Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tpos0 | Structured version Visualization version GIF version |
Description: Transposition of the empty set. (Contributed by NM, 10-Sep-2015.) |
Ref | Expression |
---|---|
tpos0 | ⊢ tpos ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rel0 5698 | . . . 4 ⊢ Rel ∅ | |
2 | eqid 2738 | . . . . 5 ⊢ ∅ = ∅ | |
3 | fn0 6548 | . . . . 5 ⊢ (∅ Fn ∅ ↔ ∅ = ∅) | |
4 | 2, 3 | mpbir 230 | . . . 4 ⊢ ∅ Fn ∅ |
5 | tposfn2 8035 | . . . 4 ⊢ (Rel ∅ → (∅ Fn ∅ → tpos ∅ Fn ◡∅)) | |
6 | 1, 4, 5 | mp2 9 | . . 3 ⊢ tpos ∅ Fn ◡∅ |
7 | cnv0 6033 | . . . 4 ⊢ ◡∅ = ∅ | |
8 | 7 | fneq2i 6515 | . . 3 ⊢ (tpos ∅ Fn ◡∅ ↔ tpos ∅ Fn ∅) |
9 | 6, 8 | mpbi 229 | . 2 ⊢ tpos ∅ Fn ∅ |
10 | fn0 6548 | . 2 ⊢ (tpos ∅ Fn ∅ ↔ tpos ∅ = ∅) | |
11 | 9, 10 | mpbi 229 | 1 ⊢ tpos ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∅c0 4253 ◡ccnv 5579 Rel wrel 5585 Fn wfn 6413 tpos ctpos 8012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 df-tpos 8013 |
This theorem is referenced by: oppchomfval 17340 oppchomfvalOLD 17341 oppgplusfval 18867 opprmulfval 19779 |
Copyright terms: Public domain | W3C validator |