MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrprfvalrn Structured version   Visualization version   GIF version

Theorem pmtrprfvalrn 19011
Description: The range of the transpositions on a pair is actually a singleton: the transposition of the two elements of the pair. (Contributed by AV, 9-Dec-2018.)
Assertion
Ref Expression
pmtrprfvalrn ran (pmTrsp‘{1, 2}) = {{⟨1, 2⟩, ⟨2, 1⟩}}

Proof of Theorem pmtrprfvalrn
Dummy variables 𝑡 𝑝 𝑧 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pmtrprfval 19010 . . 3 (pmTrsp‘{1, 2}) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
21rneqi 5835 . 2 ran (pmTrsp‘{1, 2}) = ran (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
3 eqid 2738 . . . 4 (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
43rnmpt 5853 . . 3 ran (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))) = {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))}
5 1ex 10902 . . . . . . . 8 1 ∈ V
6 id 22 . . . . . . . . . 10 (1 ∈ V → 1 ∈ V)
7 2nn 11976 . . . . . . . . . . 11 2 ∈ ℕ
87a1i 11 . . . . . . . . . 10 (1 ∈ V → 2 ∈ ℕ)
9 iftrue 4462 . . . . . . . . . . 11 (𝑧 = 1 → if(𝑧 = 1, 2, 1) = 2)
109adantl 481 . . . . . . . . . 10 ((1 ∈ V ∧ 𝑧 = 1) → if(𝑧 = 1, 2, 1) = 2)
11 1ne2 12111 . . . . . . . . . . . . . 14 1 ≠ 2
1211nesymi 3000 . . . . . . . . . . . . 13 ¬ 2 = 1
13 eqeq1 2742 . . . . . . . . . . . . 13 (𝑧 = 2 → (𝑧 = 1 ↔ 2 = 1))
1412, 13mtbiri 326 . . . . . . . . . . . 12 (𝑧 = 2 → ¬ 𝑧 = 1)
1514iffalsed 4467 . . . . . . . . . . 11 (𝑧 = 2 → if(𝑧 = 1, 2, 1) = 1)
1615adantl 481 . . . . . . . . . 10 ((1 ∈ V ∧ 𝑧 = 2) → if(𝑧 = 1, 2, 1) = 1)
176, 8, 8, 6, 10, 16fmptpr 7026 . . . . . . . . 9 (1 ∈ V → {⟨1, 2⟩, ⟨2, 1⟩} = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
1817eqeq2d 2749 . . . . . . . 8 (1 ∈ V → (𝑡 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ 𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))))
195, 18ax-mp 5 . . . . . . 7 (𝑡 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ 𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
2019bicomi 223 . . . . . 6 (𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)) ↔ 𝑡 = {⟨1, 2⟩, ⟨2, 1⟩})
2120rexbii 3177 . . . . 5 (∃𝑝 ∈ {{1, 2}}𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)) ↔ ∃𝑝 ∈ {{1, 2}}𝑡 = {⟨1, 2⟩, ⟨2, 1⟩})
2221abbii 2809 . . . 4 {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))} = {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = {⟨1, 2⟩, ⟨2, 1⟩}}
23 prex 5350 . . . . . . . 8 {1, 2} ∈ V
2423snnz 4709 . . . . . . 7 {{1, 2}} ≠ ∅
25 r19.9rzv 4427 . . . . . . . 8 ({{1, 2}} ≠ ∅ → (𝑠 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ ∃𝑝 ∈ {{1, 2}}𝑠 = {⟨1, 2⟩, ⟨2, 1⟩}))
2625bicomd 222 . . . . . . 7 ({{1, 2}} ≠ ∅ → (∃𝑝 ∈ {{1, 2}}𝑠 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ 𝑠 = {⟨1, 2⟩, ⟨2, 1⟩}))
2724, 26ax-mp 5 . . . . . 6 (∃𝑝 ∈ {{1, 2}}𝑠 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ 𝑠 = {⟨1, 2⟩, ⟨2, 1⟩})
28 vex 3426 . . . . . . 7 𝑠 ∈ V
29 eqeq1 2742 . . . . . . . 8 (𝑡 = 𝑠 → (𝑡 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ 𝑠 = {⟨1, 2⟩, ⟨2, 1⟩}))
3029rexbidv 3225 . . . . . . 7 (𝑡 = 𝑠 → (∃𝑝 ∈ {{1, 2}}𝑡 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ ∃𝑝 ∈ {{1, 2}}𝑠 = {⟨1, 2⟩, ⟨2, 1⟩}))
3128, 30elab 3602 . . . . . 6 (𝑠 ∈ {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = {⟨1, 2⟩, ⟨2, 1⟩}} ↔ ∃𝑝 ∈ {{1, 2}}𝑠 = {⟨1, 2⟩, ⟨2, 1⟩})
32 velsn 4574 . . . . . 6 (𝑠 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} ↔ 𝑠 = {⟨1, 2⟩, ⟨2, 1⟩})
3327, 31, 323bitr4i 302 . . . . 5 (𝑠 ∈ {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = {⟨1, 2⟩, ⟨2, 1⟩}} ↔ 𝑠 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}})
3433eqriv 2735 . . . 4 {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = {⟨1, 2⟩, ⟨2, 1⟩}} = {{⟨1, 2⟩, ⟨2, 1⟩}}
3522, 34eqtri 2766 . . 3 {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))} = {{⟨1, 2⟩, ⟨2, 1⟩}}
364, 35eqtri 2766 . 2 ran (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))) = {{⟨1, 2⟩, ⟨2, 1⟩}}
372, 36eqtri 2766 1 ran (pmTrsp‘{1, 2}) = {{⟨1, 2⟩, ⟨2, 1⟩}}
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2108  {cab 2715  wne 2942  wrex 3064  Vcvv 3422  c0 4253  ifcif 4456  {csn 4558  {cpr 4560  cop 4564  cmpt 5153  ran crn 5581  cfv 6418  1c1 10803  cn 11903  2c2 11958  pmTrspcpmtr 18964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-pmtr 18965
This theorem is referenced by:  psgnprfval2  19046
  Copyright terms: Public domain W3C validator