![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0we1 | Structured version Visualization version GIF version |
Description: The empty set is a well-ordering of ordinal one. (Contributed by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
0we1 | ⊢ ∅ We 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br0 4978 | . . 3 ⊢ ¬ ∅∅∅ | |
2 | rel0 5522 | . . . 4 ⊢ Rel ∅ | |
3 | wesn 5490 | . . . 4 ⊢ (Rel ∅ → (∅ We {∅} ↔ ¬ ∅∅∅)) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (∅ We {∅} ↔ ¬ ∅∅∅) |
5 | 1, 4 | mpbir 223 | . 2 ⊢ ∅ We {∅} |
6 | df1o2 7918 | . . 3 ⊢ 1o = {∅} | |
7 | weeq2 5396 | . . 3 ⊢ (1o = {∅} → (∅ We 1o ↔ ∅ We {∅})) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ (∅ We 1o ↔ ∅ We {∅}) |
9 | 5, 8 | mpbir 223 | 1 ⊢ ∅ We 1o |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 = wceq 1507 ∅c0 4179 {csn 4441 class class class wbr 4929 We wwe 5365 Rel wrel 5412 1oc1o 7898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2751 ax-sep 5060 ax-nul 5067 ax-pr 5186 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3418 df-sbc 3683 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-nul 4180 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-br 4930 df-opab 4992 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-suc 6035 df-1o 7905 |
This theorem is referenced by: psr1tos 20060 |
Copyright terms: Public domain | W3C validator |