| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpos0 | Structured version Visualization version GIF version | ||
| Description: Transposition of the empty set. (Contributed by NM, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| tpos0 | ⊢ tpos ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rel0 5809 | . . . 4 ⊢ Rel ∅ | |
| 2 | eqid 2737 | . . . . 5 ⊢ ∅ = ∅ | |
| 3 | fn0 6699 | . . . . 5 ⊢ (∅ Fn ∅ ↔ ∅ = ∅) | |
| 4 | 2, 3 | mpbir 231 | . . . 4 ⊢ ∅ Fn ∅ |
| 5 | tposfn2 8273 | . . . 4 ⊢ (Rel ∅ → (∅ Fn ∅ → tpos ∅ Fn ◡∅)) | |
| 6 | 1, 4, 5 | mp2 9 | . . 3 ⊢ tpos ∅ Fn ◡∅ |
| 7 | cnv0 6160 | . . . 4 ⊢ ◡∅ = ∅ | |
| 8 | 7 | fneq2i 6666 | . . 3 ⊢ (tpos ∅ Fn ◡∅ ↔ tpos ∅ Fn ∅) |
| 9 | 6, 8 | mpbi 230 | . 2 ⊢ tpos ∅ Fn ∅ |
| 10 | fn0 6699 | . 2 ⊢ (tpos ∅ Fn ∅ ↔ tpos ∅ = ∅) | |
| 11 | 9, 10 | mpbi 230 | 1 ⊢ tpos ∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4333 ◡ccnv 5684 Rel wrel 5690 Fn wfn 6556 tpos ctpos 8250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-fv 6569 df-tpos 8251 |
| This theorem is referenced by: oppchomfval 17757 oppgplusfval 19366 opprmulfval 20336 |
| Copyright terms: Public domain | W3C validator |