (vol‘𝐴) < +∞))
3522, 29, 31, 34syl3anbrc 1344 . . . . . . 7 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘𝐴) ∈ (0[,)+∞))
369, 35, 3fmptdf 7092 . . . . . 6 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → (𝑛 ∈ ℕ ↦ (vol‘𝐴)):ℕ⟶(0[,)+∞))
37 nfmpt1 5209 . . . . . . 7 𝑛(𝑛 ∈ ℕ ↦ (vol‘𝐴))
3837esumfsupre 34068 . . . . . 6 ((𝑛 ∈ ℕ ↦ (vol‘𝐴)):ℕ⟶(0[,)+∞) → Σ*𝑛 ∈ ℕ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, < ))
3936, 38syl 17 . . . . 5 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → Σ*𝑛 ∈ ℕ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, < ))
4020, 39eqtr3d 2767 . . . 4 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → Σ*𝑛 ∈ ℕ(vol‘𝐴) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, < ))
4140adantlr 715 . . 3 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → Σ*𝑛 ∈ ℕ(vol‘𝐴) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, < ))
426, 41eqtr4d 2768 . 2 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) → (vol‘ 𝑛 ∈ ℕ 𝐴) = Σ*𝑛 ∈ ℕ(vol‘𝐴))
43 simpr 484 . . . . . . . 8 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞)
44 nfv 1914 . . . . . . . . 9 𝑘(vol‘𝐴) = +∞
45 nfcv 2892 . . . . . . . . . . 11 𝑛vol
46 nfcsb1v 3889 . . . . . . . . . . 11 𝑛𝑘 / 𝑛𝐴
4745, 46nffv 6871 . . . . . . . . . 10 𝑛(vol‘𝑘 / 𝑛𝐴)
4847nfeq1 2908 . . . . . . . . 9 𝑛(vol‘𝑘 / 𝑛𝐴) = +∞
49 csbeq1a 3879 . . . . . . . . . 10 (𝑛 = 𝑘𝐴 = 𝑘 / 𝑛𝐴)
5049fveqeq2d 6869 . . . . . . . . 9 (𝑛 = 𝑘 → ((vol‘𝐴) = +∞ ↔ (vol‘𝑘 / 𝑛𝐴) = +∞))
5144, 48, 50cbvrexw 3283 . . . . . . . 8 (∃𝑛 ∈ ℕ (vol‘𝐴) = +∞ ↔ ∃𝑘 ∈ ℕ (vol‘𝑘 / 𝑛𝐴) = +∞)
5243, 51sylib 218 . . . . . . 7 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → ∃𝑘 ∈ ℕ (vol‘𝑘 / 𝑛𝐴) = +∞)
5346nfel1 2909 . . . . . . . . . . . . 13 𝑛𝑘 / 𝑛𝐴 ∈ dom vol
5449eleq1d 2814 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝐴 ∈ dom vol ↔ 𝑘 / 𝑛𝐴 ∈ dom vol))
5553, 54rspc 3579 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑘 / 𝑛𝐴 ∈ dom vol))
5655impcom 407 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → 𝑘 / 𝑛𝐴 ∈ dom vol)
57 iunmbl 25461 . . . . . . . . . . . 12 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑛 ∈ ℕ 𝐴 ∈ dom vol)
5857adantr 480 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → 𝑛 ∈ ℕ 𝐴 ∈ dom vol)
59 nfcv 2892 . . . . . . . . . . . . 13 𝑛
60 nfcv 2892 . . . . . . . . . . . . 13 𝑛𝑘
6159, 60, 46, 49ssiun2sf 32495 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 / 𝑛𝐴 𝑛 ∈ ℕ 𝐴)
6261adantl 481 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → 𝑘 / 𝑛𝐴 𝑛 ∈ ℕ 𝐴)
63 volss 25441 . . . . . . . . . . 11 ((𝑘 / 𝑛𝐴 ∈ dom vol ∧ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 / 𝑛𝐴 𝑛 ∈ ℕ 𝐴) → (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
6456, 58, 62, 63syl3anc 1373 . . . . . . . . . 10 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
6564adantlr 715 . . . . . . . . 9 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ 𝑘 ∈ ℕ) → (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
6665adantlr 715 . . . . . . . 8 ((((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) ∧ 𝑘 ∈ ℕ) → (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
6766ralrimiva 3126 . . . . . . 7 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → ∀𝑘 ∈ ℕ (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
68 r19.29r 3097 . . . . . . 7 ((∃𝑘 ∈ ℕ (vol‘𝑘 / 𝑛𝐴) = +∞ ∧ ∀𝑘 ∈ ℕ (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴)) → ∃𝑘 ∈ ℕ ((vol‘𝑘 / 𝑛𝐴) = +∞ ∧ (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴)))
6952, 67, 68syl2anc 584 . . . . . 6 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → ∃𝑘 ∈ ℕ ((vol‘𝑘 / 𝑛𝐴) = +∞ ∧ (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴)))
70 breq1 5113 . . . . . . . 8 ((vol‘𝑘 / 𝑛𝐴) = +∞ → ((vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴) ↔ +∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴)))
7170biimpa 476 . . . . . . 7 (((vol‘𝑘 / 𝑛𝐴) = +∞ ∧ (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴)) → +∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
7271reximi 3068 . . . . . 6 (∃𝑘 ∈ ℕ ((vol‘𝑘 / 𝑛𝐴) = +∞ ∧ (vol‘𝑘 / 𝑛𝐴) ≤ (vol‘ 𝑛 ∈ ℕ 𝐴)) → ∃𝑘 ∈ ℕ +∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
7369, 72syl 17 . . . . 5 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → ∃𝑘 ∈ ℕ +∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
74 1nn 12204 . . . . . 6 1 ∈ ℕ
75 ne0i 4307 . . . . . 6 (1 ∈ ℕ → ℕ ≠ ∅)
76 r19.9rzv 4466 . . . . . 6 (ℕ ≠ ∅ → (+∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴) ↔ ∃𝑘 ∈ ℕ +∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴)))
7774, 75, 76mp2b 10 . . . . 5 (+∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴) ↔ ∃𝑘 ∈ ℕ +∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
7873, 77sylibr 234 . . . 4 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → +∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴))
79 iccssxr 13398 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
8012ffvelcdmi 7058 . . . . . . . 8 ( 𝑛 ∈ ℕ 𝐴 ∈ dom vol → (vol‘ 𝑛 ∈ ℕ 𝐴) ∈ (0[,]+∞))
8179, 80sselid 3947 . . . . . . 7 ( 𝑛 ∈ ℕ 𝐴 ∈ dom vol → (vol‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ*)
8257, 81syl 17 . . . . . 6 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → (vol‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ*)
8382ad2antrr 726 . . . . 5 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → (vol‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ*)
84 xgepnf 13132 . . . . 5 ((vol‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ* → (+∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴) ↔ (vol‘ 𝑛 ∈ ℕ 𝐴) = +∞))
8583, 84syl 17 . . . 4 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → (+∞ ≤ (vol‘ 𝑛 ∈ ℕ 𝐴) ↔ (vol‘ 𝑛 ∈ ℕ 𝐴) = +∞))
8678, 85mpbid 232 . . 3 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → (vol‘ 𝑛 ∈ ℕ 𝐴) = +∞)
87 nfdisj1 5091 . . . . . 6 𝑛Disj 𝑛 ∈ ℕ 𝐴
887, 87nfan 1899 . . . . 5 𝑛(∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴)
89 nfre1 3263 . . . . 5 𝑛𝑛 ∈ ℕ (vol‘𝐴) = +∞
9088, 89nfan 1899 . . . 4 𝑛((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞)
91 nnex 12199 . . . . 5 ℕ ∈ V
9291a1i 11 . . . 4 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → ℕ ∈ V)
93143ad2antr3 1191 . . . . 5 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ (Disj 𝑛 ∈ ℕ 𝐴 ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞ ∧ 𝑛 ∈ ℕ)) → (vol‘𝐴) ∈ (0[,]+∞))
94933anassrs 1361 . . . 4 ((((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) ∧ 𝑛 ∈ ℕ) → (vol‘𝐴) ∈ (0[,]+∞))
9590, 92, 94, 43esumpinfval 34070 . . 3 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → Σ*𝑛 ∈ ℕ(vol‘𝐴) = +∞)
9686, 95eqtr4d 2768 . 2 (((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) → (vol‘ 𝑛 ∈ ℕ 𝐴) = Σ*𝑛 ∈ ℕ(vol‘𝐴))
97 exmid 894 . . . . 5 (∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ¬ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ)
98 rexnal 3083 . . . . . 6 (∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈ ℝ ↔ ¬ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ)
9998orbi2i 912 . . . . 5 ((∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈ ℝ) ↔ (∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ¬ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ))
10097, 99mpbir 231 . . . 4 (∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈ ℝ)
101 r19.29 3095 . . . . . . 7 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈ ℝ) → ∃𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ ¬ (vol‘𝐴) ∈ ℝ))
102 xrge0nre 13421 . . . . . . . . 9 (((vol‘𝐴) ∈ (0[,]+∞) ∧ ¬ (vol‘𝐴) ∈ ℝ) → (vol‘𝐴) = +∞)
10313, 102sylan 580 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ ¬ (vol‘𝐴) ∈ ℝ) → (vol‘𝐴) = +∞)
104103reximi 3068 . . . . . . 7 (∃𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ ¬ (vol‘𝐴) ∈ ℝ) → ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞)
105101, 104syl 17 . . . . . 6 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈ ℝ) → ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞)
106105ex 412 . . . . 5 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → (∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈ ℝ → ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞))
107106orim2d 968 . . . 4 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → ((∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈ ℝ) → (∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞)))
108100, 107mpi 20 . . 3 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → (∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞))
109108adantr 480 . 2 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) → (∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ ∨ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞))
11042, 96, 109mpjaodan 960 1 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ 𝑛 ∈ ℕ 𝐴) = Σ*𝑛 ∈ ℕ(vol‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  csb 3865  wss 3917  c0 4299   ciun 4958  Disj wdisj 5077   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642  wf 6510  cfv 6514  (class class class)co 7390  supcsup 9398  cr 11074  0cc0 11075  1c1 11076   + caddc 11078  +∞cpnf 11212  *cxr 11214   < clt 11215  cle 11216  cn 12193  [,)cico 13315  [,]cicc 13316  seqcseq 13973  volcvol 25371  Σ*cesum 34024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-ordt 17471  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-ps 18532  df-tsr 18533  df-plusf 18573  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-subrng 20462  df-subrg 20486  df-abv 20725  df-lmod 20775  df-scaf 20776  df-sra 21087  df-rgmod 21088  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-tmd 23966  df-tgp 23967  df-tsms 24021  df-trg 24054  df-xms 24215  df-ms 24216  df-tms 24217  df-nm 24477  df-ngp 24478  df-nrg 24480  df-nlm 24481  df-ii 24777  df-cncf 24778  df-ovol 25372  df-vol 25373  df-limc 25774  df-dv 25775  df-log 26472  df-esum 34025
This theorem is referenced by:  volmeas  34228
  Copyright terms: Public domain W3C validator