MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqreg Structured version   Visualization version   GIF version

Theorem kqreg 23475
Description: The Kolmogorov quotient of a regular space is regular. By regr1 23474 it is also Hausdorff, so we can also say that a space is regular iff the Kolmogorov quotient is regular Hausdorff (T3). (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
kqreg (𝐽 ∈ Reg ↔ (KQβ€˜π½) ∈ Reg)

Proof of Theorem kqreg
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 regtop 23057 . . . 4 (𝐽 ∈ Reg β†’ 𝐽 ∈ Top)
2 toptopon2 22640 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽))
31, 2sylib 217 . . 3 (𝐽 ∈ Reg β†’ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽))
4 eqid 2732 . . . 4 (π‘₯ ∈ βˆͺ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ π‘₯ ∈ 𝑦}) = (π‘₯ ∈ βˆͺ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ π‘₯ ∈ 𝑦})
54kqreglem1 23465 . . 3 ((𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽) ∧ 𝐽 ∈ Reg) β†’ (KQβ€˜π½) ∈ Reg)
63, 5mpancom 686 . 2 (𝐽 ∈ Reg β†’ (KQβ€˜π½) ∈ Reg)
7 regtop 23057 . . . . 5 ((KQβ€˜π½) ∈ Reg β†’ (KQβ€˜π½) ∈ Top)
8 kqtop 23469 . . . . 5 (𝐽 ∈ Top ↔ (KQβ€˜π½) ∈ Top)
97, 8sylibr 233 . . . 4 ((KQβ€˜π½) ∈ Reg β†’ 𝐽 ∈ Top)
109, 2sylib 217 . . 3 ((KQβ€˜π½) ∈ Reg β†’ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽))
114kqreglem2 23466 . . 3 ((𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽) ∧ (KQβ€˜π½) ∈ Reg) β†’ 𝐽 ∈ Reg)
1210, 11mpancom 686 . 2 ((KQβ€˜π½) ∈ Reg β†’ 𝐽 ∈ Reg)
136, 12impbii 208 1 (𝐽 ∈ Reg ↔ (KQβ€˜π½) ∈ Reg)
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∈ wcel 2106  {crab 3432  βˆͺ cuni 4908   ↦ cmpt 5231  β€˜cfv 6543  Topctop 22615  TopOnctopon 22632  Regcreg 23033  KQckq 23417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-map 8824  df-qtop 17457  df-top 22616  df-topon 22633  df-cld 22743  df-cls 22745  df-cn 22951  df-reg 23040  df-kq 23418
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator