MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reghmph Structured version   Visualization version   GIF version

Theorem reghmph 22398
Description: Regularity is a topological property. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
reghmph (𝐽𝐾 → (𝐽 ∈ Reg → 𝐾 ∈ Reg))

Proof of Theorem reghmph
Dummy variables 𝑤 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmph 22381 . 2 (𝐽𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅)
2 n0 4260 . . 3 ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾))
3 hmeocn 22365 . . . . . . . 8 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓 ∈ (𝐽 Cn 𝐾))
43adantl 485 . . . . . . 7 ((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → 𝑓 ∈ (𝐽 Cn 𝐾))
5 cntop2 21846 . . . . . . 7 (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
64, 5syl 17 . . . . . 6 ((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → 𝐾 ∈ Top)
7 simpll 766 . . . . . . . . 9 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝐽 ∈ Reg)
84adantr 484 . . . . . . . . . 10 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝑓 ∈ (𝐽 Cn 𝐾))
9 simprl 770 . . . . . . . . . 10 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝑥𝐾)
10 cnima 21870 . . . . . . . . . 10 ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑥𝐾) → (𝑓𝑥) ∈ 𝐽)
118, 9, 10syl2anc 587 . . . . . . . . 9 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → (𝑓𝑥) ∈ 𝐽)
12 eqid 2798 . . . . . . . . . . . . 13 𝐽 = 𝐽
13 eqid 2798 . . . . . . . . . . . . 13 𝐾 = 𝐾
1412, 13hmeof1o 22369 . . . . . . . . . . . 12 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓: 𝐽1-1-onto 𝐾)
1514ad2antlr 726 . . . . . . . . . . 11 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝑓: 𝐽1-1-onto 𝐾)
16 f1ocnv 6602 . . . . . . . . . . 11 (𝑓: 𝐽1-1-onto 𝐾𝑓: 𝐾1-1-onto 𝐽)
17 f1ofn 6591 . . . . . . . . . . 11 (𝑓: 𝐾1-1-onto 𝐽𝑓 Fn 𝐾)
1815, 16, 173syl 18 . . . . . . . . . 10 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝑓 Fn 𝐾)
19 elssuni 4830 . . . . . . . . . . 11 (𝑥𝐾𝑥 𝐾)
2019ad2antrl 727 . . . . . . . . . 10 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝑥 𝐾)
21 simprr 772 . . . . . . . . . 10 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝑦𝑥)
22 fnfvima 6973 . . . . . . . . . 10 ((𝑓 Fn 𝐾𝑥 𝐾𝑦𝑥) → (𝑓𝑦) ∈ (𝑓𝑥))
2318, 20, 21, 22syl3anc 1368 . . . . . . . . 9 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → (𝑓𝑦) ∈ (𝑓𝑥))
24 regsep 21939 . . . . . . . . 9 ((𝐽 ∈ Reg ∧ (𝑓𝑥) ∈ 𝐽 ∧ (𝑓𝑦) ∈ (𝑓𝑥)) → ∃𝑤𝐽 ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
257, 11, 23, 24syl3anc 1368 . . . . . . . 8 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → ∃𝑤𝐽 ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
26 simpllr 775 . . . . . . . . . 10 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑓 ∈ (𝐽Homeo𝐾))
27 simprl 770 . . . . . . . . . 10 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑤𝐽)
28 hmeoima 22370 . . . . . . . . . 10 ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑤𝐽) → (𝑓𝑤) ∈ 𝐾)
2926, 27, 28syl2anc 587 . . . . . . . . 9 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → (𝑓𝑤) ∈ 𝐾)
3020, 21sseldd 3916 . . . . . . . . . . . 12 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝑦 𝐾)
3130adantr 484 . . . . . . . . . . 11 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑦 𝐾)
32 simprrl 780 . . . . . . . . . . 11 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → (𝑓𝑦) ∈ 𝑤)
3318adantr 484 . . . . . . . . . . . 12 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑓 Fn 𝐾)
34 elpreima 6805 . . . . . . . . . . . 12 (𝑓 Fn 𝐾 → (𝑦 ∈ (𝑓𝑤) ↔ (𝑦 𝐾 ∧ (𝑓𝑦) ∈ 𝑤)))
3533, 34syl 17 . . . . . . . . . . 11 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → (𝑦 ∈ (𝑓𝑤) ↔ (𝑦 𝐾 ∧ (𝑓𝑦) ∈ 𝑤)))
3631, 32, 35mpbir2and 712 . . . . . . . . . 10 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑦 ∈ (𝑓𝑤))
37 imacnvcnv 6030 . . . . . . . . . 10 (𝑓𝑤) = (𝑓𝑤)
3836, 37eleqtrdi 2900 . . . . . . . . 9 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑦 ∈ (𝑓𝑤))
39 elssuni 4830 . . . . . . . . . . . 12 (𝑤𝐽𝑤 𝐽)
4039ad2antrl 727 . . . . . . . . . . 11 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑤 𝐽)
4112hmeocls 22373 . . . . . . . . . . 11 ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑤 𝐽) → ((cls‘𝐾)‘(𝑓𝑤)) = (𝑓 “ ((cls‘𝐽)‘𝑤)))
4226, 40, 41syl2anc 587 . . . . . . . . . 10 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐾)‘(𝑓𝑤)) = (𝑓 “ ((cls‘𝐽)‘𝑤)))
43 simprrr 781 . . . . . . . . . . 11 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥))
4415adantr 484 . . . . . . . . . . . . 13 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑓: 𝐽1-1-onto 𝐾)
45 f1ofun 6592 . . . . . . . . . . . . 13 (𝑓: 𝐽1-1-onto 𝐾 → Fun 𝑓)
4644, 45syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → Fun 𝑓)
477adantr 484 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝐽 ∈ Reg)
48 regtop 21938 . . . . . . . . . . . . . . 15 (𝐽 ∈ Reg → 𝐽 ∈ Top)
4947, 48syl 17 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝐽 ∈ Top)
5012clsss3 21664 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑤 𝐽) → ((cls‘𝐽)‘𝑤) ⊆ 𝐽)
5149, 40, 50syl2anc 587 . . . . . . . . . . . . 13 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐽)‘𝑤) ⊆ 𝐽)
52 f1odm 6594 . . . . . . . . . . . . . 14 (𝑓: 𝐽1-1-onto 𝐾 → dom 𝑓 = 𝐽)
5344, 52syl 17 . . . . . . . . . . . . 13 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → dom 𝑓 = 𝐽)
5451, 53sseqtrrd 3956 . . . . . . . . . . . 12 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐽)‘𝑤) ⊆ dom 𝑓)
55 funimass3 6801 . . . . . . . . . . . 12 ((Fun 𝑓 ∧ ((cls‘𝐽)‘𝑤) ⊆ dom 𝑓) → ((𝑓 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑥 ↔ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
5646, 54, 55syl2anc 587 . . . . . . . . . . 11 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((𝑓 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑥 ↔ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
5743, 56mpbird 260 . . . . . . . . . 10 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → (𝑓 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑥)
5842, 57eqsstrd 3953 . . . . . . . . 9 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥)
59 eleq2 2878 . . . . . . . . . . 11 (𝑧 = (𝑓𝑤) → (𝑦𝑧𝑦 ∈ (𝑓𝑤)))
60 fveq2 6645 . . . . . . . . . . . 12 (𝑧 = (𝑓𝑤) → ((cls‘𝐾)‘𝑧) = ((cls‘𝐾)‘(𝑓𝑤)))
6160sseq1d 3946 . . . . . . . . . . 11 (𝑧 = (𝑓𝑤) → (((cls‘𝐾)‘𝑧) ⊆ 𝑥 ↔ ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥))
6259, 61anbi12d 633 . . . . . . . . . 10 (𝑧 = (𝑓𝑤) → ((𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥) ↔ (𝑦 ∈ (𝑓𝑤) ∧ ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥)))
6362rspcev 3571 . . . . . . . . 9 (((𝑓𝑤) ∈ 𝐾 ∧ (𝑦 ∈ (𝑓𝑤) ∧ ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥)) → ∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
6429, 38, 58, 63syl12anc 835 . . . . . . . 8 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
6525, 64rexlimddv 3250 . . . . . . 7 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → ∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
6665ralrimivva 3156 . . . . . 6 ((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → ∀𝑥𝐾𝑦𝑥𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
67 isreg 21937 . . . . . 6 (𝐾 ∈ Reg ↔ (𝐾 ∈ Top ∧ ∀𝑥𝐾𝑦𝑥𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥)))
686, 66, 67sylanbrc 586 . . . . 5 ((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → 𝐾 ∈ Reg)
6968expcom 417 . . . 4 (𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Reg → 𝐾 ∈ Reg))
7069exlimiv 1931 . . 3 (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Reg → 𝐾 ∈ Reg))
712, 70sylbi 220 . 2 ((𝐽Homeo𝐾) ≠ ∅ → (𝐽 ∈ Reg → 𝐾 ∈ Reg))
721, 71sylbi 220 1 (𝐽𝐾 → (𝐽 ∈ Reg → 𝐾 ∈ Reg))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  wne 2987  wral 3106  wrex 3107  wss 3881  c0 4243   cuni 4800   class class class wbr 5030  ccnv 5518  dom cdm 5519  cima 5522  Fun wfun 6318   Fn wfn 6319  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  Topctop 21498  clsccl 21623   Cn ccn 21829  Regcreg 21914  Homeochmeo 22358  chmph 22359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-1o 8085  df-map 8391  df-top 21499  df-topon 21516  df-cld 21624  df-cls 21626  df-cn 21832  df-reg 21921  df-hmeo 22360  df-hmph 22361
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator