| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > regsep | Structured version Visualization version GIF version | ||
| Description: In a regular space, every neighborhood of a point contains a closed subneighborhood. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| regsep | ⊢ ((𝐽 ∈ Reg ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈) → ∃𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isreg 23219 | . . . 4 ⊢ (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝐽 ∀𝑧 ∈ 𝑦 ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦))) | |
| 2 | sseq2 3973 | . . . . . . . 8 ⊢ (𝑦 = 𝑈 → (((cls‘𝐽)‘𝑥) ⊆ 𝑦 ↔ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)) | |
| 3 | 2 | anbi2d 630 | . . . . . . 7 ⊢ (𝑦 = 𝑈 → ((𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
| 4 | 3 | rexbidv 3157 | . . . . . 6 ⊢ (𝑦 = 𝑈 → (∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
| 5 | 4 | raleqbi1dv 3311 | . . . . 5 ⊢ (𝑦 = 𝑈 → (∀𝑧 ∈ 𝑦 ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ ∀𝑧 ∈ 𝑈 ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
| 6 | 5 | rspccv 3585 | . . . 4 ⊢ (∀𝑦 ∈ 𝐽 ∀𝑧 ∈ 𝑦 ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) → (𝑈 ∈ 𝐽 → ∀𝑧 ∈ 𝑈 ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
| 7 | 1, 6 | simplbiim 504 | . . 3 ⊢ (𝐽 ∈ Reg → (𝑈 ∈ 𝐽 → ∀𝑧 ∈ 𝑈 ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
| 8 | eleq1 2816 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (𝑧 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
| 9 | 8 | anbi1d 631 | . . . . 5 ⊢ (𝑧 = 𝐴 → ((𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈) ↔ (𝐴 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
| 10 | 9 | rexbidv 3157 | . . . 4 ⊢ (𝑧 = 𝐴 → (∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈) ↔ ∃𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
| 11 | 10 | rspccv 3585 | . . 3 ⊢ (∀𝑧 ∈ 𝑈 ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈) → (𝐴 ∈ 𝑈 → ∃𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
| 12 | 7, 11 | syl6 35 | . 2 ⊢ (𝐽 ∈ Reg → (𝑈 ∈ 𝐽 → (𝐴 ∈ 𝑈 → ∃𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)))) |
| 13 | 12 | 3imp 1110 | 1 ⊢ ((𝐽 ∈ Reg ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈) → ∃𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 ‘cfv 6511 Topctop 22780 clsccl 22905 Regcreg 23196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-reg 23203 |
| This theorem is referenced by: regsep2 23263 regr1lem 23626 kqreglem1 23628 kqreglem2 23629 reghmph 23680 cnextcn 23954 |
| Copyright terms: Public domain | W3C validator |