MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqreg Structured version   Visualization version   GIF version

Theorem kqreg 23659
Description: The Kolmogorov quotient of a regular space is regular. By regr1 23658 it is also Hausdorff, so we can also say that a space is regular iff the Kolmogorov quotient is regular Hausdorff (T3). (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
kqreg (𝐽 ∈ Reg ↔ (KQ‘𝐽) ∈ Reg)

Proof of Theorem kqreg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 regtop 23241 . . . 4 (𝐽 ∈ Reg → 𝐽 ∈ Top)
2 toptopon2 22826 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
31, 2sylib 218 . . 3 (𝐽 ∈ Reg → 𝐽 ∈ (TopOn‘ 𝐽))
4 eqid 2730 . . . 4 (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})
54kqreglem1 23649 . . 3 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Reg)
63, 5mpancom 688 . 2 (𝐽 ∈ Reg → (KQ‘𝐽) ∈ Reg)
7 regtop 23241 . . . . 5 ((KQ‘𝐽) ∈ Reg → (KQ‘𝐽) ∈ Top)
8 kqtop 23653 . . . . 5 (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top)
97, 8sylibr 234 . . . 4 ((KQ‘𝐽) ∈ Reg → 𝐽 ∈ Top)
109, 2sylib 218 . . 3 ((KQ‘𝐽) ∈ Reg → 𝐽 ∈ (TopOn‘ 𝐽))
114kqreglem2 23650 . . 3 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ (KQ‘𝐽) ∈ Reg) → 𝐽 ∈ Reg)
1210, 11mpancom 688 . 2 ((KQ‘𝐽) ∈ Reg → 𝐽 ∈ Reg)
136, 12impbii 209 1 (𝐽 ∈ Reg ↔ (KQ‘𝐽) ∈ Reg)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2110  {crab 3393   cuni 4857  cmpt 5170  cfv 6477  Topctop 22801  TopOnctopon 22818  Regcreg 23217  KQckq 23601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-map 8747  df-qtop 17403  df-top 22802  df-topon 22819  df-cld 22927  df-cls 22929  df-cn 23135  df-reg 23224  df-kq 23602
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator