![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > regr1 | Structured version Visualization version GIF version |
Description: A regular space is R1, which means that any two topologically distinct points can be separated by neighborhoods. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
regr1 | ⊢ (𝐽 ∈ Reg → (KQ‘𝐽) ∈ Haus) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | regtop 21509 | . . 3 ⊢ (𝐽 ∈ Reg → 𝐽 ∈ Top) | |
2 | eqid 2826 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
3 | 2 | toptopon 21093 | . . 3 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
4 | 1, 3 | sylib 210 | . 2 ⊢ (𝐽 ∈ Reg → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
5 | eqid 2826 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) = (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
6 | 5 | regr1lem2 21915 | . 2 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Haus) |
7 | 4, 6 | mpancom 681 | 1 ⊢ (𝐽 ∈ Reg → (KQ‘𝐽) ∈ Haus) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2166 {crab 3122 ∪ cuni 4659 ↦ cmpt 4953 ‘cfv 6124 Topctop 21069 TopOnctopon 21086 Hauscha 21484 Regcreg 21485 KQckq 21868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-ral 3123 df-rex 3124 df-reu 3125 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-iin 4744 df-br 4875 df-opab 4937 df-mpt 4954 df-id 5251 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-qtop 16521 df-top 21070 df-topon 21087 df-cld 21195 df-cls 21197 df-haus 21491 df-reg 21492 df-kq 21869 |
This theorem is referenced by: reghaus 22000 |
Copyright terms: Public domain | W3C validator |