MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  regtop Structured version   Visualization version   GIF version

Theorem regtop 22465
Description: A regular space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
regtop (𝐽 ∈ Reg → 𝐽 ∈ Top)

Proof of Theorem regtop
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isreg 22464 . 2 (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
21simplbi 497 1 (𝐽 ∈ Reg → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3065  wrex 3066  wss 3891  cfv 6430  Topctop 22023  clsccl 22150  Regcreg 22441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-iota 6388  df-fv 6438  df-reg 22448
This theorem is referenced by:  regsep2  22508  regr1  22882  kqreg  22883  reghmph  22925
  Copyright terms: Public domain W3C validator