Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicvalrelN Structured version   Visualization version   GIF version

Theorem dicvalrelN 38336
Description: The value of partial isomorphism C is a relation. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dicvalrel.h 𝐻 = (LHyp‘𝐾)
dicvalrel.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
Assertion
Ref Expression
dicvalrelN ((𝐾𝑉𝑊𝐻) → Rel (𝐼𝑋))

Proof of Theorem dicvalrelN
Dummy variables 𝑓 𝑔 𝑝 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 5696 . . . 4 Rel {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑋)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}
2 eqid 2821 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
3 eqid 2821 . . . . . . . . . 10 (Atoms‘𝐾) = (Atoms‘𝐾)
4 dicvalrel.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
5 dicvalrel.i . . . . . . . . . 10 𝐼 = ((DIsoC‘𝐾)‘𝑊)
62, 3, 4, 5dicdmN 38335 . . . . . . . . 9 ((𝐾𝑉𝑊𝐻) → dom 𝐼 = {𝑝 ∈ (Atoms‘𝐾) ∣ ¬ 𝑝(le‘𝐾)𝑊})
76eleq2d 2898 . . . . . . . 8 ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom 𝐼𝑋 ∈ {𝑝 ∈ (Atoms‘𝐾) ∣ ¬ 𝑝(le‘𝐾)𝑊}))
8 breq1 5069 . . . . . . . . . 10 (𝑝 = 𝑋 → (𝑝(le‘𝐾)𝑊𝑋(le‘𝐾)𝑊))
98notbid 320 . . . . . . . . 9 (𝑝 = 𝑋 → (¬ 𝑝(le‘𝐾)𝑊 ↔ ¬ 𝑋(le‘𝐾)𝑊))
109elrab 3680 . . . . . . . 8 (𝑋 ∈ {𝑝 ∈ (Atoms‘𝐾) ∣ ¬ 𝑝(le‘𝐾)𝑊} ↔ (𝑋 ∈ (Atoms‘𝐾) ∧ ¬ 𝑋(le‘𝐾)𝑊))
117, 10syl6bb 289 . . . . . . 7 ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom 𝐼 ↔ (𝑋 ∈ (Atoms‘𝐾) ∧ ¬ 𝑋(le‘𝐾)𝑊)))
1211biimpa 479 . . . . . 6 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝑋 ∈ (Atoms‘𝐾) ∧ ¬ 𝑋(le‘𝐾)𝑊))
13 eqid 2821 . . . . . . 7 ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊)
14 eqid 2821 . . . . . . 7 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
15 eqid 2821 . . . . . . 7 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
162, 3, 4, 13, 14, 15, 5dicval 38327 . . . . . 6 (((𝐾𝑉𝑊𝐻) ∧ (𝑋 ∈ (Atoms‘𝐾) ∧ ¬ 𝑋(le‘𝐾)𝑊)) → (𝐼𝑋) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑋)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))})
1712, 16syldan 593 . . . . 5 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑋)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))})
1817releqd 5653 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (Rel (𝐼𝑋) ↔ Rel {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑋)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}))
191, 18mpbiri 260 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → Rel (𝐼𝑋))
2019ex 415 . 2 ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom 𝐼 → Rel (𝐼𝑋)))
21 rel0 5672 . . 3 Rel ∅
22 ndmfv 6700 . . . 4 𝑋 ∈ dom 𝐼 → (𝐼𝑋) = ∅)
2322releqd 5653 . . 3 𝑋 ∈ dom 𝐼 → (Rel (𝐼𝑋) ↔ Rel ∅))
2421, 23mpbiri 260 . 2 𝑋 ∈ dom 𝐼 → Rel (𝐼𝑋))
2520, 24pm2.61d1 182 1 ((𝐾𝑉𝑊𝐻) → Rel (𝐼𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  {crab 3142  c0 4291   class class class wbr 5066  {copab 5128  dom cdm 5555  Rel wrel 5560  cfv 6355  crio 7113  lecple 16572  occoc 16573  Atomscatm 36414  LHypclh 37135  LTrncltrn 37252  TEndoctendo 37903  DIsoCcdic 38323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-dic 38324
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator