MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrel Structured version   Visualization version   GIF version

Theorem elrel 5796
Description: A member of a relation is an ordered pair. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
elrel ((Rel 𝑅𝐴𝑅) → ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝑅(𝑥,𝑦)

Proof of Theorem elrel
StepHypRef Expression
1 df-rel 5682 . . . 4 (Rel 𝑅𝑅 ⊆ (V × V))
21biimpi 215 . . 3 (Rel 𝑅𝑅 ⊆ (V × V))
32sselda 3981 . 2 ((Rel 𝑅𝐴𝑅) → 𝐴 ∈ (V × V))
4 elvv 5748 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
53, 4sylib 217 1 ((Rel 𝑅𝐴𝑅) → ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wex 1781  wcel 2106  Vcvv 3474  wss 3947  cop 4633   × cxp 5673  Rel wrel 5680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-opab 5210  df-xp 5681  df-rel 5682
This theorem is referenced by:  eliunxp  5835  elinxp  6017  unielrel  6270  dfpo2  6292  frxp  8108  frxp2  8126  rntpos  8220  gsum2d2lem  19835  funen1cnv  34079  fundmpss  34726  sscoid  34873  elfuns  34875  eliunxp2  46962
  Copyright terms: Public domain W3C validator