![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihvalrel | Structured version Visualization version GIF version |
Description: The value of isomorphism H is a relation. (Contributed by NM, 9-Mar-2014.) |
Ref | Expression |
---|---|
dihvalrel.h | β’ π» = (LHypβπΎ) |
dihvalrel.i | β’ πΌ = ((DIsoHβπΎ)βπ) |
Ref | Expression |
---|---|
dihvalrel | β’ ((πΎ β HL β§ π β π») β Rel (πΌβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . . . 5 β’ (BaseβπΎ) = (BaseβπΎ) | |
2 | dihvalrel.h | . . . . 5 β’ π» = (LHypβπΎ) | |
3 | dihvalrel.i | . . . . 5 β’ πΌ = ((DIsoHβπΎ)βπ) | |
4 | 1, 2, 3 | dihdm 40770 | . . . 4 β’ ((πΎ β HL β§ π β π») β dom πΌ = (BaseβπΎ)) |
5 | 4 | eleq2d 2811 | . . 3 β’ ((πΎ β HL β§ π β π») β (π β dom πΌ β π β (BaseβπΎ))) |
6 | eqid 2725 | . . . . . . . 8 β’ ((DVecHβπΎ)βπ) = ((DVecHβπΎ)βπ) | |
7 | eqid 2725 | . . . . . . . 8 β’ (Baseβ((DVecHβπΎ)βπ)) = (Baseβ((DVecHβπΎ)βπ)) | |
8 | 1, 2, 3, 6, 7 | dihss 40752 | . . . . . . 7 β’ (((πΎ β HL β§ π β π») β§ π β (BaseβπΎ)) β (πΌβπ) β (Baseβ((DVecHβπΎ)βπ))) |
9 | eqid 2725 | . . . . . . . . 9 β’ ((LTrnβπΎ)βπ) = ((LTrnβπΎ)βπ) | |
10 | eqid 2725 | . . . . . . . . 9 β’ ((TEndoβπΎ)βπ) = ((TEndoβπΎ)βπ) | |
11 | 2, 9, 10, 6, 7 | dvhvbase 40588 | . . . . . . . 8 β’ ((πΎ β HL β§ π β π») β (Baseβ((DVecHβπΎ)βπ)) = (((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ))) |
12 | 11 | adantr 479 | . . . . . . 7 β’ (((πΎ β HL β§ π β π») β§ π β (BaseβπΎ)) β (Baseβ((DVecHβπΎ)βπ)) = (((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ))) |
13 | 8, 12 | sseqtrd 4012 | . . . . . 6 β’ (((πΎ β HL β§ π β π») β§ π β (BaseβπΎ)) β (πΌβπ) β (((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ))) |
14 | xpss 5686 | . . . . . 6 β’ (((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ)) β (V Γ V) | |
15 | 13, 14 | sstrdi 3984 | . . . . 5 β’ (((πΎ β HL β§ π β π») β§ π β (BaseβπΎ)) β (πΌβπ) β (V Γ V)) |
16 | df-rel 5677 | . . . . 5 β’ (Rel (πΌβπ) β (πΌβπ) β (V Γ V)) | |
17 | 15, 16 | sylibr 233 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ π β (BaseβπΎ)) β Rel (πΌβπ)) |
18 | 17 | ex 411 | . . 3 β’ ((πΎ β HL β§ π β π») β (π β (BaseβπΎ) β Rel (πΌβπ))) |
19 | 5, 18 | sylbid 239 | . 2 β’ ((πΎ β HL β§ π β π») β (π β dom πΌ β Rel (πΌβπ))) |
20 | rel0 5793 | . . 3 β’ Rel β | |
21 | ndmfv 6925 | . . . 4 β’ (Β¬ π β dom πΌ β (πΌβπ) = β ) | |
22 | 21 | releqd 5772 | . . 3 β’ (Β¬ π β dom πΌ β (Rel (πΌβπ) β Rel β )) |
23 | 20, 22 | mpbiri 257 | . 2 β’ (Β¬ π β dom πΌ β Rel (πΌβπ)) |
24 | 19, 23 | pm2.61d1 180 | 1 β’ ((πΎ β HL β§ π β π») β Rel (πΌβπ)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 Vcvv 3463 β wss 3939 β c0 4316 Γ cxp 5668 dom cdm 5670 Rel wrel 5675 βcfv 6541 Basecbs 17177 HLchlt 38850 LHypclh 39485 LTrncltrn 39602 TEndoctendo 40253 DVecHcdvh 40579 DIsoHcdih 40729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-riotaBAD 38453 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-uni 4902 df-int 4943 df-iun 4991 df-iin 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7989 df-2nd 7990 df-tpos 8228 df-undef 8275 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-map 8843 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-n0 12501 df-z 12587 df-uz 12851 df-fz 13515 df-struct 17113 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-sca 17246 df-vsca 17247 df-0g 17420 df-proset 18284 df-poset 18302 df-plt 18319 df-lub 18335 df-glb 18336 df-join 18337 df-meet 18338 df-p0 18414 df-p1 18415 df-lat 18421 df-clat 18488 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-submnd 18738 df-grp 18895 df-minusg 18896 df-sbg 18897 df-subg 19080 df-cntz 19270 df-lsm 19593 df-cmn 19739 df-abl 19740 df-mgp 20077 df-rng 20095 df-ur 20124 df-ring 20177 df-oppr 20275 df-dvdsr 20298 df-unit 20299 df-invr 20329 df-dvr 20342 df-drng 20628 df-lmod 20747 df-lss 20818 df-lsp 20858 df-lvec 20990 df-oposet 38676 df-ol 38678 df-oml 38679 df-covers 38766 df-ats 38767 df-atl 38798 df-cvlat 38822 df-hlat 38851 df-llines 38999 df-lplanes 39000 df-lvols 39001 df-lines 39002 df-psubsp 39004 df-pmap 39005 df-padd 39297 df-lhyp 39489 df-laut 39490 df-ldil 39605 df-ltrn 39606 df-trl 39660 df-tendo 40256 df-edring 40258 df-disoa 40530 df-dvech 40580 df-dib 40640 df-dic 40674 df-dih 40730 |
This theorem is referenced by: dih1 40787 dihmeetlem1N 40791 dihglblem5apreN 40792 dihglbcpreN 40801 dihmeetlem4preN 40807 dihmeetlem13N 40820 dihjatcclem4 40922 |
Copyright terms: Public domain | W3C validator |