MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqreg Structured version   Visualization version   GIF version

Theorem kqreg 23775
Description: The Kolmogorov quotient of a regular space is regular. By regr1 23774 it is also Hausdorff, so we can also say that a space is regular iff the Kolmogorov quotient is regular Hausdorff (T3). (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
kqreg (𝐽 ∈ Reg ↔ (KQ‘𝐽) ∈ Reg)

Proof of Theorem kqreg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 regtop 23357 . . . 4 (𝐽 ∈ Reg → 𝐽 ∈ Top)
2 toptopon2 22940 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
31, 2sylib 218 . . 3 (𝐽 ∈ Reg → 𝐽 ∈ (TopOn‘ 𝐽))
4 eqid 2735 . . . 4 (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})
54kqreglem1 23765 . . 3 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Reg)
63, 5mpancom 688 . 2 (𝐽 ∈ Reg → (KQ‘𝐽) ∈ Reg)
7 regtop 23357 . . . . 5 ((KQ‘𝐽) ∈ Reg → (KQ‘𝐽) ∈ Top)
8 kqtop 23769 . . . . 5 (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top)
97, 8sylibr 234 . . . 4 ((KQ‘𝐽) ∈ Reg → 𝐽 ∈ Top)
109, 2sylib 218 . . 3 ((KQ‘𝐽) ∈ Reg → 𝐽 ∈ (TopOn‘ 𝐽))
114kqreglem2 23766 . . 3 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ (KQ‘𝐽) ∈ Reg) → 𝐽 ∈ Reg)
1210, 11mpancom 688 . 2 ((KQ‘𝐽) ∈ Reg → 𝐽 ∈ Reg)
136, 12impbii 209 1 (𝐽 ∈ Reg ↔ (KQ‘𝐽) ∈ Reg)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2106  {crab 3433   cuni 4912  cmpt 5231  cfv 6563  Topctop 22915  TopOnctopon 22932  Regcreg 23333  KQckq 23717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-qtop 17554  df-top 22916  df-topon 22933  df-cld 23043  df-cls 23045  df-cn 23251  df-reg 23340  df-kq 23718
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator