| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0we1 | Structured version Visualization version GIF version | ||
| Description: The empty set is a well-ordering of ordinal one. (Contributed by Mario Carneiro, 9-Feb-2015.) |
| Ref | Expression |
|---|---|
| 0we1 | ⊢ ∅ We 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | br0 5156 | . . 3 ⊢ ¬ ∅∅∅ | |
| 2 | rel0 5762 | . . . 4 ⊢ Rel ∅ | |
| 3 | wesn 5727 | . . . 4 ⊢ (Rel ∅ → (∅ We {∅} ↔ ¬ ∅∅∅)) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (∅ We {∅} ↔ ¬ ∅∅∅) |
| 5 | 1, 4 | mpbir 231 | . 2 ⊢ ∅ We {∅} |
| 6 | df1o2 8441 | . . 3 ⊢ 1o = {∅} | |
| 7 | weeq2 5626 | . . 3 ⊢ (1o = {∅} → (∅ We 1o ↔ ∅ We {∅})) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ (∅ We 1o ↔ ∅ We {∅}) |
| 9 | 5, 8 | mpbir 231 | 1 ⊢ ∅ We 1o |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∅c0 4296 {csn 4589 class class class wbr 5107 We wwe 5590 Rel wrel 5643 1oc1o 8427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-suc 6338 df-1o 8434 |
| This theorem is referenced by: psr1tos 22073 |
| Copyright terms: Public domain | W3C validator |