MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  regr1 Structured version   Visualization version   GIF version

Theorem regr1 23665
Description: A regular space is R1, which means that any two topologically distinct points can be separated by neighborhoods. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
regr1 (𝐽 ∈ Reg → (KQ‘𝐽) ∈ Haus)

Proof of Theorem regr1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 regtop 23248 . . 3 (𝐽 ∈ Reg → 𝐽 ∈ Top)
2 toptopon2 22833 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
31, 2sylib 218 . 2 (𝐽 ∈ Reg → 𝐽 ∈ (TopOn‘ 𝐽))
4 eqid 2731 . . 3 (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})
54regr1lem2 23655 . 2 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Haus)
63, 5mpancom 688 1 (𝐽 ∈ Reg → (KQ‘𝐽) ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  {crab 3395   cuni 4856  cmpt 5170  cfv 6481  Topctop 22808  TopOnctopon 22825  Hauscha 23223  Regcreg 23224  KQckq 23608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-qtop 17411  df-top 22809  df-topon 22826  df-cld 22934  df-cls 22936  df-haus 23230  df-reg 23231  df-kq 23609
This theorem is referenced by:  reghaus  23740
  Copyright terms: Public domain W3C validator