Step | Hyp | Ref
| Expression |
1 | | relopabv 5731 |
. . . 4
⊢ Rel
{〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑋)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} |
2 | | eqid 2738 |
. . . . . . . . . 10
⊢
(le‘𝐾) =
(le‘𝐾) |
3 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
4 | | dicvalrel.h |
. . . . . . . . . 10
⊢ 𝐻 = (LHyp‘𝐾) |
5 | | dicvalrel.i |
. . . . . . . . . 10
⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) |
6 | 2, 3, 4, 5 | dicdmN 39198 |
. . . . . . . . 9
⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → dom 𝐼 = {𝑝 ∈ (Atoms‘𝐾) ∣ ¬ 𝑝(le‘𝐾)𝑊}) |
7 | 6 | eleq2d 2824 |
. . . . . . . 8
⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐼 ↔ 𝑋 ∈ {𝑝 ∈ (Atoms‘𝐾) ∣ ¬ 𝑝(le‘𝐾)𝑊})) |
8 | | breq1 5077 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑋 → (𝑝(le‘𝐾)𝑊 ↔ 𝑋(le‘𝐾)𝑊)) |
9 | 8 | notbid 318 |
. . . . . . . . 9
⊢ (𝑝 = 𝑋 → (¬ 𝑝(le‘𝐾)𝑊 ↔ ¬ 𝑋(le‘𝐾)𝑊)) |
10 | 9 | elrab 3624 |
. . . . . . . 8
⊢ (𝑋 ∈ {𝑝 ∈ (Atoms‘𝐾) ∣ ¬ 𝑝(le‘𝐾)𝑊} ↔ (𝑋 ∈ (Atoms‘𝐾) ∧ ¬ 𝑋(le‘𝐾)𝑊)) |
11 | 7, 10 | bitrdi 287 |
. . . . . . 7
⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐼 ↔ (𝑋 ∈ (Atoms‘𝐾) ∧ ¬ 𝑋(le‘𝐾)𝑊))) |
12 | 11 | biimpa 477 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝑋 ∈ (Atoms‘𝐾) ∧ ¬ 𝑋(le‘𝐾)𝑊)) |
13 | | eqid 2738 |
. . . . . . 7
⊢
((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊) |
14 | | eqid 2738 |
. . . . . . 7
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) |
15 | | eqid 2738 |
. . . . . . 7
⊢
((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) |
16 | 2, 3, 4, 13, 14, 15, 5 | dicval 39190 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ (Atoms‘𝐾) ∧ ¬ 𝑋(le‘𝐾)𝑊)) → (𝐼‘𝑋) = {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑋)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}) |
17 | 12, 16 | syldan 591 |
. . . . 5
⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) = {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑋)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}) |
18 | 17 | releqd 5689 |
. . . 4
⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (Rel (𝐼‘𝑋) ↔ Rel {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑋)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))})) |
19 | 1, 18 | mpbiri 257 |
. . 3
⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → Rel (𝐼‘𝑋)) |
20 | 19 | ex 413 |
. 2
⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐼 → Rel (𝐼‘𝑋))) |
21 | | rel0 5709 |
. . 3
⊢ Rel
∅ |
22 | | ndmfv 6804 |
. . . 4
⊢ (¬
𝑋 ∈ dom 𝐼 → (𝐼‘𝑋) = ∅) |
23 | 22 | releqd 5689 |
. . 3
⊢ (¬
𝑋 ∈ dom 𝐼 → (Rel (𝐼‘𝑋) ↔ Rel ∅)) |
24 | 21, 23 | mpbiri 257 |
. 2
⊢ (¬
𝑋 ∈ dom 𝐼 → Rel (𝐼‘𝑋)) |
25 | 20, 24 | pm2.61d1 180 |
1
⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → Rel (𝐼‘𝑋)) |