MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpos0 Structured version   Visualization version   GIF version

Theorem tpos0 8297
Description: Transposition of the empty set. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tpos0 tpos ∅ = ∅

Proof of Theorem tpos0
StepHypRef Expression
1 rel0 5823 . . . 4 Rel ∅
2 eqid 2740 . . . . 5 ∅ = ∅
3 fn0 6711 . . . . 5 (∅ Fn ∅ ↔ ∅ = ∅)
42, 3mpbir 231 . . . 4 ∅ Fn ∅
5 tposfn2 8289 . . . 4 (Rel ∅ → (∅ Fn ∅ → tpos ∅ Fn ∅))
61, 4, 5mp2 9 . . 3 tpos ∅ Fn
7 cnv0 6172 . . . 4 ∅ = ∅
87fneq2i 6677 . . 3 (tpos ∅ Fn ∅ ↔ tpos ∅ Fn ∅)
96, 8mpbi 230 . 2 tpos ∅ Fn ∅
10 fn0 6711 . 2 (tpos ∅ Fn ∅ ↔ tpos ∅ = ∅)
119, 10mpbi 230 1 tpos ∅ = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  c0 4352  ccnv 5699  Rel wrel 5705   Fn wfn 6568  tpos ctpos 8266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-tpos 8267
This theorem is referenced by:  oppchomfval  17772  oppchomfvalOLD  17773  oppgplusfval  19388  opprmulfval  20362
  Copyright terms: Public domain W3C validator