Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > kqreg | Structured version Visualization version GIF version |
Description: The Kolmogorov quotient of a regular space is regular. By regr1 22899 it is also Hausdorff, so we can also say that a space is regular iff the Kolmogorov quotient is regular Hausdorff (T3). (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqreg | ⊢ (𝐽 ∈ Reg ↔ (KQ‘𝐽) ∈ Reg) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | regtop 22482 | . . . 4 ⊢ (𝐽 ∈ Reg → 𝐽 ∈ Top) | |
2 | toptopon2 22065 | . . . 4 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
3 | 1, 2 | sylib 217 | . . 3 ⊢ (𝐽 ∈ Reg → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
4 | eqid 2740 | . . . 4 ⊢ (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) = (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
5 | 4 | kqreglem1 22890 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Reg) |
6 | 3, 5 | mpancom 685 | . 2 ⊢ (𝐽 ∈ Reg → (KQ‘𝐽) ∈ Reg) |
7 | regtop 22482 | . . . . 5 ⊢ ((KQ‘𝐽) ∈ Reg → (KQ‘𝐽) ∈ Top) | |
8 | kqtop 22894 | . . . . 5 ⊢ (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top) | |
9 | 7, 8 | sylibr 233 | . . . 4 ⊢ ((KQ‘𝐽) ∈ Reg → 𝐽 ∈ Top) |
10 | 9, 2 | sylib 217 | . . 3 ⊢ ((KQ‘𝐽) ∈ Reg → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
11 | 4 | kqreglem2 22891 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ (KQ‘𝐽) ∈ Reg) → 𝐽 ∈ Reg) |
12 | 10, 11 | mpancom 685 | . 2 ⊢ ((KQ‘𝐽) ∈ Reg → 𝐽 ∈ Reg) |
13 | 6, 12 | impbii 208 | 1 ⊢ (𝐽 ∈ Reg ↔ (KQ‘𝐽) ∈ Reg) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2110 {crab 3070 ∪ cuni 4845 ↦ cmpt 5162 ‘cfv 6432 Topctop 22040 TopOnctopon 22057 Regcreg 22458 KQckq 22842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 df-map 8600 df-qtop 17216 df-top 22041 df-topon 22058 df-cld 22168 df-cls 22170 df-cn 22376 df-reg 22465 df-kq 22843 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |