MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0we1 Structured version   Visualization version   GIF version

Theorem 0we1 8447
Description: The empty set is a well-ordering of ordinal one. (Contributed by Mario Carneiro, 9-Feb-2015.)
Assertion
Ref Expression
0we1 ∅ We 1o

Proof of Theorem 0we1
StepHypRef Expression
1 br0 5151 . . 3 ¬ ∅∅∅
2 rel0 5753 . . . 4 Rel ∅
3 wesn 5720 . . . 4 (Rel ∅ → (∅ We {∅} ↔ ¬ ∅∅∅))
42, 3ax-mp 5 . . 3 (∅ We {∅} ↔ ¬ ∅∅∅)
51, 4mpbir 231 . 2 ∅ We {∅}
6 df1o2 8418 . . 3 1o = {∅}
7 weeq2 5619 . . 3 (1o = {∅} → (∅ We 1o ↔ ∅ We {∅}))
86, 7ax-mp 5 . 2 (∅ We 1o ↔ ∅ We {∅})
95, 8mpbir 231 1 ∅ We 1o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  c0 4292  {csn 4585   class class class wbr 5102   We wwe 5583  Rel wrel 5636  1oc1o 8404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-suc 6326  df-1o 8411
This theorem is referenced by:  psr1tos  22049
  Copyright terms: Public domain W3C validator