MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpos0 Structured version   Visualization version   GIF version

Theorem tpos0 8196
Description: Transposition of the empty set. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tpos0 tpos ∅ = ∅

Proof of Theorem tpos0
StepHypRef Expression
1 rel0 5746 . . . 4 Rel ∅
2 eqid 2729 . . . . 5 ∅ = ∅
3 fn0 6617 . . . . 5 (∅ Fn ∅ ↔ ∅ = ∅)
42, 3mpbir 231 . . . 4 ∅ Fn ∅
5 tposfn2 8188 . . . 4 (Rel ∅ → (∅ Fn ∅ → tpos ∅ Fn ∅))
61, 4, 5mp2 9 . . 3 tpos ∅ Fn
7 cnv0 6093 . . . 4 ∅ = ∅
87fneq2i 6584 . . 3 (tpos ∅ Fn ∅ ↔ tpos ∅ Fn ∅)
96, 8mpbi 230 . 2 tpos ∅ Fn ∅
10 fn0 6617 . 2 (tpos ∅ Fn ∅ ↔ tpos ∅ = ∅)
119, 10mpbi 230 1 tpos ∅ = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  c0 4286  ccnv 5622  Rel wrel 5628   Fn wfn 6481  tpos ctpos 8165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494  df-tpos 8166
This theorem is referenced by:  oppchomfval  17638  oppgplusfval  19245  opprmulfval  20242  termolmd  49656
  Copyright terms: Public domain W3C validator