MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  regr1 Structured version   Visualization version   GIF version

Theorem regr1 22950
Description: A regular space is R1, which means that any two topologically distinct points can be separated by neighborhoods. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
regr1 (𝐽 ∈ Reg → (KQ‘𝐽) ∈ Haus)

Proof of Theorem regr1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 regtop 22533 . . 3 (𝐽 ∈ Reg → 𝐽 ∈ Top)
2 toptopon2 22116 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
31, 2sylib 217 . 2 (𝐽 ∈ Reg → 𝐽 ∈ (TopOn‘ 𝐽))
4 eqid 2736 . . 3 (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})
54regr1lem2 22940 . 2 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Haus)
63, 5mpancom 686 1 (𝐽 ∈ Reg → (KQ‘𝐽) ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2104  {crab 3330   cuni 4844  cmpt 5164  cfv 6458  Topctop 22091  TopOnctopon 22108  Hauscha 22508  Regcreg 22509  KQckq 22893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3332  df-rab 3333  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-iin 4934  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-qtop 17267  df-top 22092  df-topon 22109  df-cld 22219  df-cls 22221  df-haus 22515  df-reg 22516  df-kq 22894
This theorem is referenced by:  reghaus  23025
  Copyright terms: Public domain W3C validator