MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  regsep2 Structured version   Visualization version   GIF version

Theorem regsep2 23297
Description: In a regular space, a closed set is separated by open sets from a point not in it. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
t1sep.1 𝑋 = 𝐽
Assertion
Ref Expression
regsep2 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐶,𝑦   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦

Proof of Theorem regsep2
StepHypRef Expression
1 regtop 23254 . . . . . . 7 (𝐽 ∈ Reg → 𝐽 ∈ Top)
21ad2antrr 726 . . . . . 6 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → 𝐽 ∈ Top)
3 elssuni 4889 . . . . . . . 8 (𝑦𝐽𝑦 𝐽)
4 t1sep.1 . . . . . . . 8 𝑋 = 𝐽
53, 4sseqtrrdi 3971 . . . . . . 7 (𝑦𝐽𝑦𝑋)
65ad2antrl 728 . . . . . 6 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → 𝑦𝑋)
74clscld 22968 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑦𝑋) → ((cls‘𝐽)‘𝑦) ∈ (Clsd‘𝐽))
82, 6, 7syl2anc 584 . . . . 5 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → ((cls‘𝐽)‘𝑦) ∈ (Clsd‘𝐽))
94cldopn 22952 . . . . 5 (((cls‘𝐽)‘𝑦) ∈ (Clsd‘𝐽) → (𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∈ 𝐽)
108, 9syl 17 . . . 4 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → (𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∈ 𝐽)
11 simprrr 781 . . . . 5 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶))
124clsss3 22980 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑦𝑋) → ((cls‘𝐽)‘𝑦) ⊆ 𝑋)
132, 6, 12syl2anc 584 . . . . . 6 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → ((cls‘𝐽)‘𝑦) ⊆ 𝑋)
14 simplr1 1216 . . . . . . 7 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → 𝐶 ∈ (Clsd‘𝐽))
154cldss 22950 . . . . . . 7 (𝐶 ∈ (Clsd‘𝐽) → 𝐶𝑋)
1614, 15syl 17 . . . . . 6 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → 𝐶𝑋)
17 ssconb 4091 . . . . . 6 ((((cls‘𝐽)‘𝑦) ⊆ 𝑋𝐶𝑋) → (((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶) ↔ 𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦))))
1813, 16, 17syl2anc 584 . . . . 5 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → (((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶) ↔ 𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦))))
1911, 18mpbid 232 . . . 4 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → 𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦)))
20 simprrl 780 . . . 4 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → 𝐴𝑦)
214sscls 22977 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑦𝑋) → 𝑦 ⊆ ((cls‘𝐽)‘𝑦))
222, 6, 21syl2anc 584 . . . . . 6 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → 𝑦 ⊆ ((cls‘𝐽)‘𝑦))
23 sslin 4192 . . . . . 6 (𝑦 ⊆ ((cls‘𝐽)‘𝑦) → ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) ⊆ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)))
2422, 23syl 17 . . . . 5 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) ⊆ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)))
25 disjdifr 4422 . . . . 5 ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)) = ∅
26 sseq0 4352 . . . . 5 ((((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) ⊆ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)) ∧ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)) = ∅) → ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅)
2724, 25, 26sylancl 586 . . . 4 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅)
28 sseq2 3956 . . . . . 6 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑦)) → (𝐶𝑥𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦))))
29 ineq1 4162 . . . . . . 7 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑦)) → (𝑥𝑦) = ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦))
3029eqeq1d 2733 . . . . . 6 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑦)) → ((𝑥𝑦) = ∅ ↔ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅))
3128, 303anbi13d 1440 . . . . 5 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑦)) → ((𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅) ↔ (𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∧ 𝐴𝑦 ∧ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅)))
3231rspcev 3572 . . . 4 (((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∈ 𝐽 ∧ (𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∧ 𝐴𝑦 ∧ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅)) → ∃𝑥𝐽 (𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅))
3310, 19, 20, 27, 32syl13anc 1374 . . 3 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → ∃𝑥𝐽 (𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅))
34 simpl 482 . . . 4 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → 𝐽 ∈ Reg)
35 simpr1 1195 . . . . 5 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → 𝐶 ∈ (Clsd‘𝐽))
364cldopn 22952 . . . . 5 (𝐶 ∈ (Clsd‘𝐽) → (𝑋𝐶) ∈ 𝐽)
3735, 36syl 17 . . . 4 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → (𝑋𝐶) ∈ 𝐽)
38 simpr2 1196 . . . . 5 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → 𝐴𝑋)
39 simpr3 1197 . . . . 5 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → ¬ 𝐴𝐶)
4038, 39eldifd 3908 . . . 4 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → 𝐴 ∈ (𝑋𝐶))
41 regsep 23255 . . . 4 ((𝐽 ∈ Reg ∧ (𝑋𝐶) ∈ 𝐽𝐴 ∈ (𝑋𝐶)) → ∃𝑦𝐽 (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))
4234, 37, 40, 41syl3anc 1373 . . 3 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → ∃𝑦𝐽 (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))
4333, 42reximddv 3148 . 2 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → ∃𝑦𝐽𝑥𝐽 (𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅))
44 rexcom 3261 . 2 (∃𝑦𝐽𝑥𝐽 (𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅) ↔ ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅))
4543, 44sylib 218 1 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  cdif 3894  cin 3896  wss 3897  c0 4282   cuni 4858  cfv 6487  Topctop 22814  Clsdccld 22937  clsccl 22939  Regcreg 23230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-top 22815  df-cld 22940  df-cls 22942  df-reg 23237
This theorem is referenced by:  isreg2  23298
  Copyright terms: Public domain W3C validator