| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0we1 | Structured version Visualization version GIF version | ||
| Description: The empty set is a well-ordering of ordinal one. (Contributed by Mario Carneiro, 9-Feb-2015.) |
| Ref | Expression |
|---|---|
| 0we1 | ⊢ ∅ We 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | br0 5138 | . . 3 ⊢ ¬ ∅∅∅ | |
| 2 | rel0 5738 | . . . 4 ⊢ Rel ∅ | |
| 3 | wesn 5703 | . . . 4 ⊢ (Rel ∅ → (∅ We {∅} ↔ ¬ ∅∅∅)) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (∅ We {∅} ↔ ¬ ∅∅∅) |
| 5 | 1, 4 | mpbir 231 | . 2 ⊢ ∅ We {∅} |
| 6 | df1o2 8392 | . . 3 ⊢ 1o = {∅} | |
| 7 | weeq2 5602 | . . 3 ⊢ (1o = {∅} → (∅ We 1o ↔ ∅ We {∅})) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ (∅ We 1o ↔ ∅ We {∅}) |
| 9 | 5, 8 | mpbir 231 | 1 ⊢ ∅ We 1o |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ∅c0 4280 {csn 4573 class class class wbr 5089 We wwe 5566 Rel wrel 5619 1oc1o 8378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-suc 6312 df-1o 8385 |
| This theorem is referenced by: psr1tos 22101 |
| Copyright terms: Public domain | W3C validator |