MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reghmph Structured version   Visualization version   GIF version

Theorem reghmph 23736
Description: Regularity is a topological property. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
reghmph (𝐽𝐾 → (𝐽 ∈ Reg → 𝐾 ∈ Reg))

Proof of Theorem reghmph
Dummy variables 𝑤 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmph 23719 . 2 (𝐽𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅)
2 n0 4333 . . 3 ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾))
3 hmeocn 23703 . . . . . . . 8 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓 ∈ (𝐽 Cn 𝐾))
43adantl 481 . . . . . . 7 ((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → 𝑓 ∈ (𝐽 Cn 𝐾))
5 cntop2 23184 . . . . . . 7 (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
64, 5syl 17 . . . . . 6 ((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → 𝐾 ∈ Top)
7 simpll 766 . . . . . . . . 9 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝐽 ∈ Reg)
84adantr 480 . . . . . . . . . 10 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝑓 ∈ (𝐽 Cn 𝐾))
9 simprl 770 . . . . . . . . . 10 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝑥𝐾)
10 cnima 23208 . . . . . . . . . 10 ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑥𝐾) → (𝑓𝑥) ∈ 𝐽)
118, 9, 10syl2anc 584 . . . . . . . . 9 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → (𝑓𝑥) ∈ 𝐽)
12 eqid 2736 . . . . . . . . . . . . 13 𝐽 = 𝐽
13 eqid 2736 . . . . . . . . . . . . 13 𝐾 = 𝐾
1412, 13hmeof1o 23707 . . . . . . . . . . . 12 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓: 𝐽1-1-onto 𝐾)
1514ad2antlr 727 . . . . . . . . . . 11 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝑓: 𝐽1-1-onto 𝐾)
16 f1ocnv 6835 . . . . . . . . . . 11 (𝑓: 𝐽1-1-onto 𝐾𝑓: 𝐾1-1-onto 𝐽)
17 f1ofn 6824 . . . . . . . . . . 11 (𝑓: 𝐾1-1-onto 𝐽𝑓 Fn 𝐾)
1815, 16, 173syl 18 . . . . . . . . . 10 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝑓 Fn 𝐾)
19 elssuni 4918 . . . . . . . . . . 11 (𝑥𝐾𝑥 𝐾)
2019ad2antrl 728 . . . . . . . . . 10 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝑥 𝐾)
21 simprr 772 . . . . . . . . . 10 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝑦𝑥)
22 fnfvima 7230 . . . . . . . . . 10 ((𝑓 Fn 𝐾𝑥 𝐾𝑦𝑥) → (𝑓𝑦) ∈ (𝑓𝑥))
2318, 20, 21, 22syl3anc 1373 . . . . . . . . 9 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → (𝑓𝑦) ∈ (𝑓𝑥))
24 regsep 23277 . . . . . . . . 9 ((𝐽 ∈ Reg ∧ (𝑓𝑥) ∈ 𝐽 ∧ (𝑓𝑦) ∈ (𝑓𝑥)) → ∃𝑤𝐽 ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
257, 11, 23, 24syl3anc 1373 . . . . . . . 8 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → ∃𝑤𝐽 ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
26 simpllr 775 . . . . . . . . . 10 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑓 ∈ (𝐽Homeo𝐾))
27 simprl 770 . . . . . . . . . 10 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑤𝐽)
28 hmeoima 23708 . . . . . . . . . 10 ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑤𝐽) → (𝑓𝑤) ∈ 𝐾)
2926, 27, 28syl2anc 584 . . . . . . . . 9 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → (𝑓𝑤) ∈ 𝐾)
3020, 21sseldd 3964 . . . . . . . . . . . 12 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝑦 𝐾)
3130adantr 480 . . . . . . . . . . 11 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑦 𝐾)
32 simprrl 780 . . . . . . . . . . 11 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → (𝑓𝑦) ∈ 𝑤)
3318adantr 480 . . . . . . . . . . . 12 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑓 Fn 𝐾)
34 elpreima 7053 . . . . . . . . . . . 12 (𝑓 Fn 𝐾 → (𝑦 ∈ (𝑓𝑤) ↔ (𝑦 𝐾 ∧ (𝑓𝑦) ∈ 𝑤)))
3533, 34syl 17 . . . . . . . . . . 11 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → (𝑦 ∈ (𝑓𝑤) ↔ (𝑦 𝐾 ∧ (𝑓𝑦) ∈ 𝑤)))
3631, 32, 35mpbir2and 713 . . . . . . . . . 10 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑦 ∈ (𝑓𝑤))
37 imacnvcnv 6200 . . . . . . . . . 10 (𝑓𝑤) = (𝑓𝑤)
3836, 37eleqtrdi 2845 . . . . . . . . 9 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑦 ∈ (𝑓𝑤))
39 elssuni 4918 . . . . . . . . . . . 12 (𝑤𝐽𝑤 𝐽)
4039ad2antrl 728 . . . . . . . . . . 11 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑤 𝐽)
4112hmeocls 23711 . . . . . . . . . . 11 ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑤 𝐽) → ((cls‘𝐾)‘(𝑓𝑤)) = (𝑓 “ ((cls‘𝐽)‘𝑤)))
4226, 40, 41syl2anc 584 . . . . . . . . . 10 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐾)‘(𝑓𝑤)) = (𝑓 “ ((cls‘𝐽)‘𝑤)))
43 simprrr 781 . . . . . . . . . . 11 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥))
4415adantr 480 . . . . . . . . . . . . 13 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑓: 𝐽1-1-onto 𝐾)
45 f1ofun 6825 . . . . . . . . . . . . 13 (𝑓: 𝐽1-1-onto 𝐾 → Fun 𝑓)
4644, 45syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → Fun 𝑓)
477adantr 480 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝐽 ∈ Reg)
48 regtop 23276 . . . . . . . . . . . . . . 15 (𝐽 ∈ Reg → 𝐽 ∈ Top)
4947, 48syl 17 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝐽 ∈ Top)
5012clsss3 23002 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑤 𝐽) → ((cls‘𝐽)‘𝑤) ⊆ 𝐽)
5149, 40, 50syl2anc 584 . . . . . . . . . . . . 13 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐽)‘𝑤) ⊆ 𝐽)
52 f1odm 6827 . . . . . . . . . . . . . 14 (𝑓: 𝐽1-1-onto 𝐾 → dom 𝑓 = 𝐽)
5344, 52syl 17 . . . . . . . . . . . . 13 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → dom 𝑓 = 𝐽)
5451, 53sseqtrrd 4001 . . . . . . . . . . . 12 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐽)‘𝑤) ⊆ dom 𝑓)
55 funimass3 7049 . . . . . . . . . . . 12 ((Fun 𝑓 ∧ ((cls‘𝐽)‘𝑤) ⊆ dom 𝑓) → ((𝑓 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑥 ↔ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
5646, 54, 55syl2anc 584 . . . . . . . . . . 11 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((𝑓 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑥 ↔ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
5743, 56mpbird 257 . . . . . . . . . 10 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → (𝑓 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑥)
5842, 57eqsstrd 3998 . . . . . . . . 9 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥)
59 eleq2 2824 . . . . . . . . . . 11 (𝑧 = (𝑓𝑤) → (𝑦𝑧𝑦 ∈ (𝑓𝑤)))
60 fveq2 6881 . . . . . . . . . . . 12 (𝑧 = (𝑓𝑤) → ((cls‘𝐾)‘𝑧) = ((cls‘𝐾)‘(𝑓𝑤)))
6160sseq1d 3995 . . . . . . . . . . 11 (𝑧 = (𝑓𝑤) → (((cls‘𝐾)‘𝑧) ⊆ 𝑥 ↔ ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥))
6259, 61anbi12d 632 . . . . . . . . . 10 (𝑧 = (𝑓𝑤) → ((𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥) ↔ (𝑦 ∈ (𝑓𝑤) ∧ ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥)))
6362rspcev 3606 . . . . . . . . 9 (((𝑓𝑤) ∈ 𝐾 ∧ (𝑦 ∈ (𝑓𝑤) ∧ ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥)) → ∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
6429, 38, 58, 63syl12anc 836 . . . . . . . 8 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
6525, 64rexlimddv 3148 . . . . . . 7 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → ∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
6665ralrimivva 3188 . . . . . 6 ((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → ∀𝑥𝐾𝑦𝑥𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
67 isreg 23275 . . . . . 6 (𝐾 ∈ Reg ↔ (𝐾 ∈ Top ∧ ∀𝑥𝐾𝑦𝑥𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥)))
686, 66, 67sylanbrc 583 . . . . 5 ((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → 𝐾 ∈ Reg)
6968expcom 413 . . . 4 (𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Reg → 𝐾 ∈ Reg))
7069exlimiv 1930 . . 3 (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Reg → 𝐾 ∈ Reg))
712, 70sylbi 217 . 2 ((𝐽Homeo𝐾) ≠ ∅ → (𝐽 ∈ Reg → 𝐾 ∈ Reg))
721, 71sylbi 217 1 (𝐽𝐾 → (𝐽 ∈ Reg → 𝐾 ∈ Reg))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2933  wral 3052  wrex 3061  wss 3931  c0 4313   cuni 4888   class class class wbr 5124  ccnv 5658  dom cdm 5659  cima 5662  Fun wfun 6530   Fn wfn 6531  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  Topctop 22836  clsccl 22961   Cn ccn 23167  Regcreg 23252  Homeochmeo 23696  chmph 23697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-1o 8485  df-map 8847  df-top 22837  df-topon 22854  df-cld 22962  df-cls 22964  df-cn 23170  df-reg 23259  df-hmeo 23698  df-hmph 23699
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator