Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0we1 | Structured version Visualization version GIF version |
Description: The empty set is a well-ordering of ordinal one. (Contributed by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
0we1 | ⊢ ∅ We 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br0 5127 | . . 3 ⊢ ¬ ∅∅∅ | |
2 | rel0 5706 | . . . 4 ⊢ Rel ∅ | |
3 | wesn 5674 | . . . 4 ⊢ (Rel ∅ → (∅ We {∅} ↔ ¬ ∅∅∅)) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (∅ We {∅} ↔ ¬ ∅∅∅) |
5 | 1, 4 | mpbir 230 | . 2 ⊢ ∅ We {∅} |
6 | df1o2 8293 | . . 3 ⊢ 1o = {∅} | |
7 | weeq2 5577 | . . 3 ⊢ (1o = {∅} → (∅ We 1o ↔ ∅ We {∅})) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ (∅ We 1o ↔ ∅ We {∅}) |
9 | 5, 8 | mpbir 230 | 1 ⊢ ∅ We 1o |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1541 ∅c0 4261 {csn 4566 class class class wbr 5078 We wwe 5542 Rel wrel 5593 1oc1o 8274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-suc 6269 df-1o 8281 |
This theorem is referenced by: psr1tos 21341 |
Copyright terms: Public domain | W3C validator |