Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicvalrelN Structured version   Visualization version   GIF version

Theorem dicvalrelN 41179
Description: The value of partial isomorphism C is a relation. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dicvalrel.h 𝐻 = (LHyp‘𝐾)
dicvalrel.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
Assertion
Ref Expression
dicvalrelN ((𝐾𝑉𝑊𝐻) → Rel (𝐼𝑋))

Proof of Theorem dicvalrelN
Dummy variables 𝑓 𝑔 𝑝 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopabv 5784 . . . 4 Rel {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑋)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}
2 eqid 2729 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
3 eqid 2729 . . . . . . . . . 10 (Atoms‘𝐾) = (Atoms‘𝐾)
4 dicvalrel.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
5 dicvalrel.i . . . . . . . . . 10 𝐼 = ((DIsoC‘𝐾)‘𝑊)
62, 3, 4, 5dicdmN 41178 . . . . . . . . 9 ((𝐾𝑉𝑊𝐻) → dom 𝐼 = {𝑝 ∈ (Atoms‘𝐾) ∣ ¬ 𝑝(le‘𝐾)𝑊})
76eleq2d 2814 . . . . . . . 8 ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom 𝐼𝑋 ∈ {𝑝 ∈ (Atoms‘𝐾) ∣ ¬ 𝑝(le‘𝐾)𝑊}))
8 breq1 5110 . . . . . . . . . 10 (𝑝 = 𝑋 → (𝑝(le‘𝐾)𝑊𝑋(le‘𝐾)𝑊))
98notbid 318 . . . . . . . . 9 (𝑝 = 𝑋 → (¬ 𝑝(le‘𝐾)𝑊 ↔ ¬ 𝑋(le‘𝐾)𝑊))
109elrab 3659 . . . . . . . 8 (𝑋 ∈ {𝑝 ∈ (Atoms‘𝐾) ∣ ¬ 𝑝(le‘𝐾)𝑊} ↔ (𝑋 ∈ (Atoms‘𝐾) ∧ ¬ 𝑋(le‘𝐾)𝑊))
117, 10bitrdi 287 . . . . . . 7 ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom 𝐼 ↔ (𝑋 ∈ (Atoms‘𝐾) ∧ ¬ 𝑋(le‘𝐾)𝑊)))
1211biimpa 476 . . . . . 6 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝑋 ∈ (Atoms‘𝐾) ∧ ¬ 𝑋(le‘𝐾)𝑊))
13 eqid 2729 . . . . . . 7 ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊)
14 eqid 2729 . . . . . . 7 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
15 eqid 2729 . . . . . . 7 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
162, 3, 4, 13, 14, 15, 5dicval 41170 . . . . . 6 (((𝐾𝑉𝑊𝐻) ∧ (𝑋 ∈ (Atoms‘𝐾) ∧ ¬ 𝑋(le‘𝐾)𝑊)) → (𝐼𝑋) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑋)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))})
1712, 16syldan 591 . . . . 5 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑋)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))})
1817releqd 5741 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (Rel (𝐼𝑋) ↔ Rel {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑋)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}))
191, 18mpbiri 258 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → Rel (𝐼𝑋))
2019ex 412 . 2 ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom 𝐼 → Rel (𝐼𝑋)))
21 rel0 5762 . . 3 Rel ∅
22 ndmfv 6893 . . . 4 𝑋 ∈ dom 𝐼 → (𝐼𝑋) = ∅)
2322releqd 5741 . . 3 𝑋 ∈ dom 𝐼 → (Rel (𝐼𝑋) ↔ Rel ∅))
2421, 23mpbiri 258 . 2 𝑋 ∈ dom 𝐼 → Rel (𝐼𝑋))
2520, 24pm2.61d1 180 1 ((𝐾𝑉𝑊𝐻) → Rel (𝐼𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  c0 4296   class class class wbr 5107  {copab 5169  dom cdm 5638  Rel wrel 5643  cfv 6511  crio 7343  lecple 17227  occoc 17228  Atomscatm 39256  LHypclh 39978  LTrncltrn 40095  TEndoctendo 40746  DIsoCcdic 41166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-dic 41167
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator