Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihvalrel Structured version   Visualization version   GIF version

Theorem dihvalrel 38301
Description: The value of isomorphism H is a relation. (Contributed by NM, 9-Mar-2014.)
Hypotheses
Ref Expression
dihvalrel.h 𝐻 = (LHyp‘𝐾)
dihvalrel.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
Assertion
Ref Expression
dihvalrel ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼𝑋))

Proof of Theorem dihvalrel
StepHypRef Expression
1 eqid 2826 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
2 dihvalrel.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 dihvalrel.i . . . . 5 𝐼 = ((DIsoH‘𝐾)‘𝑊)
41, 2, 3dihdm 38291 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → dom 𝐼 = (Base‘𝐾))
54eleq2d 2903 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑋 ∈ dom 𝐼𝑋 ∈ (Base‘𝐾)))
6 eqid 2826 . . . . . . . 8 ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊)
7 eqid 2826 . . . . . . . 8 (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊))
81, 2, 3, 6, 7dihss 38273 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ (Base‘𝐾)) → (𝐼𝑋) ⊆ (Base‘((DVecH‘𝐾)‘𝑊)))
9 eqid 2826 . . . . . . . . 9 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
10 eqid 2826 . . . . . . . . 9 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
112, 9, 10, 6, 7dvhvbase 38109 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘((DVecH‘𝐾)‘𝑊)) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
1211adantr 481 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ (Base‘𝐾)) → (Base‘((DVecH‘𝐾)‘𝑊)) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
138, 12sseqtrd 4011 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ (Base‘𝐾)) → (𝐼𝑋) ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
14 xpss 5570 . . . . . 6 (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ⊆ (V × V)
1513, 14sstrdi 3983 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ (Base‘𝐾)) → (𝐼𝑋) ⊆ (V × V))
16 df-rel 5561 . . . . 5 (Rel (𝐼𝑋) ↔ (𝐼𝑋) ⊆ (V × V))
1715, 16sylibr 235 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ (Base‘𝐾)) → Rel (𝐼𝑋))
1817ex 413 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑋 ∈ (Base‘𝐾) → Rel (𝐼𝑋)))
195, 18sylbid 241 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑋 ∈ dom 𝐼 → Rel (𝐼𝑋)))
20 rel0 5671 . . 3 Rel ∅
21 ndmfv 6699 . . . 4 𝑋 ∈ dom 𝐼 → (𝐼𝑋) = ∅)
2221releqd 5652 . . 3 𝑋 ∈ dom 𝐼 → (Rel (𝐼𝑋) ↔ Rel ∅))
2320, 22mpbiri 259 . 2 𝑋 ∈ dom 𝐼 → Rel (𝐼𝑋))
2419, 23pm2.61d1 181 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1530  wcel 2107  Vcvv 3500  wss 3940  c0 4295   × cxp 5552  dom cdm 5554  Rel wrel 5559  cfv 6354  Basecbs 16478  HLchlt 36372  LHypclh 37006  LTrncltrn 37123  TEndoctendo 37774  DVecHcdvh 38100  DIsoHcdih 38250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-riotaBAD 35975
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-tpos 7888  df-undef 7935  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8284  df-map 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12888  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-sca 16576  df-vsca 16577  df-0g 16710  df-proset 17533  df-poset 17551  df-plt 17563  df-lub 17579  df-glb 17580  df-join 17581  df-meet 17582  df-p0 17644  df-p1 17645  df-lat 17651  df-clat 17713  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-grp 18051  df-minusg 18052  df-sbg 18053  df-subg 18221  df-cntz 18392  df-lsm 18697  df-cmn 18844  df-abl 18845  df-mgp 19176  df-ur 19188  df-ring 19235  df-oppr 19309  df-dvdsr 19327  df-unit 19328  df-invr 19358  df-dvr 19369  df-drng 19440  df-lmod 19572  df-lss 19640  df-lsp 19680  df-lvec 19811  df-oposet 36198  df-ol 36200  df-oml 36201  df-covers 36288  df-ats 36289  df-atl 36320  df-cvlat 36344  df-hlat 36373  df-llines 36520  df-lplanes 36521  df-lvols 36522  df-lines 36523  df-psubsp 36525  df-pmap 36526  df-padd 36818  df-lhyp 37010  df-laut 37011  df-ldil 37126  df-ltrn 37127  df-trl 37181  df-tendo 37777  df-edring 37779  df-disoa 38051  df-dvech 38101  df-dib 38161  df-dic 38195  df-dih 38251
This theorem is referenced by:  dih1  38308  dihmeetlem1N  38312  dihglblem5apreN  38313  dihglbcpreN  38322  dihmeetlem4preN  38328  dihmeetlem13N  38341  dihjatcclem4  38443
  Copyright terms: Public domain W3C validator