Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dibvalrel | Structured version Visualization version GIF version |
Description: The value of partial isomorphism B is a relation. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
dibcl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dibcl.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dibvalrel | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → Rel (𝐼‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5606 | . . 3 ⊢ Rel ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))}) | |
2 | dibcl.h | . . . . . . . 8 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | eqid 2739 | . . . . . . . 8 ⊢ ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) | |
4 | dibcl.i | . . . . . . . 8 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
5 | 2, 3, 4 | dibdiadm 39148 | . . . . . . 7 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → dom 𝐼 = dom ((DIsoA‘𝐾)‘𝑊)) |
6 | 5 | eleq2d 2825 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐼 ↔ 𝑋 ∈ dom ((DIsoA‘𝐾)‘𝑊))) |
7 | 6 | biimpa 476 | . . . . 5 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom ((DIsoA‘𝐾)‘𝑊)) |
8 | eqid 2739 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
9 | eqid 2739 | . . . . . 6 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
10 | eqid 2739 | . . . . . 6 ⊢ (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) | |
11 | 8, 2, 9, 10, 3, 4 | dibval 39135 | . . . . 5 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom ((DIsoA‘𝐾)‘𝑊)) → (𝐼‘𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) |
12 | 7, 11 | syldan 590 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) |
13 | 12 | releqd 5687 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (Rel (𝐼‘𝑋) ↔ Rel ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))}))) |
14 | 1, 13 | mpbiri 257 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → Rel (𝐼‘𝑋)) |
15 | rel0 5706 | . . . 4 ⊢ Rel ∅ | |
16 | ndmfv 6798 | . . . . 5 ⊢ (¬ 𝑋 ∈ dom 𝐼 → (𝐼‘𝑋) = ∅) | |
17 | 16 | releqd 5687 | . . . 4 ⊢ (¬ 𝑋 ∈ dom 𝐼 → (Rel (𝐼‘𝑋) ↔ Rel ∅)) |
18 | 15, 17 | mpbiri 257 | . . 3 ⊢ (¬ 𝑋 ∈ dom 𝐼 → Rel (𝐼‘𝑋)) |
19 | 18 | adantl 481 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ ¬ 𝑋 ∈ dom 𝐼) → Rel (𝐼‘𝑋)) |
20 | 14, 19 | pm2.61dan 809 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → Rel (𝐼‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∅c0 4261 {csn 4566 ↦ cmpt 5161 I cid 5487 × cxp 5586 dom cdm 5588 ↾ cres 5590 Rel wrel 5593 ‘cfv 6430 Basecbs 16893 LHypclh 37977 LTrncltrn 38094 DIsoAcdia 39021 DIsoBcdib 39131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-dib 39132 |
This theorem is referenced by: dibglbN 39159 dib2dim 39236 dih2dimbALTN 39238 |
Copyright terms: Public domain | W3C validator |