![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrel | Structured version Visualization version GIF version |
Description: A member of a relation is an ordered pair. (Contributed by NM, 17-Sep-2006.) |
Ref | Expression |
---|---|
elrel | ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 5674 | . . . 4 ⊢ (Rel 𝑅 ↔ 𝑅 ⊆ (V × V)) | |
2 | 1 | biimpi 215 | . . 3 ⊢ (Rel 𝑅 → 𝑅 ⊆ (V × V)) |
3 | 2 | sselda 3975 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 𝐴 ∈ (V × V)) |
4 | elvv 5741 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩) | |
5 | 3, 4 | sylib 217 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3466 ⊆ wss 3941 ⟨cop 4627 × cxp 5665 Rel wrel 5672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-opab 5202 df-xp 5673 df-rel 5674 |
This theorem is referenced by: eliunxp 5828 elinxp 6010 unielrel 6264 dfpo2 6286 frxp 8107 frxp2 8125 rntpos 8220 gsum2d2lem 19889 funen1cnv 34609 fundmpss 35260 sscoid 35407 elfuns 35409 eliunxp2 47258 |
Copyright terms: Public domain | W3C validator |