Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihvalrel Structured version   Visualization version   GIF version

Theorem dihvalrel 37061
Description: The value of isomorphism H is a relation. (Contributed by NM, 9-Mar-2014.)
Hypotheses
Ref Expression
dihvalrel.h 𝐻 = (LHyp‘𝐾)
dihvalrel.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
Assertion
Ref Expression
dihvalrel ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼𝑋))

Proof of Theorem dihvalrel
StepHypRef Expression
1 eqid 2813 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
2 dihvalrel.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 dihvalrel.i . . . . 5 𝐼 = ((DIsoH‘𝐾)‘𝑊)
41, 2, 3dihdm 37051 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → dom 𝐼 = (Base‘𝐾))
54eleq2d 2878 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑋 ∈ dom 𝐼𝑋 ∈ (Base‘𝐾)))
6 eqid 2813 . . . . . . . 8 ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊)
7 eqid 2813 . . . . . . . 8 (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊))
81, 2, 3, 6, 7dihss 37033 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ (Base‘𝐾)) → (𝐼𝑋) ⊆ (Base‘((DVecH‘𝐾)‘𝑊)))
9 eqid 2813 . . . . . . . . 9 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
10 eqid 2813 . . . . . . . . 9 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
112, 9, 10, 6, 7dvhvbase 36869 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘((DVecH‘𝐾)‘𝑊)) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
1211adantr 468 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ (Base‘𝐾)) → (Base‘((DVecH‘𝐾)‘𝑊)) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
138, 12sseqtrd 3845 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ (Base‘𝐾)) → (𝐼𝑋) ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
14 xpss 5334 . . . . . 6 (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ⊆ (V × V)
1513, 14syl6ss 3817 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ (Base‘𝐾)) → (𝐼𝑋) ⊆ (V × V))
16 df-rel 5325 . . . . 5 (Rel (𝐼𝑋) ↔ (𝐼𝑋) ⊆ (V × V))
1715, 16sylibr 225 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ (Base‘𝐾)) → Rel (𝐼𝑋))
1817ex 399 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑋 ∈ (Base‘𝐾) → Rel (𝐼𝑋)))
195, 18sylbid 231 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑋 ∈ dom 𝐼 → Rel (𝐼𝑋)))
20 rel0 5452 . . 3 Rel ∅
21 ndmfv 6441 . . . 4 𝑋 ∈ dom 𝐼 → (𝐼𝑋) = ∅)
2221releqd 5412 . . 3 𝑋 ∈ dom 𝐼 → (Rel (𝐼𝑋) ↔ Rel ∅))
2320, 22mpbiri 249 . 2 𝑋 ∈ dom 𝐼 → Rel (𝐼𝑋))
2419, 23pm2.61d1 172 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1637  wcel 2157  Vcvv 3398  wss 3776  c0 4123   × cxp 5316  dom cdm 5318  Rel wrel 5323  cfv 6104  Basecbs 16071  HLchlt 35132  LHypclh 35766  LTrncltrn 35883  TEndoctendo 36534  DVecHcdvh 36860  DIsoHcdih 37010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-rep 4971  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103  ax-un 7182  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-riotaBAD 34734
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3400  df-sbc 3641  df-csb 3736  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-pss 3792  df-nul 4124  df-if 4287  df-pw 4360  df-sn 4378  df-pr 4380  df-tp 4382  df-op 4384  df-uni 4638  df-int 4677  df-iun 4721  df-iin 4722  df-br 4852  df-opab 4914  df-mpt 4931  df-tr 4954  df-id 5226  df-eprel 5231  df-po 5239  df-so 5240  df-fr 5277  df-we 5279  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-pred 5900  df-ord 5946  df-on 5947  df-lim 5948  df-suc 5949  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-f1 6109  df-fo 6110  df-f1o 6111  df-fv 6112  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-om 7299  df-1st 7401  df-2nd 7402  df-tpos 7590  df-undef 7637  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10556  df-neg 10557  df-nn 11309  df-2 11367  df-3 11368  df-4 11369  df-5 11370  df-6 11371  df-n0 11563  df-z 11647  df-uz 11908  df-fz 12553  df-struct 16073  df-ndx 16074  df-slot 16075  df-base 16077  df-sets 16078  df-ress 16079  df-plusg 16169  df-mulr 16170  df-sca 16172  df-vsca 16173  df-0g 16310  df-proset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-p1 17248  df-lat 17254  df-clat 17316  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-grp 17633  df-minusg 17634  df-sbg 17635  df-subg 17796  df-cntz 17954  df-lsm 18255  df-cmn 18399  df-abl 18400  df-mgp 18695  df-ur 18707  df-ring 18754  df-oppr 18828  df-dvdsr 18846  df-unit 18847  df-invr 18877  df-dvr 18888  df-drng 18956  df-lmod 19072  df-lss 19140  df-lsp 19182  df-lvec 19313  df-oposet 34958  df-ol 34960  df-oml 34961  df-covers 35048  df-ats 35049  df-atl 35080  df-cvlat 35104  df-hlat 35133  df-llines 35280  df-lplanes 35281  df-lvols 35282  df-lines 35283  df-psubsp 35285  df-pmap 35286  df-padd 35578  df-lhyp 35770  df-laut 35771  df-ldil 35886  df-ltrn 35887  df-trl 35941  df-tendo 36537  df-edring 36539  df-disoa 36811  df-dvech 36861  df-dib 36921  df-dic 36955  df-dih 37011
This theorem is referenced by:  dih1  37068  dihmeetlem1N  37072  dihglblem5apreN  37073  dihglbcpreN  37082  dihmeetlem4preN  37088  dihmeetlem13N  37101  dihjatcclem4  37203
  Copyright terms: Public domain W3C validator