![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dibvalrel | Structured version Visualization version GIF version |
Description: The value of partial isomorphism B is a relation. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
dibcl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dibcl.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dibvalrel | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → Rel (𝐼‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5375 | . . 3 ⊢ Rel ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))}) | |
2 | dibcl.h | . . . . . . . 8 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | eqid 2778 | . . . . . . . 8 ⊢ ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) | |
4 | dibcl.i | . . . . . . . 8 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
5 | 2, 3, 4 | dibdiadm 37314 | . . . . . . 7 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → dom 𝐼 = dom ((DIsoA‘𝐾)‘𝑊)) |
6 | 5 | eleq2d 2845 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐼 ↔ 𝑋 ∈ dom ((DIsoA‘𝐾)‘𝑊))) |
7 | 6 | biimpa 470 | . . . . 5 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom ((DIsoA‘𝐾)‘𝑊)) |
8 | eqid 2778 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
9 | eqid 2778 | . . . . . 6 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
10 | eqid 2778 | . . . . . 6 ⊢ (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) | |
11 | 8, 2, 9, 10, 3, 4 | dibval 37301 | . . . . 5 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom ((DIsoA‘𝐾)‘𝑊)) → (𝐼‘𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) |
12 | 7, 11 | syldan 585 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) |
13 | 12 | releqd 5453 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (Rel (𝐼‘𝑋) ↔ Rel ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))}))) |
14 | 1, 13 | mpbiri 250 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → Rel (𝐼‘𝑋)) |
15 | rel0 5472 | . . . 4 ⊢ Rel ∅ | |
16 | ndmfv 6478 | . . . . 5 ⊢ (¬ 𝑋 ∈ dom 𝐼 → (𝐼‘𝑋) = ∅) | |
17 | 16 | releqd 5453 | . . . 4 ⊢ (¬ 𝑋 ∈ dom 𝐼 → (Rel (𝐼‘𝑋) ↔ Rel ∅)) |
18 | 15, 17 | mpbiri 250 | . . 3 ⊢ (¬ 𝑋 ∈ dom 𝐼 → Rel (𝐼‘𝑋)) |
19 | 18 | adantl 475 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ ¬ 𝑋 ∈ dom 𝐼) → Rel (𝐼‘𝑋)) |
20 | 14, 19 | pm2.61dan 803 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → Rel (𝐼‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∅c0 4141 {csn 4398 ↦ cmpt 4967 I cid 5262 × cxp 5355 dom cdm 5357 ↾ cres 5359 Rel wrel 5362 ‘cfv 6137 Basecbs 16259 LHypclh 36143 LTrncltrn 36260 DIsoAcdia 37187 DIsoBcdib 37297 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-dib 37298 |
This theorem is referenced by: dibglbN 37325 dib2dim 37402 dih2dimbALTN 37404 |
Copyright terms: Public domain | W3C validator |