Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihvalrel Structured version   Visualization version   GIF version

Theorem dihvalrel 38916
Description: The value of isomorphism H is a relation. (Contributed by NM, 9-Mar-2014.)
Hypotheses
Ref Expression
dihvalrel.h 𝐻 = (LHyp‘𝐾)
dihvalrel.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
Assertion
Ref Expression
dihvalrel ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼𝑋))

Proof of Theorem dihvalrel
StepHypRef Expression
1 eqid 2738 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
2 dihvalrel.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 dihvalrel.i . . . . 5 𝐼 = ((DIsoH‘𝐾)‘𝑊)
41, 2, 3dihdm 38906 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → dom 𝐼 = (Base‘𝐾))
54eleq2d 2818 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑋 ∈ dom 𝐼𝑋 ∈ (Base‘𝐾)))
6 eqid 2738 . . . . . . . 8 ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊)
7 eqid 2738 . . . . . . . 8 (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊))
81, 2, 3, 6, 7dihss 38888 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ (Base‘𝐾)) → (𝐼𝑋) ⊆ (Base‘((DVecH‘𝐾)‘𝑊)))
9 eqid 2738 . . . . . . . . 9 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
10 eqid 2738 . . . . . . . . 9 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
112, 9, 10, 6, 7dvhvbase 38724 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘((DVecH‘𝐾)‘𝑊)) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
1211adantr 484 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ (Base‘𝐾)) → (Base‘((DVecH‘𝐾)‘𝑊)) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
138, 12sseqtrd 3917 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ (Base‘𝐾)) → (𝐼𝑋) ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
14 xpss 5541 . . . . . 6 (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ⊆ (V × V)
1513, 14sstrdi 3889 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ (Base‘𝐾)) → (𝐼𝑋) ⊆ (V × V))
16 df-rel 5532 . . . . 5 (Rel (𝐼𝑋) ↔ (𝐼𝑋) ⊆ (V × V))
1715, 16sylibr 237 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ (Base‘𝐾)) → Rel (𝐼𝑋))
1817ex 416 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑋 ∈ (Base‘𝐾) → Rel (𝐼𝑋)))
195, 18sylbid 243 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑋 ∈ dom 𝐼 → Rel (𝐼𝑋)))
20 rel0 5643 . . 3 Rel ∅
21 ndmfv 6704 . . . 4 𝑋 ∈ dom 𝐼 → (𝐼𝑋) = ∅)
2221releqd 5624 . . 3 𝑋 ∈ dom 𝐼 → (Rel (𝐼𝑋) ↔ Rel ∅))
2320, 22mpbiri 261 . 2 𝑋 ∈ dom 𝐼 → Rel (𝐼𝑋))
2419, 23pm2.61d1 183 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1542  wcel 2114  Vcvv 3398  wss 3843  c0 4211   × cxp 5523  dom cdm 5525  Rel wrel 5530  cfv 6339  Basecbs 16586  HLchlt 36987  LHypclh 37621  LTrncltrn 37738  TEndoctendo 38389  DVecHcdvh 38715  DIsoHcdih 38865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-riotaBAD 36590
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-tpos 7921  df-undef 7968  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-n0 11977  df-z 12063  df-uz 12325  df-fz 12982  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-sca 16684  df-vsca 16685  df-0g 16818  df-proset 17654  df-poset 17672  df-plt 17684  df-lub 17700  df-glb 17701  df-join 17702  df-meet 17703  df-p0 17765  df-p1 17766  df-lat 17772  df-clat 17834  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-submnd 18073  df-grp 18222  df-minusg 18223  df-sbg 18224  df-subg 18394  df-cntz 18565  df-lsm 18879  df-cmn 19026  df-abl 19027  df-mgp 19359  df-ur 19371  df-ring 19418  df-oppr 19495  df-dvdsr 19513  df-unit 19514  df-invr 19544  df-dvr 19555  df-drng 19623  df-lmod 19755  df-lss 19823  df-lsp 19863  df-lvec 19994  df-oposet 36813  df-ol 36815  df-oml 36816  df-covers 36903  df-ats 36904  df-atl 36935  df-cvlat 36959  df-hlat 36988  df-llines 37135  df-lplanes 37136  df-lvols 37137  df-lines 37138  df-psubsp 37140  df-pmap 37141  df-padd 37433  df-lhyp 37625  df-laut 37626  df-ldil 37741  df-ltrn 37742  df-trl 37796  df-tendo 38392  df-edring 38394  df-disoa 38666  df-dvech 38716  df-dib 38776  df-dic 38810  df-dih 38866
This theorem is referenced by:  dih1  38923  dihmeetlem1N  38927  dihglblem5apreN  38928  dihglbcpreN  38937  dihmeetlem4preN  38943  dihmeetlem13N  38956  dihjatcclem4  39058
  Copyright terms: Public domain W3C validator