![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > regtop | Structured version Visualization version GIF version |
Description: A regular space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.) |
Ref | Expression |
---|---|
regtop | ⊢ (𝐽 ∈ Reg → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isreg 21462 | . 2 ⊢ (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐽 (𝑦 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))) | |
2 | 1 | simplbi 492 | 1 ⊢ (𝐽 ∈ Reg → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∈ wcel 2157 ∀wral 3087 ∃wrex 3088 ⊆ wss 3767 ‘cfv 6099 Topctop 21023 clsccl 21148 Regcreg 21439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-iota 6062 df-fv 6107 df-reg 21446 |
This theorem is referenced by: regsep2 21506 regr1 21879 kqreg 21880 reghmph 21922 |
Copyright terms: Public domain | W3C validator |