MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpos0 Structured version   Visualization version   GIF version

Theorem tpos0 8235
Description: Transposition of the empty set. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tpos0 tpos ∅ = ∅

Proof of Theorem tpos0
StepHypRef Expression
1 rel0 5762 . . . 4 Rel ∅
2 eqid 2729 . . . . 5 ∅ = ∅
3 fn0 6649 . . . . 5 (∅ Fn ∅ ↔ ∅ = ∅)
42, 3mpbir 231 . . . 4 ∅ Fn ∅
5 tposfn2 8227 . . . 4 (Rel ∅ → (∅ Fn ∅ → tpos ∅ Fn ∅))
61, 4, 5mp2 9 . . 3 tpos ∅ Fn
7 cnv0 6113 . . . 4 ∅ = ∅
87fneq2i 6616 . . 3 (tpos ∅ Fn ∅ ↔ tpos ∅ Fn ∅)
96, 8mpbi 230 . 2 tpos ∅ Fn ∅
10 fn0 6649 . 2 (tpos ∅ Fn ∅ ↔ tpos ∅ = ∅)
119, 10mpbi 230 1 tpos ∅ = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  c0 4296  ccnv 5637  Rel wrel 5643   Fn wfn 6506  tpos ctpos 8204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519  df-tpos 8205
This theorem is referenced by:  oppchomfval  17675  oppgplusfval  19280  opprmulfval  20248  termolmd  49659
  Copyright terms: Public domain W3C validator