| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpos0 | Structured version Visualization version GIF version | ||
| Description: Transposition of the empty set. (Contributed by NM, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| tpos0 | ⊢ tpos ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rel0 5743 | . . . 4 ⊢ Rel ∅ | |
| 2 | eqid 2733 | . . . . 5 ⊢ ∅ = ∅ | |
| 3 | fn0 6617 | . . . . 5 ⊢ (∅ Fn ∅ ↔ ∅ = ∅) | |
| 4 | 2, 3 | mpbir 231 | . . . 4 ⊢ ∅ Fn ∅ |
| 5 | tposfn2 8184 | . . . 4 ⊢ (Rel ∅ → (∅ Fn ∅ → tpos ∅ Fn ◡∅)) | |
| 6 | 1, 4, 5 | mp2 9 | . . 3 ⊢ tpos ∅ Fn ◡∅ |
| 7 | cnv0 6091 | . . . 4 ⊢ ◡∅ = ∅ | |
| 8 | 7 | fneq2i 6584 | . . 3 ⊢ (tpos ∅ Fn ◡∅ ↔ tpos ∅ Fn ∅) |
| 9 | 6, 8 | mpbi 230 | . 2 ⊢ tpos ∅ Fn ∅ |
| 10 | fn0 6617 | . 2 ⊢ (tpos ∅ Fn ∅ ↔ tpos ∅ = ∅) | |
| 11 | 9, 10 | mpbi 230 | 1 ⊢ tpos ∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∅c0 4282 ◡ccnv 5618 Rel wrel 5624 Fn wfn 6481 tpos ctpos 8161 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 df-tpos 8162 |
| This theorem is referenced by: oppchomfval 17622 oppgplusfval 19262 opprmulfval 20259 termolmd 49795 |
| Copyright terms: Public domain | W3C validator |