| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kqreg | Structured version Visualization version GIF version | ||
| Description: The Kolmogorov quotient of a regular space is regular. By regr1 23658 it is also Hausdorff, so we can also say that a space is regular iff the Kolmogorov quotient is regular Hausdorff (T3). (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| kqreg | ⊢ (𝐽 ∈ Reg ↔ (KQ‘𝐽) ∈ Reg) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | regtop 23241 | . . . 4 ⊢ (𝐽 ∈ Reg → 𝐽 ∈ Top) | |
| 2 | toptopon2 22826 | . . . 4 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
| 3 | 1, 2 | sylib 218 | . . 3 ⊢ (𝐽 ∈ Reg → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 4 | eqid 2730 | . . . 4 ⊢ (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) = (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
| 5 | 4 | kqreglem1 23649 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Reg) |
| 6 | 3, 5 | mpancom 688 | . 2 ⊢ (𝐽 ∈ Reg → (KQ‘𝐽) ∈ Reg) |
| 7 | regtop 23241 | . . . . 5 ⊢ ((KQ‘𝐽) ∈ Reg → (KQ‘𝐽) ∈ Top) | |
| 8 | kqtop 23653 | . . . . 5 ⊢ (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top) | |
| 9 | 7, 8 | sylibr 234 | . . . 4 ⊢ ((KQ‘𝐽) ∈ Reg → 𝐽 ∈ Top) |
| 10 | 9, 2 | sylib 218 | . . 3 ⊢ ((KQ‘𝐽) ∈ Reg → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 11 | 4 | kqreglem2 23650 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ (KQ‘𝐽) ∈ Reg) → 𝐽 ∈ Reg) |
| 12 | 10, 11 | mpancom 688 | . 2 ⊢ ((KQ‘𝐽) ∈ Reg → 𝐽 ∈ Reg) |
| 13 | 6, 12 | impbii 209 | 1 ⊢ (𝐽 ∈ Reg ↔ (KQ‘𝐽) ∈ Reg) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2110 {crab 3393 ∪ cuni 4857 ↦ cmpt 5170 ‘cfv 6477 Topctop 22801 TopOnctopon 22818 Regcreg 23217 KQckq 23601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-map 8747 df-qtop 17403 df-top 22802 df-topon 22819 df-cld 22927 df-cls 22929 df-cn 23135 df-reg 23224 df-kq 23602 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |