MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpos0 Structured version   Visualization version   GIF version

Theorem tpos0 8043
Description: Transposition of the empty set. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tpos0 tpos ∅ = ∅

Proof of Theorem tpos0
StepHypRef Expression
1 rel0 5698 . . . 4 Rel ∅
2 eqid 2738 . . . . 5 ∅ = ∅
3 fn0 6548 . . . . 5 (∅ Fn ∅ ↔ ∅ = ∅)
42, 3mpbir 230 . . . 4 ∅ Fn ∅
5 tposfn2 8035 . . . 4 (Rel ∅ → (∅ Fn ∅ → tpos ∅ Fn ∅))
61, 4, 5mp2 9 . . 3 tpos ∅ Fn
7 cnv0 6033 . . . 4 ∅ = ∅
87fneq2i 6515 . . 3 (tpos ∅ Fn ∅ ↔ tpos ∅ Fn ∅)
96, 8mpbi 229 . 2 tpos ∅ Fn ∅
10 fn0 6548 . 2 (tpos ∅ Fn ∅ ↔ tpos ∅ = ∅)
119, 10mpbi 229 1 tpos ∅ = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  c0 4253  ccnv 5579  Rel wrel 5585   Fn wfn 6413  tpos ctpos 8012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-tpos 8013
This theorem is referenced by:  oppchomfval  17340  oppchomfvalOLD  17341  oppgplusfval  18867  opprmulfval  19779
  Copyright terms: Public domain W3C validator