MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrprfvalrn Structured version   Visualization version   GIF version

Theorem pmtrprfvalrn 19270
Description: The range of the transpositions on a pair is actually a singleton: the transposition of the two elements of the pair. (Contributed by AV, 9-Dec-2018.)
Assertion
Ref Expression
pmtrprfvalrn ran (pmTrsp‘{1, 2}) = {{⟨1, 2⟩, ⟨2, 1⟩}}

Proof of Theorem pmtrprfvalrn
Dummy variables 𝑡 𝑝 𝑧 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pmtrprfval 19269 . . 3 (pmTrsp‘{1, 2}) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
21rneqi 5892 . 2 ran (pmTrsp‘{1, 2}) = ran (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
3 eqid 2736 . . . 4 (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
43rnmpt 5910 . . 3 ran (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))) = {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))}
5 1ex 11151 . . . . . . . 8 1 ∈ V
6 id 22 . . . . . . . . . 10 (1 ∈ V → 1 ∈ V)
7 2nn 12226 . . . . . . . . . . 11 2 ∈ ℕ
87a1i 11 . . . . . . . . . 10 (1 ∈ V → 2 ∈ ℕ)
9 iftrue 4492 . . . . . . . . . . 11 (𝑧 = 1 → if(𝑧 = 1, 2, 1) = 2)
109adantl 482 . . . . . . . . . 10 ((1 ∈ V ∧ 𝑧 = 1) → if(𝑧 = 1, 2, 1) = 2)
11 1ne2 12361 . . . . . . . . . . . . . 14 1 ≠ 2
1211nesymi 3001 . . . . . . . . . . . . 13 ¬ 2 = 1
13 eqeq1 2740 . . . . . . . . . . . . 13 (𝑧 = 2 → (𝑧 = 1 ↔ 2 = 1))
1412, 13mtbiri 326 . . . . . . . . . . . 12 (𝑧 = 2 → ¬ 𝑧 = 1)
1514iffalsed 4497 . . . . . . . . . . 11 (𝑧 = 2 → if(𝑧 = 1, 2, 1) = 1)
1615adantl 482 . . . . . . . . . 10 ((1 ∈ V ∧ 𝑧 = 2) → if(𝑧 = 1, 2, 1) = 1)
176, 8, 8, 6, 10, 16fmptpr 7118 . . . . . . . . 9 (1 ∈ V → {⟨1, 2⟩, ⟨2, 1⟩} = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
1817eqeq2d 2747 . . . . . . . 8 (1 ∈ V → (𝑡 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ 𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))))
195, 18ax-mp 5 . . . . . . 7 (𝑡 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ 𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
2019bicomi 223 . . . . . 6 (𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)) ↔ 𝑡 = {⟨1, 2⟩, ⟨2, 1⟩})
2120rexbii 3097 . . . . 5 (∃𝑝 ∈ {{1, 2}}𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)) ↔ ∃𝑝 ∈ {{1, 2}}𝑡 = {⟨1, 2⟩, ⟨2, 1⟩})
2221abbii 2806 . . . 4 {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))} = {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = {⟨1, 2⟩, ⟨2, 1⟩}}
23 prex 5389 . . . . . . . 8 {1, 2} ∈ V
2423snnz 4737 . . . . . . 7 {{1, 2}} ≠ ∅
25 r19.9rzv 4457 . . . . . . . 8 ({{1, 2}} ≠ ∅ → (𝑠 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ ∃𝑝 ∈ {{1, 2}}𝑠 = {⟨1, 2⟩, ⟨2, 1⟩}))
2625bicomd 222 . . . . . . 7 ({{1, 2}} ≠ ∅ → (∃𝑝 ∈ {{1, 2}}𝑠 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ 𝑠 = {⟨1, 2⟩, ⟨2, 1⟩}))
2724, 26ax-mp 5 . . . . . 6 (∃𝑝 ∈ {{1, 2}}𝑠 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ 𝑠 = {⟨1, 2⟩, ⟨2, 1⟩})
28 vex 3449 . . . . . . 7 𝑠 ∈ V
29 eqeq1 2740 . . . . . . . 8 (𝑡 = 𝑠 → (𝑡 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ 𝑠 = {⟨1, 2⟩, ⟨2, 1⟩}))
3029rexbidv 3175 . . . . . . 7 (𝑡 = 𝑠 → (∃𝑝 ∈ {{1, 2}}𝑡 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ ∃𝑝 ∈ {{1, 2}}𝑠 = {⟨1, 2⟩, ⟨2, 1⟩}))
3128, 30elab 3630 . . . . . 6 (𝑠 ∈ {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = {⟨1, 2⟩, ⟨2, 1⟩}} ↔ ∃𝑝 ∈ {{1, 2}}𝑠 = {⟨1, 2⟩, ⟨2, 1⟩})
32 velsn 4602 . . . . . 6 (𝑠 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} ↔ 𝑠 = {⟨1, 2⟩, ⟨2, 1⟩})
3327, 31, 323bitr4i 302 . . . . 5 (𝑠 ∈ {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = {⟨1, 2⟩, ⟨2, 1⟩}} ↔ 𝑠 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}})
3433eqriv 2733 . . . 4 {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = {⟨1, 2⟩, ⟨2, 1⟩}} = {{⟨1, 2⟩, ⟨2, 1⟩}}
3522, 34eqtri 2764 . . 3 {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))} = {{⟨1, 2⟩, ⟨2, 1⟩}}
364, 35eqtri 2764 . 2 ran (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))) = {{⟨1, 2⟩, ⟨2, 1⟩}}
372, 36eqtri 2764 1 ran (pmTrsp‘{1, 2}) = {{⟨1, 2⟩, ⟨2, 1⟩}}
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wcel 2106  {cab 2713  wne 2943  wrex 3073  Vcvv 3445  c0 4282  ifcif 4486  {csn 4586  {cpr 4588  cop 4592  cmpt 5188  ran crn 5634  cfv 6496  1c1 11052  cn 12153  2c2 12208  pmTrspcpmtr 19223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-hash 14231  df-pmtr 19224
This theorem is referenced by:  psgnprfval2  19305
  Copyright terms: Public domain W3C validator