Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibvalrel Structured version   Visualization version   GIF version

Theorem dibvalrel 40337
Description: The value of partial isomorphism B is a relation. (Contributed by NM, 8-Mar-2014.)
Hypotheses
Ref Expression
dibcl.h 𝐻 = (LHypβ€˜πΎ)
dibcl.i 𝐼 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
dibvalrel ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ Rel (πΌβ€˜π‘‹))

Proof of Theorem dibvalrel
Dummy variable β„Ž is distinct from all other variables.
StepHypRef Expression
1 relxp 5693 . . 3 Rel ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) Γ— {(β„Ž ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ (Baseβ€˜πΎ)))})
2 dibcl.h . . . . . . . 8 𝐻 = (LHypβ€˜πΎ)
3 eqid 2730 . . . . . . . 8 ((DIsoAβ€˜πΎ)β€˜π‘Š) = ((DIsoAβ€˜πΎ)β€˜π‘Š)
4 dibcl.i . . . . . . . 8 𝐼 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
52, 3, 4dibdiadm 40329 . . . . . . 7 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ dom 𝐼 = dom ((DIsoAβ€˜πΎ)β€˜π‘Š))
65eleq2d 2817 . . . . . 6 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ (𝑋 ∈ dom 𝐼 ↔ 𝑋 ∈ dom ((DIsoAβ€˜πΎ)β€˜π‘Š)))
76biimpa 475 . . . . 5 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) β†’ 𝑋 ∈ dom ((DIsoAβ€˜πΎ)β€˜π‘Š))
8 eqid 2730 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
9 eqid 2730 . . . . . 6 ((LTrnβ€˜πΎ)β€˜π‘Š) = ((LTrnβ€˜πΎ)β€˜π‘Š)
10 eqid 2730 . . . . . 6 (β„Ž ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ (Baseβ€˜πΎ))) = (β„Ž ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ (Baseβ€˜πΎ)))
118, 2, 9, 10, 3, 4dibval 40316 . . . . 5 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ dom ((DIsoAβ€˜πΎ)β€˜π‘Š)) β†’ (πΌβ€˜π‘‹) = ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) Γ— {(β„Ž ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ (Baseβ€˜πΎ)))}))
127, 11syldan 589 . . . 4 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) β†’ (πΌβ€˜π‘‹) = ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) Γ— {(β„Ž ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ (Baseβ€˜πΎ)))}))
1312releqd 5777 . . 3 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) β†’ (Rel (πΌβ€˜π‘‹) ↔ Rel ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) Γ— {(β„Ž ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ( I β†Ύ (Baseβ€˜πΎ)))})))
141, 13mpbiri 257 . 2 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) β†’ Rel (πΌβ€˜π‘‹))
15 rel0 5798 . . . 4 Rel βˆ…
16 ndmfv 6925 . . . . 5 (Β¬ 𝑋 ∈ dom 𝐼 β†’ (πΌβ€˜π‘‹) = βˆ…)
1716releqd 5777 . . . 4 (Β¬ 𝑋 ∈ dom 𝐼 β†’ (Rel (πΌβ€˜π‘‹) ↔ Rel βˆ…))
1815, 17mpbiri 257 . . 3 (Β¬ 𝑋 ∈ dom 𝐼 β†’ Rel (πΌβ€˜π‘‹))
1918adantl 480 . 2 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ Β¬ 𝑋 ∈ dom 𝐼) β†’ Rel (πΌβ€˜π‘‹))
2014, 19pm2.61dan 809 1 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ Rel (πΌβ€˜π‘‹))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   = wceq 1539   ∈ wcel 2104  βˆ…c0 4321  {csn 4627   ↦ cmpt 5230   I cid 5572   Γ— cxp 5673  dom cdm 5675   β†Ύ cres 5677  Rel wrel 5680  β€˜cfv 6542  Basecbs 17148  LHypclh 39158  LTrncltrn 39275  DIsoAcdia 40202  DIsoBcdib 40312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-dib 40313
This theorem is referenced by:  dibglbN  40340  dib2dim  40417  dih2dimbALTN  40419
  Copyright terms: Public domain W3C validator