MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reghmph Structured version   Visualization version   GIF version

Theorem reghmph 23817
Description: Regularity is a topological property. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
reghmph (𝐽𝐾 → (𝐽 ∈ Reg → 𝐾 ∈ Reg))

Proof of Theorem reghmph
Dummy variables 𝑤 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmph 23800 . 2 (𝐽𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅)
2 n0 4359 . . 3 ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾))
3 hmeocn 23784 . . . . . . . 8 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓 ∈ (𝐽 Cn 𝐾))
43adantl 481 . . . . . . 7 ((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → 𝑓 ∈ (𝐽 Cn 𝐾))
5 cntop2 23265 . . . . . . 7 (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
64, 5syl 17 . . . . . 6 ((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → 𝐾 ∈ Top)
7 simpll 767 . . . . . . . . 9 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝐽 ∈ Reg)
84adantr 480 . . . . . . . . . 10 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝑓 ∈ (𝐽 Cn 𝐾))
9 simprl 771 . . . . . . . . . 10 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝑥𝐾)
10 cnima 23289 . . . . . . . . . 10 ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑥𝐾) → (𝑓𝑥) ∈ 𝐽)
118, 9, 10syl2anc 584 . . . . . . . . 9 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → (𝑓𝑥) ∈ 𝐽)
12 eqid 2735 . . . . . . . . . . . . 13 𝐽 = 𝐽
13 eqid 2735 . . . . . . . . . . . . 13 𝐾 = 𝐾
1412, 13hmeof1o 23788 . . . . . . . . . . . 12 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓: 𝐽1-1-onto 𝐾)
1514ad2antlr 727 . . . . . . . . . . 11 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝑓: 𝐽1-1-onto 𝐾)
16 f1ocnv 6861 . . . . . . . . . . 11 (𝑓: 𝐽1-1-onto 𝐾𝑓: 𝐾1-1-onto 𝐽)
17 f1ofn 6850 . . . . . . . . . . 11 (𝑓: 𝐾1-1-onto 𝐽𝑓 Fn 𝐾)
1815, 16, 173syl 18 . . . . . . . . . 10 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝑓 Fn 𝐾)
19 elssuni 4942 . . . . . . . . . . 11 (𝑥𝐾𝑥 𝐾)
2019ad2antrl 728 . . . . . . . . . 10 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝑥 𝐾)
21 simprr 773 . . . . . . . . . 10 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝑦𝑥)
22 fnfvima 7253 . . . . . . . . . 10 ((𝑓 Fn 𝐾𝑥 𝐾𝑦𝑥) → (𝑓𝑦) ∈ (𝑓𝑥))
2318, 20, 21, 22syl3anc 1370 . . . . . . . . 9 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → (𝑓𝑦) ∈ (𝑓𝑥))
24 regsep 23358 . . . . . . . . 9 ((𝐽 ∈ Reg ∧ (𝑓𝑥) ∈ 𝐽 ∧ (𝑓𝑦) ∈ (𝑓𝑥)) → ∃𝑤𝐽 ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
257, 11, 23, 24syl3anc 1370 . . . . . . . 8 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → ∃𝑤𝐽 ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
26 simpllr 776 . . . . . . . . . 10 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑓 ∈ (𝐽Homeo𝐾))
27 simprl 771 . . . . . . . . . 10 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑤𝐽)
28 hmeoima 23789 . . . . . . . . . 10 ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑤𝐽) → (𝑓𝑤) ∈ 𝐾)
2926, 27, 28syl2anc 584 . . . . . . . . 9 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → (𝑓𝑤) ∈ 𝐾)
3020, 21sseldd 3996 . . . . . . . . . . . 12 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝑦 𝐾)
3130adantr 480 . . . . . . . . . . 11 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑦 𝐾)
32 simprrl 781 . . . . . . . . . . 11 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → (𝑓𝑦) ∈ 𝑤)
3318adantr 480 . . . . . . . . . . . 12 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑓 Fn 𝐾)
34 elpreima 7078 . . . . . . . . . . . 12 (𝑓 Fn 𝐾 → (𝑦 ∈ (𝑓𝑤) ↔ (𝑦 𝐾 ∧ (𝑓𝑦) ∈ 𝑤)))
3533, 34syl 17 . . . . . . . . . . 11 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → (𝑦 ∈ (𝑓𝑤) ↔ (𝑦 𝐾 ∧ (𝑓𝑦) ∈ 𝑤)))
3631, 32, 35mpbir2and 713 . . . . . . . . . 10 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑦 ∈ (𝑓𝑤))
37 imacnvcnv 6228 . . . . . . . . . 10 (𝑓𝑤) = (𝑓𝑤)
3836, 37eleqtrdi 2849 . . . . . . . . 9 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑦 ∈ (𝑓𝑤))
39 elssuni 4942 . . . . . . . . . . . 12 (𝑤𝐽𝑤 𝐽)
4039ad2antrl 728 . . . . . . . . . . 11 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑤 𝐽)
4112hmeocls 23792 . . . . . . . . . . 11 ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑤 𝐽) → ((cls‘𝐾)‘(𝑓𝑤)) = (𝑓 “ ((cls‘𝐽)‘𝑤)))
4226, 40, 41syl2anc 584 . . . . . . . . . 10 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐾)‘(𝑓𝑤)) = (𝑓 “ ((cls‘𝐽)‘𝑤)))
43 simprrr 782 . . . . . . . . . . 11 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥))
4415adantr 480 . . . . . . . . . . . . 13 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑓: 𝐽1-1-onto 𝐾)
45 f1ofun 6851 . . . . . . . . . . . . 13 (𝑓: 𝐽1-1-onto 𝐾 → Fun 𝑓)
4644, 45syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → Fun 𝑓)
477adantr 480 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝐽 ∈ Reg)
48 regtop 23357 . . . . . . . . . . . . . . 15 (𝐽 ∈ Reg → 𝐽 ∈ Top)
4947, 48syl 17 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝐽 ∈ Top)
5012clsss3 23083 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑤 𝐽) → ((cls‘𝐽)‘𝑤) ⊆ 𝐽)
5149, 40, 50syl2anc 584 . . . . . . . . . . . . 13 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐽)‘𝑤) ⊆ 𝐽)
52 f1odm 6853 . . . . . . . . . . . . . 14 (𝑓: 𝐽1-1-onto 𝐾 → dom 𝑓 = 𝐽)
5344, 52syl 17 . . . . . . . . . . . . 13 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → dom 𝑓 = 𝐽)
5451, 53sseqtrrd 4037 . . . . . . . . . . . 12 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐽)‘𝑤) ⊆ dom 𝑓)
55 funimass3 7074 . . . . . . . . . . . 12 ((Fun 𝑓 ∧ ((cls‘𝐽)‘𝑤) ⊆ dom 𝑓) → ((𝑓 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑥 ↔ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
5646, 54, 55syl2anc 584 . . . . . . . . . . 11 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((𝑓 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑥 ↔ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
5743, 56mpbird 257 . . . . . . . . . 10 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → (𝑓 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑥)
5842, 57eqsstrd 4034 . . . . . . . . 9 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥)
59 eleq2 2828 . . . . . . . . . . 11 (𝑧 = (𝑓𝑤) → (𝑦𝑧𝑦 ∈ (𝑓𝑤)))
60 fveq2 6907 . . . . . . . . . . . 12 (𝑧 = (𝑓𝑤) → ((cls‘𝐾)‘𝑧) = ((cls‘𝐾)‘(𝑓𝑤)))
6160sseq1d 4027 . . . . . . . . . . 11 (𝑧 = (𝑓𝑤) → (((cls‘𝐾)‘𝑧) ⊆ 𝑥 ↔ ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥))
6259, 61anbi12d 632 . . . . . . . . . 10 (𝑧 = (𝑓𝑤) → ((𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥) ↔ (𝑦 ∈ (𝑓𝑤) ∧ ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥)))
6362rspcev 3622 . . . . . . . . 9 (((𝑓𝑤) ∈ 𝐾 ∧ (𝑦 ∈ (𝑓𝑤) ∧ ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥)) → ∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
6429, 38, 58, 63syl12anc 837 . . . . . . . 8 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
6525, 64rexlimddv 3159 . . . . . . 7 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → ∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
6665ralrimivva 3200 . . . . . 6 ((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → ∀𝑥𝐾𝑦𝑥𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
67 isreg 23356 . . . . . 6 (𝐾 ∈ Reg ↔ (𝐾 ∈ Top ∧ ∀𝑥𝐾𝑦𝑥𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥)))
686, 66, 67sylanbrc 583 . . . . 5 ((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → 𝐾 ∈ Reg)
6968expcom 413 . . . 4 (𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Reg → 𝐾 ∈ Reg))
7069exlimiv 1928 . . 3 (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Reg → 𝐾 ∈ Reg))
712, 70sylbi 217 . 2 ((𝐽Homeo𝐾) ≠ ∅ → (𝐽 ∈ Reg → 𝐾 ∈ Reg))
721, 71sylbi 217 1 (𝐽𝐾 → (𝐽 ∈ Reg → 𝐾 ∈ Reg))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  wne 2938  wral 3059  wrex 3068  wss 3963  c0 4339   cuni 4912   class class class wbr 5148  ccnv 5688  dom cdm 5689  cima 5692  Fun wfun 6557   Fn wfn 6558  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  Topctop 22915  clsccl 23042   Cn ccn 23248  Regcreg 23333  Homeochmeo 23777  chmph 23778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-1o 8505  df-map 8867  df-top 22916  df-topon 22933  df-cld 23043  df-cls 23045  df-cn 23251  df-reg 23340  df-hmeo 23779  df-hmph 23780
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator