Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elrel | Structured version Visualization version GIF version |
Description: A member of a relation is an ordered pair. (Contributed by NM, 17-Sep-2006.) |
Ref | Expression |
---|---|
elrel | ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 5597 | . . . 4 ⊢ (Rel 𝑅 ↔ 𝑅 ⊆ (V × V)) | |
2 | 1 | biimpi 215 | . . 3 ⊢ (Rel 𝑅 → 𝑅 ⊆ (V × V)) |
3 | 2 | sselda 3926 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 𝐴 ∈ (V × V)) |
4 | elvv 5662 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
5 | 3, 4 | sylib 217 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∃wex 1786 ∈ wcel 2110 Vcvv 3431 ⊆ wss 3892 〈cop 4573 × cxp 5588 Rel wrel 5595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-opab 5142 df-xp 5596 df-rel 5597 |
This theorem is referenced by: eliunxp 5745 elinxp 5928 unielrel 6176 dfpo2 6198 frxp 7958 rntpos 8046 gsum2d2lem 19572 funen1cnv 33056 fundmpss 33736 frxp2 33787 sscoid 34211 elfuns 34213 eliunxp2 45638 |
Copyright terms: Public domain | W3C validator |