| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpos0 | Structured version Visualization version GIF version | ||
| Description: Transposition of the empty set. (Contributed by NM, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| tpos0 | ⊢ tpos ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rel0 5778 | . . . 4 ⊢ Rel ∅ | |
| 2 | eqid 2735 | . . . . 5 ⊢ ∅ = ∅ | |
| 3 | fn0 6669 | . . . . 5 ⊢ (∅ Fn ∅ ↔ ∅ = ∅) | |
| 4 | 2, 3 | mpbir 231 | . . . 4 ⊢ ∅ Fn ∅ |
| 5 | tposfn2 8247 | . . . 4 ⊢ (Rel ∅ → (∅ Fn ∅ → tpos ∅ Fn ◡∅)) | |
| 6 | 1, 4, 5 | mp2 9 | . . 3 ⊢ tpos ∅ Fn ◡∅ |
| 7 | cnv0 6129 | . . . 4 ⊢ ◡∅ = ∅ | |
| 8 | 7 | fneq2i 6636 | . . 3 ⊢ (tpos ∅ Fn ◡∅ ↔ tpos ∅ Fn ∅) |
| 9 | 6, 8 | mpbi 230 | . 2 ⊢ tpos ∅ Fn ∅ |
| 10 | fn0 6669 | . 2 ⊢ (tpos ∅ Fn ∅ ↔ tpos ∅ = ∅) | |
| 11 | 9, 10 | mpbi 230 | 1 ⊢ tpos ∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4308 ◡ccnv 5653 Rel wrel 5659 Fn wfn 6526 tpos ctpos 8224 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-fv 6539 df-tpos 8225 |
| This theorem is referenced by: oppchomfval 17726 oppgplusfval 19331 opprmulfval 20299 |
| Copyright terms: Public domain | W3C validator |