| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dibvalrel | Structured version Visualization version GIF version | ||
| Description: The value of partial isomorphism B is a relation. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| dibcl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dibcl.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dibvalrel | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → Rel (𝐼‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5634 | . . 3 ⊢ Rel ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))}) | |
| 2 | dibcl.h | . . . . . . . 8 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | eqid 2731 | . . . . . . . 8 ⊢ ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) | |
| 4 | dibcl.i | . . . . . . . 8 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
| 5 | 2, 3, 4 | dibdiadm 41193 | . . . . . . 7 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → dom 𝐼 = dom ((DIsoA‘𝐾)‘𝑊)) |
| 6 | 5 | eleq2d 2817 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐼 ↔ 𝑋 ∈ dom ((DIsoA‘𝐾)‘𝑊))) |
| 7 | 6 | biimpa 476 | . . . . 5 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom ((DIsoA‘𝐾)‘𝑊)) |
| 8 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 9 | eqid 2731 | . . . . . 6 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
| 10 | eqid 2731 | . . . . . 6 ⊢ (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) | |
| 11 | 8, 2, 9, 10, 3, 4 | dibval 41180 | . . . . 5 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom ((DIsoA‘𝐾)‘𝑊)) → (𝐼‘𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) |
| 12 | 7, 11 | syldan 591 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) |
| 13 | 12 | releqd 5719 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (Rel (𝐼‘𝑋) ↔ Rel ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))}))) |
| 14 | 1, 13 | mpbiri 258 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → Rel (𝐼‘𝑋)) |
| 15 | rel0 5739 | . . . 4 ⊢ Rel ∅ | |
| 16 | ndmfv 6854 | . . . . 5 ⊢ (¬ 𝑋 ∈ dom 𝐼 → (𝐼‘𝑋) = ∅) | |
| 17 | 16 | releqd 5719 | . . . 4 ⊢ (¬ 𝑋 ∈ dom 𝐼 → (Rel (𝐼‘𝑋) ↔ Rel ∅)) |
| 18 | 15, 17 | mpbiri 258 | . . 3 ⊢ (¬ 𝑋 ∈ dom 𝐼 → Rel (𝐼‘𝑋)) |
| 19 | 18 | adantl 481 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ ¬ 𝑋 ∈ dom 𝐼) → Rel (𝐼‘𝑋)) |
| 20 | 14, 19 | pm2.61dan 812 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → Rel (𝐼‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∅c0 4283 {csn 4576 ↦ cmpt 5172 I cid 5510 × cxp 5614 dom cdm 5616 ↾ cres 5618 Rel wrel 5621 ‘cfv 6481 Basecbs 17117 LHypclh 40022 LTrncltrn 40139 DIsoAcdia 41066 DIsoBcdib 41176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-dib 41177 |
| This theorem is referenced by: dibglbN 41204 dib2dim 41281 dih2dimbALTN 41283 |
| Copyright terms: Public domain | W3C validator |