MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  regsep Structured version   Visualization version   GIF version

Theorem regsep 22838
Description: In a regular space, every neighborhood of a point contains a closed subneighborhood. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
regsep ((𝐽 ∈ Reg ∧ 𝑈𝐽𝐴𝑈) → ∃𝑥𝐽 (𝐴𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽   𝑥,𝑈

Proof of Theorem regsep
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isreg 22836 . . . 4 (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑦𝐽𝑧𝑦𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦)))
2 sseq2 4009 . . . . . . . 8 (𝑦 = 𝑈 → (((cls‘𝐽)‘𝑥) ⊆ 𝑦 ↔ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))
32anbi2d 630 . . . . . . 7 (𝑦 = 𝑈 → ((𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)))
43rexbidv 3179 . . . . . 6 (𝑦 = 𝑈 → (∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ ∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)))
54raleqbi1dv 3334 . . . . 5 (𝑦 = 𝑈 → (∀𝑧𝑦𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ ∀𝑧𝑈𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)))
65rspccv 3610 . . . 4 (∀𝑦𝐽𝑧𝑦𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) → (𝑈𝐽 → ∀𝑧𝑈𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)))
71, 6simplbiim 506 . . 3 (𝐽 ∈ Reg → (𝑈𝐽 → ∀𝑧𝑈𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)))
8 eleq1 2822 . . . . . 6 (𝑧 = 𝐴 → (𝑧𝑥𝐴𝑥))
98anbi1d 631 . . . . 5 (𝑧 = 𝐴 → ((𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈) ↔ (𝐴𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)))
109rexbidv 3179 . . . 4 (𝑧 = 𝐴 → (∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈) ↔ ∃𝑥𝐽 (𝐴𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)))
1110rspccv 3610 . . 3 (∀𝑧𝑈𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈) → (𝐴𝑈 → ∃𝑥𝐽 (𝐴𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)))
127, 11syl6 35 . 2 (𝐽 ∈ Reg → (𝑈𝐽 → (𝐴𝑈 → ∃𝑥𝐽 (𝐴𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))))
13123imp 1112 1 ((𝐽 ∈ Reg ∧ 𝑈𝐽𝐴𝑈) → ∃𝑥𝐽 (𝐴𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  wrex 3071  wss 3949  cfv 6544  Topctop 22395  clsccl 22522  Regcreg 22813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-reg 22820
This theorem is referenced by:  regsep2  22880  regr1lem  23243  kqreglem1  23245  kqreglem2  23246  reghmph  23297  cnextcn  23571
  Copyright terms: Public domain W3C validator