Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibvalrel Structured version   Visualization version   GIF version

Theorem dibvalrel 40766
Description: The value of partial isomorphism B is a relation. (Contributed by NM, 8-Mar-2014.)
Hypotheses
Ref Expression
dibcl.h 𝐻 = (LHyp‘𝐾)
dibcl.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibvalrel ((𝐾𝑉𝑊𝐻) → Rel (𝐼𝑋))

Proof of Theorem dibvalrel
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 relxp 5696 . . 3 Rel ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})
2 dibcl.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
3 eqid 2725 . . . . . . . 8 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
4 dibcl.i . . . . . . . 8 𝐼 = ((DIsoB‘𝐾)‘𝑊)
52, 3, 4dibdiadm 40758 . . . . . . 7 ((𝐾𝑉𝑊𝐻) → dom 𝐼 = dom ((DIsoA‘𝐾)‘𝑊))
65eleq2d 2811 . . . . . 6 ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom 𝐼𝑋 ∈ dom ((DIsoA‘𝐾)‘𝑊)))
76biimpa 475 . . . . 5 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom ((DIsoA‘𝐾)‘𝑊))
8 eqid 2725 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
9 eqid 2725 . . . . . 6 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
10 eqid 2725 . . . . . 6 ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))
118, 2, 9, 10, 3, 4dibval 40745 . . . . 5 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom ((DIsoA‘𝐾)‘𝑊)) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))}))
127, 11syldan 589 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))}))
1312releqd 5780 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (Rel (𝐼𝑋) ↔ Rel ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})))
141, 13mpbiri 257 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → Rel (𝐼𝑋))
15 rel0 5801 . . . 4 Rel ∅
16 ndmfv 6931 . . . . 5 𝑋 ∈ dom 𝐼 → (𝐼𝑋) = ∅)
1716releqd 5780 . . . 4 𝑋 ∈ dom 𝐼 → (Rel (𝐼𝑋) ↔ Rel ∅))
1815, 17mpbiri 257 . . 3 𝑋 ∈ dom 𝐼 → Rel (𝐼𝑋))
1918adantl 480 . 2 (((𝐾𝑉𝑊𝐻) ∧ ¬ 𝑋 ∈ dom 𝐼) → Rel (𝐼𝑋))
2014, 19pm2.61dan 811 1 ((𝐾𝑉𝑊𝐻) → Rel (𝐼𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  c0 4322  {csn 4630  cmpt 5232   I cid 5575   × cxp 5676  dom cdm 5678  cres 5680  Rel wrel 5683  cfv 6549  Basecbs 17183  LHypclh 39587  LTrncltrn 39704  DIsoAcdia 40631  DIsoBcdib 40741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-dib 40742
This theorem is referenced by:  dibglbN  40769  dib2dim  40846  dih2dimbALTN  40848
  Copyright terms: Public domain W3C validator