| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kqreg | Structured version Visualization version GIF version | ||
| Description: The Kolmogorov quotient of a regular space is regular. By regr1 23671 it is also Hausdorff, so we can also say that a space is regular iff the Kolmogorov quotient is regular Hausdorff (T3). (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| kqreg | ⊢ (𝐽 ∈ Reg ↔ (KQ‘𝐽) ∈ Reg) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | regtop 23254 | . . . 4 ⊢ (𝐽 ∈ Reg → 𝐽 ∈ Top) | |
| 2 | toptopon2 22839 | . . . 4 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
| 3 | 1, 2 | sylib 218 | . . 3 ⊢ (𝐽 ∈ Reg → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 4 | eqid 2731 | . . . 4 ⊢ (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) = (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
| 5 | 4 | kqreglem1 23662 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Reg) |
| 6 | 3, 5 | mpancom 688 | . 2 ⊢ (𝐽 ∈ Reg → (KQ‘𝐽) ∈ Reg) |
| 7 | regtop 23254 | . . . . 5 ⊢ ((KQ‘𝐽) ∈ Reg → (KQ‘𝐽) ∈ Top) | |
| 8 | kqtop 23666 | . . . . 5 ⊢ (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top) | |
| 9 | 7, 8 | sylibr 234 | . . . 4 ⊢ ((KQ‘𝐽) ∈ Reg → 𝐽 ∈ Top) |
| 10 | 9, 2 | sylib 218 | . . 3 ⊢ ((KQ‘𝐽) ∈ Reg → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 11 | 4 | kqreglem2 23663 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ (KQ‘𝐽) ∈ Reg) → 𝐽 ∈ Reg) |
| 12 | 10, 11 | mpancom 688 | . 2 ⊢ ((KQ‘𝐽) ∈ Reg → 𝐽 ∈ Reg) |
| 13 | 6, 12 | impbii 209 | 1 ⊢ (𝐽 ∈ Reg ↔ (KQ‘𝐽) ∈ Reg) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2111 {crab 3395 ∪ cuni 4858 ↦ cmpt 5174 ‘cfv 6487 Topctop 22814 TopOnctopon 22831 Regcreg 23230 KQckq 23614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-map 8758 df-qtop 17417 df-top 22815 df-topon 22832 df-cld 22940 df-cls 22942 df-cn 23148 df-reg 23237 df-kq 23615 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |