| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > regtop | Structured version Visualization version GIF version | ||
| Description: A regular space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| Ref | Expression |
|---|---|
| regtop | ⊢ (𝐽 ∈ Reg → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isreg 23219 | . 2 ⊢ (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐽 (𝑦 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐽 ∈ Reg → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 ‘cfv 6511 Topctop 22780 clsccl 22905 Regcreg 23196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-reg 23203 |
| This theorem is referenced by: regsep2 23263 regr1 23637 kqreg 23638 reghmph 23680 |
| Copyright terms: Public domain | W3C validator |