MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  regtop Structured version   Visualization version   GIF version

Theorem regtop 23276
Description: A regular space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
regtop (𝐽 ∈ Reg → 𝐽 ∈ Top)

Proof of Theorem regtop
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isreg 23275 . 2 (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
21simplbi 497 1 (𝐽 ∈ Reg → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3052  wrex 3061  wss 3931  cfv 6536  Topctop 22836  clsccl 22961  Regcreg 23252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544  df-reg 23259
This theorem is referenced by:  regsep2  23319  regr1  23693  kqreg  23694  reghmph  23736
  Copyright terms: Public domain W3C validator