| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dihvalrel | Structured version Visualization version GIF version | ||
| Description: The value of isomorphism H is a relation. (Contributed by NM, 9-Mar-2014.) |
| Ref | Expression |
|---|---|
| dihvalrel.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dihvalrel.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dihvalrel | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → Rel (𝐼‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | dihvalrel.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | dihvalrel.i | . . . . 5 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 4 | 1, 2, 3 | dihdm 41236 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → dom 𝐼 = (Base‘𝐾)) |
| 5 | 4 | eleq2d 2814 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐼 ↔ 𝑋 ∈ (Base‘𝐾))) |
| 6 | eqid 2729 | . . . . . . . 8 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
| 7 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊)) | |
| 8 | 1, 2, 3, 6, 7 | dihss 41218 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ (Base‘𝐾)) → (𝐼‘𝑋) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 9 | eqid 2729 | . . . . . . . . 9 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
| 10 | eqid 2729 | . . . . . . . . 9 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
| 11 | 2, 9, 10, 6, 7 | dvhvbase 41054 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘((DVecH‘𝐾)‘𝑊)) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))) |
| 12 | 11 | adantr 480 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ (Base‘𝐾)) → (Base‘((DVecH‘𝐾)‘𝑊)) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))) |
| 13 | 8, 12 | sseqtrd 3980 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ (Base‘𝐾)) → (𝐼‘𝑋) ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))) |
| 14 | xpss 5647 | . . . . . 6 ⊢ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ⊆ (V × V) | |
| 15 | 13, 14 | sstrdi 3956 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ (Base‘𝐾)) → (𝐼‘𝑋) ⊆ (V × V)) |
| 16 | df-rel 5638 | . . . . 5 ⊢ (Rel (𝐼‘𝑋) ↔ (𝐼‘𝑋) ⊆ (V × V)) | |
| 17 | 15, 16 | sylibr 234 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ (Base‘𝐾)) → Rel (𝐼‘𝑋)) |
| 18 | 17 | ex 412 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ (Base‘𝐾) → Rel (𝐼‘𝑋))) |
| 19 | 5, 18 | sylbid 240 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐼 → Rel (𝐼‘𝑋))) |
| 20 | rel0 5753 | . . 3 ⊢ Rel ∅ | |
| 21 | ndmfv 6875 | . . . 4 ⊢ (¬ 𝑋 ∈ dom 𝐼 → (𝐼‘𝑋) = ∅) | |
| 22 | 21 | releqd 5733 | . . 3 ⊢ (¬ 𝑋 ∈ dom 𝐼 → (Rel (𝐼‘𝑋) ↔ Rel ∅)) |
| 23 | 20, 22 | mpbiri 258 | . 2 ⊢ (¬ 𝑋 ∈ dom 𝐼 → Rel (𝐼‘𝑋)) |
| 24 | 19, 23 | pm2.61d1 180 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → Rel (𝐼‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 ∅c0 4292 × cxp 5629 dom cdm 5631 Rel wrel 5636 ‘cfv 6499 Basecbs 17155 HLchlt 39316 LHypclh 39951 LTrncltrn 40068 TEndoctendo 40719 DVecHcdvh 41045 DIsoHcdih 41195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-riotaBAD 38919 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-undef 8229 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-0g 17380 df-proset 18231 df-poset 18250 df-plt 18265 df-lub 18281 df-glb 18282 df-join 18283 df-meet 18284 df-p0 18360 df-p1 18361 df-lat 18367 df-clat 18434 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-cntz 19225 df-lsm 19542 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-drng 20616 df-lmod 20744 df-lss 20814 df-lsp 20854 df-lvec 20986 df-oposet 39142 df-ol 39144 df-oml 39145 df-covers 39232 df-ats 39233 df-atl 39264 df-cvlat 39288 df-hlat 39317 df-llines 39465 df-lplanes 39466 df-lvols 39467 df-lines 39468 df-psubsp 39470 df-pmap 39471 df-padd 39763 df-lhyp 39955 df-laut 39956 df-ldil 40071 df-ltrn 40072 df-trl 40126 df-tendo 40722 df-edring 40724 df-disoa 40996 df-dvech 41046 df-dib 41106 df-dic 41140 df-dih 41196 |
| This theorem is referenced by: dih1 41253 dihmeetlem1N 41257 dihglblem5apreN 41258 dihglbcpreN 41267 dihmeetlem4preN 41273 dihmeetlem13N 41286 dihjatcclem4 41388 |
| Copyright terms: Public domain | W3C validator |