|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 0we1 | Structured version Visualization version GIF version | ||
| Description: The empty set is a well-ordering of ordinal one. (Contributed by Mario Carneiro, 9-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| 0we1 | ⊢ ∅ We 1o | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | br0 5192 | . . 3 ⊢ ¬ ∅∅∅ | |
| 2 | rel0 5809 | . . . 4 ⊢ Rel ∅ | |
| 3 | wesn 5774 | . . . 4 ⊢ (Rel ∅ → (∅ We {∅} ↔ ¬ ∅∅∅)) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (∅ We {∅} ↔ ¬ ∅∅∅) | 
| 5 | 1, 4 | mpbir 231 | . 2 ⊢ ∅ We {∅} | 
| 6 | df1o2 8513 | . . 3 ⊢ 1o = {∅} | |
| 7 | weeq2 5673 | . . 3 ⊢ (1o = {∅} → (∅ We 1o ↔ ∅ We {∅})) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ (∅ We 1o ↔ ∅ We {∅}) | 
| 9 | 5, 8 | mpbir 231 | 1 ⊢ ∅ We 1o | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∅c0 4333 {csn 4626 class class class wbr 5143 We wwe 5636 Rel wrel 5690 1oc1o 8499 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-suc 6390 df-1o 8506 | 
| This theorem is referenced by: psr1tos 22190 | 
| Copyright terms: Public domain | W3C validator |