MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reghmph Structured version   Visualization version   GIF version

Theorem reghmph 23822
Description: Regularity is a topological property. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
reghmph (𝐽𝐾 → (𝐽 ∈ Reg → 𝐾 ∈ Reg))

Proof of Theorem reghmph
Dummy variables 𝑤 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmph 23805 . 2 (𝐽𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅)
2 n0 4376 . . 3 ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾))
3 hmeocn 23789 . . . . . . . 8 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓 ∈ (𝐽 Cn 𝐾))
43adantl 481 . . . . . . 7 ((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → 𝑓 ∈ (𝐽 Cn 𝐾))
5 cntop2 23270 . . . . . . 7 (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
64, 5syl 17 . . . . . 6 ((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → 𝐾 ∈ Top)
7 simpll 766 . . . . . . . . 9 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝐽 ∈ Reg)
84adantr 480 . . . . . . . . . 10 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝑓 ∈ (𝐽 Cn 𝐾))
9 simprl 770 . . . . . . . . . 10 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝑥𝐾)
10 cnima 23294 . . . . . . . . . 10 ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑥𝐾) → (𝑓𝑥) ∈ 𝐽)
118, 9, 10syl2anc 583 . . . . . . . . 9 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → (𝑓𝑥) ∈ 𝐽)
12 eqid 2740 . . . . . . . . . . . . 13 𝐽 = 𝐽
13 eqid 2740 . . . . . . . . . . . . 13 𝐾 = 𝐾
1412, 13hmeof1o 23793 . . . . . . . . . . . 12 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓: 𝐽1-1-onto 𝐾)
1514ad2antlr 726 . . . . . . . . . . 11 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝑓: 𝐽1-1-onto 𝐾)
16 f1ocnv 6874 . . . . . . . . . . 11 (𝑓: 𝐽1-1-onto 𝐾𝑓: 𝐾1-1-onto 𝐽)
17 f1ofn 6863 . . . . . . . . . . 11 (𝑓: 𝐾1-1-onto 𝐽𝑓 Fn 𝐾)
1815, 16, 173syl 18 . . . . . . . . . 10 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝑓 Fn 𝐾)
19 elssuni 4961 . . . . . . . . . . 11 (𝑥𝐾𝑥 𝐾)
2019ad2antrl 727 . . . . . . . . . 10 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝑥 𝐾)
21 simprr 772 . . . . . . . . . 10 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝑦𝑥)
22 fnfvima 7270 . . . . . . . . . 10 ((𝑓 Fn 𝐾𝑥 𝐾𝑦𝑥) → (𝑓𝑦) ∈ (𝑓𝑥))
2318, 20, 21, 22syl3anc 1371 . . . . . . . . 9 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → (𝑓𝑦) ∈ (𝑓𝑥))
24 regsep 23363 . . . . . . . . 9 ((𝐽 ∈ Reg ∧ (𝑓𝑥) ∈ 𝐽 ∧ (𝑓𝑦) ∈ (𝑓𝑥)) → ∃𝑤𝐽 ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
257, 11, 23, 24syl3anc 1371 . . . . . . . 8 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → ∃𝑤𝐽 ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
26 simpllr 775 . . . . . . . . . 10 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑓 ∈ (𝐽Homeo𝐾))
27 simprl 770 . . . . . . . . . 10 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑤𝐽)
28 hmeoima 23794 . . . . . . . . . 10 ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑤𝐽) → (𝑓𝑤) ∈ 𝐾)
2926, 27, 28syl2anc 583 . . . . . . . . 9 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → (𝑓𝑤) ∈ 𝐾)
3020, 21sseldd 4009 . . . . . . . . . . . 12 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → 𝑦 𝐾)
3130adantr 480 . . . . . . . . . . 11 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑦 𝐾)
32 simprrl 780 . . . . . . . . . . 11 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → (𝑓𝑦) ∈ 𝑤)
3318adantr 480 . . . . . . . . . . . 12 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑓 Fn 𝐾)
34 elpreima 7091 . . . . . . . . . . . 12 (𝑓 Fn 𝐾 → (𝑦 ∈ (𝑓𝑤) ↔ (𝑦 𝐾 ∧ (𝑓𝑦) ∈ 𝑤)))
3533, 34syl 17 . . . . . . . . . . 11 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → (𝑦 ∈ (𝑓𝑤) ↔ (𝑦 𝐾 ∧ (𝑓𝑦) ∈ 𝑤)))
3631, 32, 35mpbir2and 712 . . . . . . . . . 10 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑦 ∈ (𝑓𝑤))
37 imacnvcnv 6237 . . . . . . . . . 10 (𝑓𝑤) = (𝑓𝑤)
3836, 37eleqtrdi 2854 . . . . . . . . 9 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑦 ∈ (𝑓𝑤))
39 elssuni 4961 . . . . . . . . . . . 12 (𝑤𝐽𝑤 𝐽)
4039ad2antrl 727 . . . . . . . . . . 11 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑤 𝐽)
4112hmeocls 23797 . . . . . . . . . . 11 ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑤 𝐽) → ((cls‘𝐾)‘(𝑓𝑤)) = (𝑓 “ ((cls‘𝐽)‘𝑤)))
4226, 40, 41syl2anc 583 . . . . . . . . . 10 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐾)‘(𝑓𝑤)) = (𝑓 “ ((cls‘𝐽)‘𝑤)))
43 simprrr 781 . . . . . . . . . . 11 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥))
4415adantr 480 . . . . . . . . . . . . 13 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑓: 𝐽1-1-onto 𝐾)
45 f1ofun 6864 . . . . . . . . . . . . 13 (𝑓: 𝐽1-1-onto 𝐾 → Fun 𝑓)
4644, 45syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → Fun 𝑓)
477adantr 480 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝐽 ∈ Reg)
48 regtop 23362 . . . . . . . . . . . . . . 15 (𝐽 ∈ Reg → 𝐽 ∈ Top)
4947, 48syl 17 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝐽 ∈ Top)
5012clsss3 23088 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑤 𝐽) → ((cls‘𝐽)‘𝑤) ⊆ 𝐽)
5149, 40, 50syl2anc 583 . . . . . . . . . . . . 13 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐽)‘𝑤) ⊆ 𝐽)
52 f1odm 6866 . . . . . . . . . . . . . 14 (𝑓: 𝐽1-1-onto 𝐾 → dom 𝑓 = 𝐽)
5344, 52syl 17 . . . . . . . . . . . . 13 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → dom 𝑓 = 𝐽)
5451, 53sseqtrrd 4050 . . . . . . . . . . . 12 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐽)‘𝑤) ⊆ dom 𝑓)
55 funimass3 7087 . . . . . . . . . . . 12 ((Fun 𝑓 ∧ ((cls‘𝐽)‘𝑤) ⊆ dom 𝑓) → ((𝑓 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑥 ↔ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
5646, 54, 55syl2anc 583 . . . . . . . . . . 11 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((𝑓 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑥 ↔ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
5743, 56mpbird 257 . . . . . . . . . 10 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → (𝑓 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑥)
5842, 57eqsstrd 4047 . . . . . . . . 9 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥)
59 eleq2 2833 . . . . . . . . . . 11 (𝑧 = (𝑓𝑤) → (𝑦𝑧𝑦 ∈ (𝑓𝑤)))
60 fveq2 6920 . . . . . . . . . . . 12 (𝑧 = (𝑓𝑤) → ((cls‘𝐾)‘𝑧) = ((cls‘𝐾)‘(𝑓𝑤)))
6160sseq1d 4040 . . . . . . . . . . 11 (𝑧 = (𝑓𝑤) → (((cls‘𝐾)‘𝑧) ⊆ 𝑥 ↔ ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥))
6259, 61anbi12d 631 . . . . . . . . . 10 (𝑧 = (𝑓𝑤) → ((𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥) ↔ (𝑦 ∈ (𝑓𝑤) ∧ ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥)))
6362rspcev 3635 . . . . . . . . 9 (((𝑓𝑤) ∈ 𝐾 ∧ (𝑦 ∈ (𝑓𝑤) ∧ ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥)) → ∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
6429, 38, 58, 63syl12anc 836 . . . . . . . 8 ((((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
6525, 64rexlimddv 3167 . . . . . . 7 (((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦𝑥)) → ∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
6665ralrimivva 3208 . . . . . 6 ((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → ∀𝑥𝐾𝑦𝑥𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
67 isreg 23361 . . . . . 6 (𝐾 ∈ Reg ↔ (𝐾 ∈ Top ∧ ∀𝑥𝐾𝑦𝑥𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥)))
686, 66, 67sylanbrc 582 . . . . 5 ((𝐽 ∈ Reg ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → 𝐾 ∈ Reg)
6968expcom 413 . . . 4 (𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Reg → 𝐾 ∈ Reg))
7069exlimiv 1929 . . 3 (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Reg → 𝐾 ∈ Reg))
712, 70sylbi 217 . 2 ((𝐽Homeo𝐾) ≠ ∅ → (𝐽 ∈ Reg → 𝐾 ∈ Reg))
721, 71sylbi 217 1 (𝐽𝐾 → (𝐽 ∈ Reg → 𝐾 ∈ Reg))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  wrex 3076  wss 3976  c0 4352   cuni 4931   class class class wbr 5166  ccnv 5699  dom cdm 5700  cima 5703  Fun wfun 6567   Fn wfn 6568  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  Topctop 22920  clsccl 23047   Cn ccn 23253  Regcreg 23338  Homeochmeo 23782  chmph 23783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-1o 8522  df-map 8886  df-top 22921  df-topon 22938  df-cld 23048  df-cls 23050  df-cn 23256  df-reg 23345  df-hmeo 23784  df-hmph 23785
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator