| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dibvalrel | Structured version Visualization version GIF version | ||
| Description: The value of partial isomorphism B is a relation. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| dibcl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dibcl.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dibvalrel | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → Rel (𝐼‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5659 | . . 3 ⊢ Rel ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))}) | |
| 2 | dibcl.h | . . . . . . . 8 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | eqid 2730 | . . . . . . . 8 ⊢ ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) | |
| 4 | dibcl.i | . . . . . . . 8 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
| 5 | 2, 3, 4 | dibdiadm 41156 | . . . . . . 7 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → dom 𝐼 = dom ((DIsoA‘𝐾)‘𝑊)) |
| 6 | 5 | eleq2d 2815 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐼 ↔ 𝑋 ∈ dom ((DIsoA‘𝐾)‘𝑊))) |
| 7 | 6 | biimpa 476 | . . . . 5 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom ((DIsoA‘𝐾)‘𝑊)) |
| 8 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 9 | eqid 2730 | . . . . . 6 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
| 10 | eqid 2730 | . . . . . 6 ⊢ (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) | |
| 11 | 8, 2, 9, 10, 3, 4 | dibval 41143 | . . . . 5 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom ((DIsoA‘𝐾)‘𝑊)) → (𝐼‘𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) |
| 12 | 7, 11 | syldan 591 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) |
| 13 | 12 | releqd 5744 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (Rel (𝐼‘𝑋) ↔ Rel ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))}))) |
| 14 | 1, 13 | mpbiri 258 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → Rel (𝐼‘𝑋)) |
| 15 | rel0 5765 | . . . 4 ⊢ Rel ∅ | |
| 16 | ndmfv 6896 | . . . . 5 ⊢ (¬ 𝑋 ∈ dom 𝐼 → (𝐼‘𝑋) = ∅) | |
| 17 | 16 | releqd 5744 | . . . 4 ⊢ (¬ 𝑋 ∈ dom 𝐼 → (Rel (𝐼‘𝑋) ↔ Rel ∅)) |
| 18 | 15, 17 | mpbiri 258 | . . 3 ⊢ (¬ 𝑋 ∈ dom 𝐼 → Rel (𝐼‘𝑋)) |
| 19 | 18 | adantl 481 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ ¬ 𝑋 ∈ dom 𝐼) → Rel (𝐼‘𝑋)) |
| 20 | 14, 19 | pm2.61dan 812 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → Rel (𝐼‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4299 {csn 4592 ↦ cmpt 5191 I cid 5535 × cxp 5639 dom cdm 5641 ↾ cres 5643 Rel wrel 5646 ‘cfv 6514 Basecbs 17186 LHypclh 39985 LTrncltrn 40102 DIsoAcdia 41029 DIsoBcdib 41139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-dib 41140 |
| This theorem is referenced by: dibglbN 41167 dib2dim 41244 dih2dimbALTN 41246 |
| Copyright terms: Public domain | W3C validator |