MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  regsep2 Structured version   Visualization version   GIF version

Theorem regsep2 21981
Description: In a regular space, a closed set is separated by open sets from a point not in it. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
t1sep.1 𝑋 = 𝐽
Assertion
Ref Expression
regsep2 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐶,𝑦   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦

Proof of Theorem regsep2
StepHypRef Expression
1 regtop 21938 . . . . . . 7 (𝐽 ∈ Reg → 𝐽 ∈ Top)
21ad2antrr 725 . . . . . 6 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → 𝐽 ∈ Top)
3 elssuni 4830 . . . . . . . 8 (𝑦𝐽𝑦 𝐽)
4 t1sep.1 . . . . . . . 8 𝑋 = 𝐽
53, 4sseqtrrdi 3966 . . . . . . 7 (𝑦𝐽𝑦𝑋)
65ad2antrl 727 . . . . . 6 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → 𝑦𝑋)
74clscld 21652 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑦𝑋) → ((cls‘𝐽)‘𝑦) ∈ (Clsd‘𝐽))
82, 6, 7syl2anc 587 . . . . 5 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → ((cls‘𝐽)‘𝑦) ∈ (Clsd‘𝐽))
94cldopn 21636 . . . . 5 (((cls‘𝐽)‘𝑦) ∈ (Clsd‘𝐽) → (𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∈ 𝐽)
108, 9syl 17 . . . 4 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → (𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∈ 𝐽)
11 simprrr 781 . . . . 5 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶))
124clsss3 21664 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑦𝑋) → ((cls‘𝐽)‘𝑦) ⊆ 𝑋)
132, 6, 12syl2anc 587 . . . . . 6 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → ((cls‘𝐽)‘𝑦) ⊆ 𝑋)
14 simplr1 1212 . . . . . . 7 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → 𝐶 ∈ (Clsd‘𝐽))
154cldss 21634 . . . . . . 7 (𝐶 ∈ (Clsd‘𝐽) → 𝐶𝑋)
1614, 15syl 17 . . . . . 6 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → 𝐶𝑋)
17 ssconb 4065 . . . . . 6 ((((cls‘𝐽)‘𝑦) ⊆ 𝑋𝐶𝑋) → (((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶) ↔ 𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦))))
1813, 16, 17syl2anc 587 . . . . 5 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → (((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶) ↔ 𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦))))
1911, 18mpbid 235 . . . 4 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → 𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦)))
20 simprrl 780 . . . 4 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → 𝐴𝑦)
214sscls 21661 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑦𝑋) → 𝑦 ⊆ ((cls‘𝐽)‘𝑦))
222, 6, 21syl2anc 587 . . . . . 6 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → 𝑦 ⊆ ((cls‘𝐽)‘𝑦))
23 sslin 4161 . . . . . 6 (𝑦 ⊆ ((cls‘𝐽)‘𝑦) → ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) ⊆ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)))
2422, 23syl 17 . . . . 5 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) ⊆ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)))
25 incom 4128 . . . . . 6 ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)) = (((cls‘𝐽)‘𝑦) ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑦)))
26 disjdif 4379 . . . . . 6 (((cls‘𝐽)‘𝑦) ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑦))) = ∅
2725, 26eqtri 2821 . . . . 5 ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)) = ∅
28 sseq0 4307 . . . . 5 ((((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) ⊆ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)) ∧ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)) = ∅) → ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅)
2924, 27, 28sylancl 589 . . . 4 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅)
30 sseq2 3941 . . . . . 6 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑦)) → (𝐶𝑥𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦))))
31 ineq1 4131 . . . . . . 7 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑦)) → (𝑥𝑦) = ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦))
3231eqeq1d 2800 . . . . . 6 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑦)) → ((𝑥𝑦) = ∅ ↔ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅))
3330, 323anbi13d 1435 . . . . 5 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑦)) → ((𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅) ↔ (𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∧ 𝐴𝑦 ∧ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅)))
3433rspcev 3571 . . . 4 (((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∈ 𝐽 ∧ (𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∧ 𝐴𝑦 ∧ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅)) → ∃𝑥𝐽 (𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅))
3510, 19, 20, 29, 34syl13anc 1369 . . 3 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → ∃𝑥𝐽 (𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅))
36 simpl 486 . . . 4 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → 𝐽 ∈ Reg)
37 simpr1 1191 . . . . 5 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → 𝐶 ∈ (Clsd‘𝐽))
384cldopn 21636 . . . . 5 (𝐶 ∈ (Clsd‘𝐽) → (𝑋𝐶) ∈ 𝐽)
3937, 38syl 17 . . . 4 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → (𝑋𝐶) ∈ 𝐽)
40 simpr2 1192 . . . . 5 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → 𝐴𝑋)
41 simpr3 1193 . . . . 5 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → ¬ 𝐴𝐶)
4240, 41eldifd 3892 . . . 4 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → 𝐴 ∈ (𝑋𝐶))
43 regsep 21939 . . . 4 ((𝐽 ∈ Reg ∧ (𝑋𝐶) ∈ 𝐽𝐴 ∈ (𝑋𝐶)) → ∃𝑦𝐽 (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))
4436, 39, 42, 43syl3anc 1368 . . 3 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → ∃𝑦𝐽 (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))
4535, 44reximddv 3234 . 2 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → ∃𝑦𝐽𝑥𝐽 (𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅))
46 rexcom 3308 . 2 (∃𝑦𝐽𝑥𝐽 (𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅) ↔ ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅))
4745, 46sylib 221 1 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3107  cdif 3878  cin 3880  wss 3881  c0 4243   cuni 4800  cfv 6324  Topctop 21498  Clsdccld 21621  clsccl 21623  Regcreg 21914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-top 21499  df-cld 21624  df-cls 21626  df-reg 21921
This theorem is referenced by:  isreg2  21982
  Copyright terms: Public domain W3C validator