MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0we1 Structured version   Visualization version   GIF version

Theorem 0we1 8312
Description: The empty set is a well-ordering of ordinal one. (Contributed by Mario Carneiro, 9-Feb-2015.)
Assertion
Ref Expression
0we1 ∅ We 1o

Proof of Theorem 0we1
StepHypRef Expression
1 br0 5127 . . 3 ¬ ∅∅∅
2 rel0 5706 . . . 4 Rel ∅
3 wesn 5674 . . . 4 (Rel ∅ → (∅ We {∅} ↔ ¬ ∅∅∅))
42, 3ax-mp 5 . . 3 (∅ We {∅} ↔ ¬ ∅∅∅)
51, 4mpbir 230 . 2 ∅ We {∅}
6 df1o2 8293 . . 3 1o = {∅}
7 weeq2 5577 . . 3 (1o = {∅} → (∅ We 1o ↔ ∅ We {∅}))
86, 7ax-mp 5 . 2 (∅ We 1o ↔ ∅ We {∅})
95, 8mpbir 230 1 ∅ We 1o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1541  c0 4261  {csn 4566   class class class wbr 5078   We wwe 5542  Rel wrel 5593  1oc1o 8274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-suc 6269  df-1o 8281
This theorem is referenced by:  psr1tos  21341
  Copyright terms: Public domain W3C validator