Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrel Structured version   Visualization version   GIF version

Theorem elrel 5636
 Description: A member of a relation is an ordered pair. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
elrel ((Rel 𝑅𝐴𝑅) → ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝑅(𝑥,𝑦)

Proof of Theorem elrel
StepHypRef Expression
1 df-rel 5527 . . . 4 (Rel 𝑅𝑅 ⊆ (V × V))
21biimpi 219 . . 3 (Rel 𝑅𝑅 ⊆ (V × V))
32sselda 3915 . 2 ((Rel 𝑅𝐴𝑅) → 𝐴 ∈ (V × V))
4 elvv 5591 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
53, 4sylib 221 1 ((Rel 𝑅𝐴𝑅) → ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2111  Vcvv 3441   ⊆ wss 3881  ⟨cop 4531   × cxp 5518  Rel wrel 5525 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pr 5296 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-opab 5094  df-xp 5526  df-rel 5527 This theorem is referenced by:  eliunxp  5673  elinxp  5857  unielrel  6096  frxp  7810  rntpos  7895  gsum2d2lem  19094  funen1cnv  32503  dfpo2  33140  fundmpss  33158  sscoid  33523  elfuns  33525  eliunxp2  44796
 Copyright terms: Public domain W3C validator