MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  regsep2 Structured version   Visualization version   GIF version

Theorem regsep2 23284
Description: In a regular space, a closed set is separated by open sets from a point not in it. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
t1sep.1 𝑋 = 𝐽
Assertion
Ref Expression
regsep2 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐶,𝑦   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦

Proof of Theorem regsep2
StepHypRef Expression
1 regtop 23241 . . . . . . 7 (𝐽 ∈ Reg → 𝐽 ∈ Top)
21ad2antrr 726 . . . . . 6 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → 𝐽 ∈ Top)
3 elssuni 4887 . . . . . . . 8 (𝑦𝐽𝑦 𝐽)
4 t1sep.1 . . . . . . . 8 𝑋 = 𝐽
53, 4sseqtrrdi 3974 . . . . . . 7 (𝑦𝐽𝑦𝑋)
65ad2antrl 728 . . . . . 6 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → 𝑦𝑋)
74clscld 22955 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑦𝑋) → ((cls‘𝐽)‘𝑦) ∈ (Clsd‘𝐽))
82, 6, 7syl2anc 584 . . . . 5 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → ((cls‘𝐽)‘𝑦) ∈ (Clsd‘𝐽))
94cldopn 22939 . . . . 5 (((cls‘𝐽)‘𝑦) ∈ (Clsd‘𝐽) → (𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∈ 𝐽)
108, 9syl 17 . . . 4 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → (𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∈ 𝐽)
11 simprrr 781 . . . . 5 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶))
124clsss3 22967 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑦𝑋) → ((cls‘𝐽)‘𝑦) ⊆ 𝑋)
132, 6, 12syl2anc 584 . . . . . 6 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → ((cls‘𝐽)‘𝑦) ⊆ 𝑋)
14 simplr1 1216 . . . . . . 7 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → 𝐶 ∈ (Clsd‘𝐽))
154cldss 22937 . . . . . . 7 (𝐶 ∈ (Clsd‘𝐽) → 𝐶𝑋)
1614, 15syl 17 . . . . . 6 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → 𝐶𝑋)
17 ssconb 4090 . . . . . 6 ((((cls‘𝐽)‘𝑦) ⊆ 𝑋𝐶𝑋) → (((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶) ↔ 𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦))))
1813, 16, 17syl2anc 584 . . . . 5 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → (((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶) ↔ 𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦))))
1911, 18mpbid 232 . . . 4 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → 𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦)))
20 simprrl 780 . . . 4 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → 𝐴𝑦)
214sscls 22964 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑦𝑋) → 𝑦 ⊆ ((cls‘𝐽)‘𝑦))
222, 6, 21syl2anc 584 . . . . . 6 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → 𝑦 ⊆ ((cls‘𝐽)‘𝑦))
23 sslin 4191 . . . . . 6 (𝑦 ⊆ ((cls‘𝐽)‘𝑦) → ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) ⊆ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)))
2422, 23syl 17 . . . . 5 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) ⊆ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)))
25 disjdifr 4421 . . . . 5 ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)) = ∅
26 sseq0 4351 . . . . 5 ((((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) ⊆ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)) ∧ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)) = ∅) → ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅)
2724, 25, 26sylancl 586 . . . 4 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅)
28 sseq2 3959 . . . . . 6 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑦)) → (𝐶𝑥𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦))))
29 ineq1 4161 . . . . . . 7 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑦)) → (𝑥𝑦) = ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦))
3029eqeq1d 2732 . . . . . 6 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑦)) → ((𝑥𝑦) = ∅ ↔ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅))
3128, 303anbi13d 1440 . . . . 5 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑦)) → ((𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅) ↔ (𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∧ 𝐴𝑦 ∧ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅)))
3231rspcev 3575 . . . 4 (((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∈ 𝐽 ∧ (𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∧ 𝐴𝑦 ∧ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅)) → ∃𝑥𝐽 (𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅))
3310, 19, 20, 27, 32syl13anc 1374 . . 3 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → ∃𝑥𝐽 (𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅))
34 simpl 482 . . . 4 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → 𝐽 ∈ Reg)
35 simpr1 1195 . . . . 5 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → 𝐶 ∈ (Clsd‘𝐽))
364cldopn 22939 . . . . 5 (𝐶 ∈ (Clsd‘𝐽) → (𝑋𝐶) ∈ 𝐽)
3735, 36syl 17 . . . 4 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → (𝑋𝐶) ∈ 𝐽)
38 simpr2 1196 . . . . 5 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → 𝐴𝑋)
39 simpr3 1197 . . . . 5 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → ¬ 𝐴𝐶)
4038, 39eldifd 3911 . . . 4 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → 𝐴 ∈ (𝑋𝐶))
41 regsep 23242 . . . 4 ((𝐽 ∈ Reg ∧ (𝑋𝐶) ∈ 𝐽𝐴 ∈ (𝑋𝐶)) → ∃𝑦𝐽 (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))
4234, 37, 40, 41syl3anc 1373 . . 3 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → ∃𝑦𝐽 (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))
4333, 42reximddv 3146 . 2 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → ∃𝑦𝐽𝑥𝐽 (𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅))
44 rexcom 3259 . 2 (∃𝑦𝐽𝑥𝐽 (𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅) ↔ ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅))
4543, 44sylib 218 1 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wrex 3054  cdif 3897  cin 3899  wss 3900  c0 4281   cuni 4857  cfv 6477  Topctop 22801  Clsdccld 22924  clsccl 22926  Regcreg 23217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-top 22802  df-cld 22927  df-cls 22929  df-reg 23224
This theorem is referenced by:  isreg2  23285
  Copyright terms: Public domain W3C validator