Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibvalrel Structured version   Visualization version   GIF version

Theorem dibvalrel 39156
Description: The value of partial isomorphism B is a relation. (Contributed by NM, 8-Mar-2014.)
Hypotheses
Ref Expression
dibcl.h 𝐻 = (LHyp‘𝐾)
dibcl.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibvalrel ((𝐾𝑉𝑊𝐻) → Rel (𝐼𝑋))

Proof of Theorem dibvalrel
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 relxp 5606 . . 3 Rel ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})
2 dibcl.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
3 eqid 2739 . . . . . . . 8 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
4 dibcl.i . . . . . . . 8 𝐼 = ((DIsoB‘𝐾)‘𝑊)
52, 3, 4dibdiadm 39148 . . . . . . 7 ((𝐾𝑉𝑊𝐻) → dom 𝐼 = dom ((DIsoA‘𝐾)‘𝑊))
65eleq2d 2825 . . . . . 6 ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom 𝐼𝑋 ∈ dom ((DIsoA‘𝐾)‘𝑊)))
76biimpa 476 . . . . 5 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom ((DIsoA‘𝐾)‘𝑊))
8 eqid 2739 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
9 eqid 2739 . . . . . 6 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
10 eqid 2739 . . . . . 6 ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))
118, 2, 9, 10, 3, 4dibval 39135 . . . . 5 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom ((DIsoA‘𝐾)‘𝑊)) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))}))
127, 11syldan 590 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))}))
1312releqd 5687 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (Rel (𝐼𝑋) ↔ Rel ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})))
141, 13mpbiri 257 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → Rel (𝐼𝑋))
15 rel0 5706 . . . 4 Rel ∅
16 ndmfv 6798 . . . . 5 𝑋 ∈ dom 𝐼 → (𝐼𝑋) = ∅)
1716releqd 5687 . . . 4 𝑋 ∈ dom 𝐼 → (Rel (𝐼𝑋) ↔ Rel ∅))
1815, 17mpbiri 257 . . 3 𝑋 ∈ dom 𝐼 → Rel (𝐼𝑋))
1918adantl 481 . 2 (((𝐾𝑉𝑊𝐻) ∧ ¬ 𝑋 ∈ dom 𝐼) → Rel (𝐼𝑋))
2014, 19pm2.61dan 809 1 ((𝐾𝑉𝑊𝐻) → Rel (𝐼𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2109  c0 4261  {csn 4566  cmpt 5161   I cid 5487   × cxp 5586  dom cdm 5588  cres 5590  Rel wrel 5593  cfv 6430  Basecbs 16893  LHypclh 37977  LTrncltrn 38094  DIsoAcdia 39021  DIsoBcdib 39131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-dib 39132
This theorem is referenced by:  dibglbN  39159  dib2dim  39236  dih2dimbALTN  39238
  Copyright terms: Public domain W3C validator