Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > regsep | Structured version Visualization version GIF version |
Description: In a regular space, every neighborhood of a point contains a closed subneighborhood. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
regsep | ⊢ ((𝐽 ∈ Reg ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈) → ∃𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isreg 22391 | . . . 4 ⊢ (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝐽 ∀𝑧 ∈ 𝑦 ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦))) | |
2 | sseq2 3943 | . . . . . . . 8 ⊢ (𝑦 = 𝑈 → (((cls‘𝐽)‘𝑥) ⊆ 𝑦 ↔ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)) | |
3 | 2 | anbi2d 628 | . . . . . . 7 ⊢ (𝑦 = 𝑈 → ((𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
4 | 3 | rexbidv 3225 | . . . . . 6 ⊢ (𝑦 = 𝑈 → (∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
5 | 4 | raleqbi1dv 3331 | . . . . 5 ⊢ (𝑦 = 𝑈 → (∀𝑧 ∈ 𝑦 ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ ∀𝑧 ∈ 𝑈 ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
6 | 5 | rspccv 3549 | . . . 4 ⊢ (∀𝑦 ∈ 𝐽 ∀𝑧 ∈ 𝑦 ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) → (𝑈 ∈ 𝐽 → ∀𝑧 ∈ 𝑈 ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
7 | 1, 6 | simplbiim 504 | . . 3 ⊢ (𝐽 ∈ Reg → (𝑈 ∈ 𝐽 → ∀𝑧 ∈ 𝑈 ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
8 | eleq1 2826 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (𝑧 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
9 | 8 | anbi1d 629 | . . . . 5 ⊢ (𝑧 = 𝐴 → ((𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈) ↔ (𝐴 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
10 | 9 | rexbidv 3225 | . . . 4 ⊢ (𝑧 = 𝐴 → (∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈) ↔ ∃𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
11 | 10 | rspccv 3549 | . . 3 ⊢ (∀𝑧 ∈ 𝑈 ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈) → (𝐴 ∈ 𝑈 → ∃𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
12 | 7, 11 | syl6 35 | . 2 ⊢ (𝐽 ∈ Reg → (𝑈 ∈ 𝐽 → (𝐴 ∈ 𝑈 → ∃𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)))) |
13 | 12 | 3imp 1109 | 1 ⊢ ((𝐽 ∈ Reg ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈) → ∃𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 ‘cfv 6418 Topctop 21950 clsccl 22077 Regcreg 22368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-reg 22375 |
This theorem is referenced by: regsep2 22435 regr1lem 22798 kqreglem1 22800 kqreglem2 22801 reghmph 22852 cnextcn 23126 |
Copyright terms: Public domain | W3C validator |