MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  regsep2 Structured version   Visualization version   GIF version

Theorem regsep2 23270
Description: In a regular space, a closed set is separated by open sets from a point not in it. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
t1sep.1 𝑋 = 𝐽
Assertion
Ref Expression
regsep2 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐶,𝑦   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦

Proof of Theorem regsep2
StepHypRef Expression
1 regtop 23227 . . . . . . 7 (𝐽 ∈ Reg → 𝐽 ∈ Top)
21ad2antrr 726 . . . . . 6 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → 𝐽 ∈ Top)
3 elssuni 4904 . . . . . . . 8 (𝑦𝐽𝑦 𝐽)
4 t1sep.1 . . . . . . . 8 𝑋 = 𝐽
53, 4sseqtrrdi 3991 . . . . . . 7 (𝑦𝐽𝑦𝑋)
65ad2antrl 728 . . . . . 6 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → 𝑦𝑋)
74clscld 22941 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑦𝑋) → ((cls‘𝐽)‘𝑦) ∈ (Clsd‘𝐽))
82, 6, 7syl2anc 584 . . . . 5 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → ((cls‘𝐽)‘𝑦) ∈ (Clsd‘𝐽))
94cldopn 22925 . . . . 5 (((cls‘𝐽)‘𝑦) ∈ (Clsd‘𝐽) → (𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∈ 𝐽)
108, 9syl 17 . . . 4 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → (𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∈ 𝐽)
11 simprrr 781 . . . . 5 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶))
124clsss3 22953 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑦𝑋) → ((cls‘𝐽)‘𝑦) ⊆ 𝑋)
132, 6, 12syl2anc 584 . . . . . 6 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → ((cls‘𝐽)‘𝑦) ⊆ 𝑋)
14 simplr1 1216 . . . . . . 7 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → 𝐶 ∈ (Clsd‘𝐽))
154cldss 22923 . . . . . . 7 (𝐶 ∈ (Clsd‘𝐽) → 𝐶𝑋)
1614, 15syl 17 . . . . . 6 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → 𝐶𝑋)
17 ssconb 4108 . . . . . 6 ((((cls‘𝐽)‘𝑦) ⊆ 𝑋𝐶𝑋) → (((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶) ↔ 𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦))))
1813, 16, 17syl2anc 584 . . . . 5 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → (((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶) ↔ 𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦))))
1911, 18mpbid 232 . . . 4 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → 𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦)))
20 simprrl 780 . . . 4 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → 𝐴𝑦)
214sscls 22950 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑦𝑋) → 𝑦 ⊆ ((cls‘𝐽)‘𝑦))
222, 6, 21syl2anc 584 . . . . . 6 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → 𝑦 ⊆ ((cls‘𝐽)‘𝑦))
23 sslin 4209 . . . . . 6 (𝑦 ⊆ ((cls‘𝐽)‘𝑦) → ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) ⊆ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)))
2422, 23syl 17 . . . . 5 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) ⊆ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)))
25 disjdifr 4439 . . . . 5 ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)) = ∅
26 sseq0 4369 . . . . 5 ((((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) ⊆ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)) ∧ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)) = ∅) → ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅)
2724, 25, 26sylancl 586 . . . 4 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅)
28 sseq2 3976 . . . . . 6 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑦)) → (𝐶𝑥𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦))))
29 ineq1 4179 . . . . . . 7 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑦)) → (𝑥𝑦) = ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦))
3029eqeq1d 2732 . . . . . 6 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑦)) → ((𝑥𝑦) = ∅ ↔ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅))
3128, 303anbi13d 1440 . . . . 5 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑦)) → ((𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅) ↔ (𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∧ 𝐴𝑦 ∧ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅)))
3231rspcev 3591 . . . 4 (((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∈ 𝐽 ∧ (𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∧ 𝐴𝑦 ∧ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅)) → ∃𝑥𝐽 (𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅))
3310, 19, 20, 27, 32syl13anc 1374 . . 3 (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) ∧ (𝑦𝐽 ∧ (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))) → ∃𝑥𝐽 (𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅))
34 simpl 482 . . . 4 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → 𝐽 ∈ Reg)
35 simpr1 1195 . . . . 5 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → 𝐶 ∈ (Clsd‘𝐽))
364cldopn 22925 . . . . 5 (𝐶 ∈ (Clsd‘𝐽) → (𝑋𝐶) ∈ 𝐽)
3735, 36syl 17 . . . 4 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → (𝑋𝐶) ∈ 𝐽)
38 simpr2 1196 . . . . 5 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → 𝐴𝑋)
39 simpr3 1197 . . . . 5 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → ¬ 𝐴𝐶)
4038, 39eldifd 3928 . . . 4 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → 𝐴 ∈ (𝑋𝐶))
41 regsep 23228 . . . 4 ((𝐽 ∈ Reg ∧ (𝑋𝐶) ∈ 𝐽𝐴 ∈ (𝑋𝐶)) → ∃𝑦𝐽 (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))
4234, 37, 40, 41syl3anc 1373 . . 3 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → ∃𝑦𝐽 (𝐴𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋𝐶)))
4333, 42reximddv 3150 . 2 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → ∃𝑦𝐽𝑥𝐽 (𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅))
44 rexcom 3267 . 2 (∃𝑦𝐽𝑥𝐽 (𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅) ↔ ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅))
4543, 44sylib 218 1 ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴𝑋 ∧ ¬ 𝐴𝐶)) → ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐴𝑦 ∧ (𝑥𝑦) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3054  cdif 3914  cin 3916  wss 3917  c0 4299   cuni 4874  cfv 6514  Topctop 22787  Clsdccld 22910  clsccl 22912  Regcreg 23203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-top 22788  df-cld 22913  df-cls 22915  df-reg 23210
This theorem is referenced by:  isreg2  23271
  Copyright terms: Public domain W3C validator