MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  regsep Structured version   Visualization version   GIF version

Theorem regsep 23358
Description: In a regular space, every neighborhood of a point contains a closed subneighborhood. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
regsep ((𝐽 ∈ Reg ∧ 𝑈𝐽𝐴𝑈) → ∃𝑥𝐽 (𝐴𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽   𝑥,𝑈

Proof of Theorem regsep
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isreg 23356 . . . 4 (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑦𝐽𝑧𝑦𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦)))
2 sseq2 4022 . . . . . . . 8 (𝑦 = 𝑈 → (((cls‘𝐽)‘𝑥) ⊆ 𝑦 ↔ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))
32anbi2d 630 . . . . . . 7 (𝑦 = 𝑈 → ((𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)))
43rexbidv 3177 . . . . . 6 (𝑦 = 𝑈 → (∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ ∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)))
54raleqbi1dv 3336 . . . . 5 (𝑦 = 𝑈 → (∀𝑧𝑦𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ ∀𝑧𝑈𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)))
65rspccv 3619 . . . 4 (∀𝑦𝐽𝑧𝑦𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) → (𝑈𝐽 → ∀𝑧𝑈𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)))
71, 6simplbiim 504 . . 3 (𝐽 ∈ Reg → (𝑈𝐽 → ∀𝑧𝑈𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)))
8 eleq1 2827 . . . . . 6 (𝑧 = 𝐴 → (𝑧𝑥𝐴𝑥))
98anbi1d 631 . . . . 5 (𝑧 = 𝐴 → ((𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈) ↔ (𝐴𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)))
109rexbidv 3177 . . . 4 (𝑧 = 𝐴 → (∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈) ↔ ∃𝑥𝐽 (𝐴𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)))
1110rspccv 3619 . . 3 (∀𝑧𝑈𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈) → (𝐴𝑈 → ∃𝑥𝐽 (𝐴𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)))
127, 11syl6 35 . 2 (𝐽 ∈ Reg → (𝑈𝐽 → (𝐴𝑈 → ∃𝑥𝐽 (𝐴𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))))
13123imp 1110 1 ((𝐽 ∈ Reg ∧ 𝑈𝐽𝐴𝑈) → ∃𝑥𝐽 (𝐴𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  wss 3963  cfv 6563  Topctop 22915  clsccl 23042  Regcreg 23333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-reg 23340
This theorem is referenced by:  regsep2  23400  regr1lem  23763  kqreglem1  23765  kqreglem2  23766  reghmph  23817  cnextcn  24091
  Copyright terms: Public domain W3C validator