MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqreg Structured version   Visualization version   GIF version

Theorem kqreg 22810
Description: The Kolmogorov quotient of a regular space is regular. By regr1 22809 it is also Hausdorff, so we can also say that a space is regular iff the Kolmogorov quotient is regular Hausdorff (T3). (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
kqreg (𝐽 ∈ Reg ↔ (KQ‘𝐽) ∈ Reg)

Proof of Theorem kqreg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 regtop 22392 . . . 4 (𝐽 ∈ Reg → 𝐽 ∈ Top)
2 toptopon2 21975 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
31, 2sylib 217 . . 3 (𝐽 ∈ Reg → 𝐽 ∈ (TopOn‘ 𝐽))
4 eqid 2738 . . . 4 (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})
54kqreglem1 22800 . . 3 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Reg)
63, 5mpancom 684 . 2 (𝐽 ∈ Reg → (KQ‘𝐽) ∈ Reg)
7 regtop 22392 . . . . 5 ((KQ‘𝐽) ∈ Reg → (KQ‘𝐽) ∈ Top)
8 kqtop 22804 . . . . 5 (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top)
97, 8sylibr 233 . . . 4 ((KQ‘𝐽) ∈ Reg → 𝐽 ∈ Top)
109, 2sylib 217 . . 3 ((KQ‘𝐽) ∈ Reg → 𝐽 ∈ (TopOn‘ 𝐽))
114kqreglem2 22801 . . 3 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ (KQ‘𝐽) ∈ Reg) → 𝐽 ∈ Reg)
1210, 11mpancom 684 . 2 ((KQ‘𝐽) ∈ Reg → 𝐽 ∈ Reg)
136, 12impbii 208 1 (𝐽 ∈ Reg ↔ (KQ‘𝐽) ∈ Reg)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2108  {crab 3067   cuni 4836  cmpt 5153  cfv 6418  Topctop 21950  TopOnctopon 21967  Regcreg 22368  KQckq 22752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-qtop 17135  df-top 21951  df-topon 21968  df-cld 22078  df-cls 22080  df-cn 22286  df-reg 22375  df-kq 22753
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator