MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpos0 Structured version   Visualization version   GIF version

Theorem tpos0 8238
Description: Transposition of the empty set. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tpos0 tpos ∅ = ∅

Proof of Theorem tpos0
StepHypRef Expression
1 rel0 5765 . . . 4 Rel ∅
2 eqid 2730 . . . . 5 ∅ = ∅
3 fn0 6652 . . . . 5 (∅ Fn ∅ ↔ ∅ = ∅)
42, 3mpbir 231 . . . 4 ∅ Fn ∅
5 tposfn2 8230 . . . 4 (Rel ∅ → (∅ Fn ∅ → tpos ∅ Fn ∅))
61, 4, 5mp2 9 . . 3 tpos ∅ Fn
7 cnv0 6116 . . . 4 ∅ = ∅
87fneq2i 6619 . . 3 (tpos ∅ Fn ∅ ↔ tpos ∅ Fn ∅)
96, 8mpbi 230 . 2 tpos ∅ Fn ∅
10 fn0 6652 . 2 (tpos ∅ Fn ∅ ↔ tpos ∅ = ∅)
119, 10mpbi 230 1 tpos ∅ = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  c0 4299  ccnv 5640  Rel wrel 5646   Fn wfn 6509  tpos ctpos 8207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522  df-tpos 8208
This theorem is referenced by:  oppchomfval  17682  oppgplusfval  19287  opprmulfval  20255  termolmd  49663
  Copyright terms: Public domain W3C validator