Proof of Theorem regsep2
Step | Hyp | Ref
| Expression |
1 | | regtop 22392 |
. . . . . . 7
⊢ (𝐽 ∈ Reg → 𝐽 ∈ Top) |
2 | 1 | ad2antrr 722 |
. . . . . 6
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → 𝐽 ∈ Top) |
3 | | elssuni 4868 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐽 → 𝑦 ⊆ ∪ 𝐽) |
4 | | t1sep.1 |
. . . . . . . 8
⊢ 𝑋 = ∪
𝐽 |
5 | 3, 4 | sseqtrrdi 3968 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐽 → 𝑦 ⊆ 𝑋) |
6 | 5 | ad2antrl 724 |
. . . . . 6
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → 𝑦 ⊆ 𝑋) |
7 | 4 | clscld 22106 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝑋) → ((cls‘𝐽)‘𝑦) ∈ (Clsd‘𝐽)) |
8 | 2, 6, 7 | syl2anc 583 |
. . . . 5
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → ((cls‘𝐽)‘𝑦) ∈ (Clsd‘𝐽)) |
9 | 4 | cldopn 22090 |
. . . . 5
⊢
(((cls‘𝐽)‘𝑦) ∈ (Clsd‘𝐽) → (𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∈ 𝐽) |
10 | 8, 9 | syl 17 |
. . . 4
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → (𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∈ 𝐽) |
11 | | simprrr 778 |
. . . . 5
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)) |
12 | 4 | clsss3 22118 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝑋) → ((cls‘𝐽)‘𝑦) ⊆ 𝑋) |
13 | 2, 6, 12 | syl2anc 583 |
. . . . . 6
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → ((cls‘𝐽)‘𝑦) ⊆ 𝑋) |
14 | | simplr1 1213 |
. . . . . . 7
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → 𝐶 ∈ (Clsd‘𝐽)) |
15 | 4 | cldss 22088 |
. . . . . . 7
⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐶 ⊆ 𝑋) |
16 | 14, 15 | syl 17 |
. . . . . 6
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → 𝐶 ⊆ 𝑋) |
17 | | ssconb 4068 |
. . . . . 6
⊢
((((cls‘𝐽)‘𝑦) ⊆ 𝑋 ∧ 𝐶 ⊆ 𝑋) → (((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶) ↔ 𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦)))) |
18 | 13, 16, 17 | syl2anc 583 |
. . . . 5
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → (((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶) ↔ 𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦)))) |
19 | 11, 18 | mpbid 231 |
. . . 4
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → 𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦))) |
20 | | simprrl 777 |
. . . 4
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → 𝐴 ∈ 𝑦) |
21 | 4 | sscls 22115 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝑋) → 𝑦 ⊆ ((cls‘𝐽)‘𝑦)) |
22 | 2, 6, 21 | syl2anc 583 |
. . . . . 6
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → 𝑦 ⊆ ((cls‘𝐽)‘𝑦)) |
23 | | sslin 4165 |
. . . . . 6
⊢ (𝑦 ⊆ ((cls‘𝐽)‘𝑦) → ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) ⊆ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦))) |
24 | 22, 23 | syl 17 |
. . . . 5
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) ⊆ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦))) |
25 | | disjdifr 4403 |
. . . . 5
⊢ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)) = ∅ |
26 | | sseq0 4330 |
. . . . 5
⊢ ((((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) ⊆ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)) ∧ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)) = ∅) → ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅) |
27 | 24, 25, 26 | sylancl 585 |
. . . 4
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅) |
28 | | sseq2 3943 |
. . . . . 6
⊢ (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑦)) → (𝐶 ⊆ 𝑥 ↔ 𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦)))) |
29 | | ineq1 4136 |
. . . . . . 7
⊢ (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑦)) → (𝑥 ∩ 𝑦) = ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦)) |
30 | 29 | eqeq1d 2740 |
. . . . . 6
⊢ (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑦)) → ((𝑥 ∩ 𝑦) = ∅ ↔ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅)) |
31 | 28, 30 | 3anbi13d 1436 |
. . . . 5
⊢ (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑦)) → ((𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅) ↔ (𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∧ 𝐴 ∈ 𝑦 ∧ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅))) |
32 | 31 | rspcev 3552 |
. . . 4
⊢ (((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∈ 𝐽 ∧ (𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∧ 𝐴 ∈ 𝑦 ∧ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅)) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) |
33 | 10, 19, 20, 27, 32 | syl13anc 1370 |
. . 3
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) |
34 | | simpl 482 |
. . . 4
⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → 𝐽 ∈ Reg) |
35 | | simpr1 1192 |
. . . . 5
⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → 𝐶 ∈ (Clsd‘𝐽)) |
36 | 4 | cldopn 22090 |
. . . . 5
⊢ (𝐶 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝐶) ∈ 𝐽) |
37 | 35, 36 | syl 17 |
. . . 4
⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → (𝑋 ∖ 𝐶) ∈ 𝐽) |
38 | | simpr2 1193 |
. . . . 5
⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → 𝐴 ∈ 𝑋) |
39 | | simpr3 1194 |
. . . . 5
⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → ¬ 𝐴 ∈ 𝐶) |
40 | 38, 39 | eldifd 3894 |
. . . 4
⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → 𝐴 ∈ (𝑋 ∖ 𝐶)) |
41 | | regsep 22393 |
. . . 4
⊢ ((𝐽 ∈ Reg ∧ (𝑋 ∖ 𝐶) ∈ 𝐽 ∧ 𝐴 ∈ (𝑋 ∖ 𝐶)) → ∃𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶))) |
42 | 34, 37, 40, 41 | syl3anc 1369 |
. . 3
⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → ∃𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶))) |
43 | 33, 42 | reximddv 3203 |
. 2
⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → ∃𝑦 ∈ 𝐽 ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) |
44 | | rexcom 3281 |
. 2
⊢
(∃𝑦 ∈
𝐽 ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅) ↔ ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) |
45 | 43, 44 | sylib 217 |
1
⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) |