Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > regsep | Structured version Visualization version GIF version |
Description: In a regular space, every neighborhood of a point contains a closed subneighborhood. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
regsep | ⊢ ((𝐽 ∈ Reg ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈) → ∃𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isreg 22483 | . . . 4 ⊢ (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝐽 ∀𝑧 ∈ 𝑦 ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦))) | |
2 | sseq2 3947 | . . . . . . . 8 ⊢ (𝑦 = 𝑈 → (((cls‘𝐽)‘𝑥) ⊆ 𝑦 ↔ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)) | |
3 | 2 | anbi2d 629 | . . . . . . 7 ⊢ (𝑦 = 𝑈 → ((𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
4 | 3 | rexbidv 3226 | . . . . . 6 ⊢ (𝑦 = 𝑈 → (∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
5 | 4 | raleqbi1dv 3340 | . . . . 5 ⊢ (𝑦 = 𝑈 → (∀𝑧 ∈ 𝑦 ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ ∀𝑧 ∈ 𝑈 ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
6 | 5 | rspccv 3558 | . . . 4 ⊢ (∀𝑦 ∈ 𝐽 ∀𝑧 ∈ 𝑦 ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) → (𝑈 ∈ 𝐽 → ∀𝑧 ∈ 𝑈 ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
7 | 1, 6 | simplbiim 505 | . . 3 ⊢ (𝐽 ∈ Reg → (𝑈 ∈ 𝐽 → ∀𝑧 ∈ 𝑈 ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
8 | eleq1 2826 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (𝑧 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
9 | 8 | anbi1d 630 | . . . . 5 ⊢ (𝑧 = 𝐴 → ((𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈) ↔ (𝐴 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
10 | 9 | rexbidv 3226 | . . . 4 ⊢ (𝑧 = 𝐴 → (∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈) ↔ ∃𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
11 | 10 | rspccv 3558 | . . 3 ⊢ (∀𝑧 ∈ 𝑈 ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈) → (𝐴 ∈ 𝑈 → ∃𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
12 | 7, 11 | syl6 35 | . 2 ⊢ (𝐽 ∈ Reg → (𝑈 ∈ 𝐽 → (𝐴 ∈ 𝑈 → ∃𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)))) |
13 | 12 | 3imp 1110 | 1 ⊢ ((𝐽 ∈ Reg ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈) → ∃𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ⊆ wss 3887 ‘cfv 6433 Topctop 22042 clsccl 22169 Regcreg 22460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-reg 22467 |
This theorem is referenced by: regsep2 22527 regr1lem 22890 kqreglem1 22892 kqreglem2 22893 reghmph 22944 cnextcn 23218 |
Copyright terms: Public domain | W3C validator |