MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrprfvalrn Structured version   Visualization version   GIF version

Theorem pmtrprfvalrn 19355
Description: The range of the transpositions on a pair is actually a singleton: the transposition of the two elements of the pair. (Contributed by AV, 9-Dec-2018.)
Assertion
Ref Expression
pmtrprfvalrn ran (pmTrsp‘{1, 2}) = {{⟨1, 2⟩, ⟨2, 1⟩}}

Proof of Theorem pmtrprfvalrn
Dummy variables 𝑡 𝑝 𝑧 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pmtrprfval 19354 . . 3 (pmTrsp‘{1, 2}) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
21rneqi 5936 . 2 ran (pmTrsp‘{1, 2}) = ran (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
3 eqid 2732 . . . 4 (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
43rnmpt 5954 . . 3 ran (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))) = {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))}
5 1ex 11209 . . . . . . . 8 1 ∈ V
6 id 22 . . . . . . . . . 10 (1 ∈ V → 1 ∈ V)
7 2nn 12284 . . . . . . . . . . 11 2 ∈ ℕ
87a1i 11 . . . . . . . . . 10 (1 ∈ V → 2 ∈ ℕ)
9 iftrue 4534 . . . . . . . . . . 11 (𝑧 = 1 → if(𝑧 = 1, 2, 1) = 2)
109adantl 482 . . . . . . . . . 10 ((1 ∈ V ∧ 𝑧 = 1) → if(𝑧 = 1, 2, 1) = 2)
11 1ne2 12419 . . . . . . . . . . . . . 14 1 ≠ 2
1211nesymi 2998 . . . . . . . . . . . . 13 ¬ 2 = 1
13 eqeq1 2736 . . . . . . . . . . . . 13 (𝑧 = 2 → (𝑧 = 1 ↔ 2 = 1))
1412, 13mtbiri 326 . . . . . . . . . . . 12 (𝑧 = 2 → ¬ 𝑧 = 1)
1514iffalsed 4539 . . . . . . . . . . 11 (𝑧 = 2 → if(𝑧 = 1, 2, 1) = 1)
1615adantl 482 . . . . . . . . . 10 ((1 ∈ V ∧ 𝑧 = 2) → if(𝑧 = 1, 2, 1) = 1)
176, 8, 8, 6, 10, 16fmptpr 7169 . . . . . . . . 9 (1 ∈ V → {⟨1, 2⟩, ⟨2, 1⟩} = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
1817eqeq2d 2743 . . . . . . . 8 (1 ∈ V → (𝑡 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ 𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))))
195, 18ax-mp 5 . . . . . . 7 (𝑡 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ 𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
2019bicomi 223 . . . . . 6 (𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)) ↔ 𝑡 = {⟨1, 2⟩, ⟨2, 1⟩})
2120rexbii 3094 . . . . 5 (∃𝑝 ∈ {{1, 2}}𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)) ↔ ∃𝑝 ∈ {{1, 2}}𝑡 = {⟨1, 2⟩, ⟨2, 1⟩})
2221abbii 2802 . . . 4 {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))} = {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = {⟨1, 2⟩, ⟨2, 1⟩}}
23 prex 5432 . . . . . . . 8 {1, 2} ∈ V
2423snnz 4780 . . . . . . 7 {{1, 2}} ≠ ∅
25 r19.9rzv 4499 . . . . . . . 8 ({{1, 2}} ≠ ∅ → (𝑠 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ ∃𝑝 ∈ {{1, 2}}𝑠 = {⟨1, 2⟩, ⟨2, 1⟩}))
2625bicomd 222 . . . . . . 7 ({{1, 2}} ≠ ∅ → (∃𝑝 ∈ {{1, 2}}𝑠 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ 𝑠 = {⟨1, 2⟩, ⟨2, 1⟩}))
2724, 26ax-mp 5 . . . . . 6 (∃𝑝 ∈ {{1, 2}}𝑠 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ 𝑠 = {⟨1, 2⟩, ⟨2, 1⟩})
28 vex 3478 . . . . . . 7 𝑠 ∈ V
29 eqeq1 2736 . . . . . . . 8 (𝑡 = 𝑠 → (𝑡 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ 𝑠 = {⟨1, 2⟩, ⟨2, 1⟩}))
3029rexbidv 3178 . . . . . . 7 (𝑡 = 𝑠 → (∃𝑝 ∈ {{1, 2}}𝑡 = {⟨1, 2⟩, ⟨2, 1⟩} ↔ ∃𝑝 ∈ {{1, 2}}𝑠 = {⟨1, 2⟩, ⟨2, 1⟩}))
3128, 30elab 3668 . . . . . 6 (𝑠 ∈ {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = {⟨1, 2⟩, ⟨2, 1⟩}} ↔ ∃𝑝 ∈ {{1, 2}}𝑠 = {⟨1, 2⟩, ⟨2, 1⟩})
32 velsn 4644 . . . . . 6 (𝑠 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} ↔ 𝑠 = {⟨1, 2⟩, ⟨2, 1⟩})
3327, 31, 323bitr4i 302 . . . . 5 (𝑠 ∈ {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = {⟨1, 2⟩, ⟨2, 1⟩}} ↔ 𝑠 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}})
3433eqriv 2729 . . . 4 {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = {⟨1, 2⟩, ⟨2, 1⟩}} = {{⟨1, 2⟩, ⟨2, 1⟩}}
3522, 34eqtri 2760 . . 3 {𝑡 ∣ ∃𝑝 ∈ {{1, 2}}𝑡 = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))} = {{⟨1, 2⟩, ⟨2, 1⟩}}
364, 35eqtri 2760 . 2 ran (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))) = {{⟨1, 2⟩, ⟨2, 1⟩}}
372, 36eqtri 2760 1 ran (pmTrsp‘{1, 2}) = {{⟨1, 2⟩, ⟨2, 1⟩}}
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wcel 2106  {cab 2709  wne 2940  wrex 3070  Vcvv 3474  c0 4322  ifcif 4528  {csn 4628  {cpr 4630  cop 4634  cmpt 5231  ran crn 5677  cfv 6543  1c1 11110  cn 12211  2c2 12266  pmTrspcpmtr 19308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-2o 8466  df-oadd 8469  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-dju 9895  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-hash 14290  df-pmtr 19309
This theorem is referenced by:  psgnprfval2  19390
  Copyright terms: Public domain W3C validator