![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpos0 | Structured version Visualization version GIF version |
Description: Transposition of the empty set. (Contributed by NM, 10-Sep-2015.) |
Ref | Expression |
---|---|
tpos0 | ⊢ tpos ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rel0 5445 | . . . 4 ⊢ Rel ∅ | |
2 | eqid 2797 | . . . . 5 ⊢ ∅ = ∅ | |
3 | fn0 6220 | . . . . 5 ⊢ (∅ Fn ∅ ↔ ∅ = ∅) | |
4 | 2, 3 | mpbir 223 | . . . 4 ⊢ ∅ Fn ∅ |
5 | tposfn2 7610 | . . . 4 ⊢ (Rel ∅ → (∅ Fn ∅ → tpos ∅ Fn ◡∅)) | |
6 | 1, 4, 5 | mp2 9 | . . 3 ⊢ tpos ∅ Fn ◡∅ |
7 | cnv0 5751 | . . . 4 ⊢ ◡∅ = ∅ | |
8 | 7 | fneq2i 6195 | . . 3 ⊢ (tpos ∅ Fn ◡∅ ↔ tpos ∅ Fn ∅) |
9 | 6, 8 | mpbi 222 | . 2 ⊢ tpos ∅ Fn ∅ |
10 | fn0 6220 | . 2 ⊢ (tpos ∅ Fn ∅ ↔ tpos ∅ = ∅) | |
11 | 9, 10 | mpbi 222 | 1 ⊢ tpos ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∅c0 4113 ◡ccnv 5309 Rel wrel 5315 Fn wfn 6094 tpos ctpos 7587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-fv 6107 df-tpos 7588 |
This theorem is referenced by: oppchomfval 16685 oppgplusfval 18087 opprmulfval 18938 |
Copyright terms: Public domain | W3C validator |