Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicvalrelN Structured version   Visualization version   GIF version

Theorem dicvalrelN 41294
Description: The value of partial isomorphism C is a relation. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dicvalrel.h 𝐻 = (LHyp‘𝐾)
dicvalrel.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
Assertion
Ref Expression
dicvalrelN ((𝐾𝑉𝑊𝐻) → Rel (𝐼𝑋))

Proof of Theorem dicvalrelN
Dummy variables 𝑓 𝑔 𝑝 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopabv 5760 . . . 4 Rel {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑋)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}
2 eqid 2731 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
3 eqid 2731 . . . . . . . . . 10 (Atoms‘𝐾) = (Atoms‘𝐾)
4 dicvalrel.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
5 dicvalrel.i . . . . . . . . . 10 𝐼 = ((DIsoC‘𝐾)‘𝑊)
62, 3, 4, 5dicdmN 41293 . . . . . . . . 9 ((𝐾𝑉𝑊𝐻) → dom 𝐼 = {𝑝 ∈ (Atoms‘𝐾) ∣ ¬ 𝑝(le‘𝐾)𝑊})
76eleq2d 2817 . . . . . . . 8 ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom 𝐼𝑋 ∈ {𝑝 ∈ (Atoms‘𝐾) ∣ ¬ 𝑝(le‘𝐾)𝑊}))
8 breq1 5092 . . . . . . . . . 10 (𝑝 = 𝑋 → (𝑝(le‘𝐾)𝑊𝑋(le‘𝐾)𝑊))
98notbid 318 . . . . . . . . 9 (𝑝 = 𝑋 → (¬ 𝑝(le‘𝐾)𝑊 ↔ ¬ 𝑋(le‘𝐾)𝑊))
109elrab 3642 . . . . . . . 8 (𝑋 ∈ {𝑝 ∈ (Atoms‘𝐾) ∣ ¬ 𝑝(le‘𝐾)𝑊} ↔ (𝑋 ∈ (Atoms‘𝐾) ∧ ¬ 𝑋(le‘𝐾)𝑊))
117, 10bitrdi 287 . . . . . . 7 ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom 𝐼 ↔ (𝑋 ∈ (Atoms‘𝐾) ∧ ¬ 𝑋(le‘𝐾)𝑊)))
1211biimpa 476 . . . . . 6 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝑋 ∈ (Atoms‘𝐾) ∧ ¬ 𝑋(le‘𝐾)𝑊))
13 eqid 2731 . . . . . . 7 ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊)
14 eqid 2731 . . . . . . 7 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
15 eqid 2731 . . . . . . 7 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
162, 3, 4, 13, 14, 15, 5dicval 41285 . . . . . 6 (((𝐾𝑉𝑊𝐻) ∧ (𝑋 ∈ (Atoms‘𝐾) ∧ ¬ 𝑋(le‘𝐾)𝑊)) → (𝐼𝑋) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑋)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))})
1712, 16syldan 591 . . . . 5 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑋)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))})
1817releqd 5718 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (Rel (𝐼𝑋) ↔ Rel {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑋)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}))
191, 18mpbiri 258 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → Rel (𝐼𝑋))
2019ex 412 . 2 ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom 𝐼 → Rel (𝐼𝑋)))
21 rel0 5738 . . 3 Rel ∅
22 ndmfv 6854 . . . 4 𝑋 ∈ dom 𝐼 → (𝐼𝑋) = ∅)
2322releqd 5718 . . 3 𝑋 ∈ dom 𝐼 → (Rel (𝐼𝑋) ↔ Rel ∅))
2421, 23mpbiri 258 . 2 𝑋 ∈ dom 𝐼 → Rel (𝐼𝑋))
2520, 24pm2.61d1 180 1 ((𝐾𝑉𝑊𝐻) → Rel (𝐼𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  c0 4280   class class class wbr 5089  {copab 5151  dom cdm 5614  Rel wrel 5619  cfv 6481  crio 7302  lecple 17168  occoc 17169  Atomscatm 39372  LHypclh 40093  LTrncltrn 40210  TEndoctendo 40861  DIsoCcdic 41281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-dic 41282
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator