| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpos0 | Structured version Visualization version GIF version | ||
| Description: Transposition of the empty set. (Contributed by NM, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| tpos0 | ⊢ tpos ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rel0 5746 | . . . 4 ⊢ Rel ∅ | |
| 2 | eqid 2729 | . . . . 5 ⊢ ∅ = ∅ | |
| 3 | fn0 6617 | . . . . 5 ⊢ (∅ Fn ∅ ↔ ∅ = ∅) | |
| 4 | 2, 3 | mpbir 231 | . . . 4 ⊢ ∅ Fn ∅ |
| 5 | tposfn2 8188 | . . . 4 ⊢ (Rel ∅ → (∅ Fn ∅ → tpos ∅ Fn ◡∅)) | |
| 6 | 1, 4, 5 | mp2 9 | . . 3 ⊢ tpos ∅ Fn ◡∅ |
| 7 | cnv0 6093 | . . . 4 ⊢ ◡∅ = ∅ | |
| 8 | 7 | fneq2i 6584 | . . 3 ⊢ (tpos ∅ Fn ◡∅ ↔ tpos ∅ Fn ∅) |
| 9 | 6, 8 | mpbi 230 | . 2 ⊢ tpos ∅ Fn ∅ |
| 10 | fn0 6617 | . 2 ⊢ (tpos ∅ Fn ∅ ↔ tpos ∅ = ∅) | |
| 11 | 9, 10 | mpbi 230 | 1 ⊢ tpos ∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4286 ◡ccnv 5622 Rel wrel 5628 Fn wfn 6481 tpos ctpos 8165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 df-tpos 8166 |
| This theorem is referenced by: oppchomfval 17638 oppgplusfval 19245 opprmulfval 20242 termolmd 49656 |
| Copyright terms: Public domain | W3C validator |