MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrel Structured version   Visualization version   GIF version

Theorem elrel 5789
Description: A member of a relation is an ordered pair. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
elrel ((Rel 𝑅𝐴𝑅) → ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝑅(𝑥,𝑦)

Proof of Theorem elrel
StepHypRef Expression
1 df-rel 5674 . . . 4 (Rel 𝑅𝑅 ⊆ (V × V))
21biimpi 215 . . 3 (Rel 𝑅𝑅 ⊆ (V × V))
32sselda 3975 . 2 ((Rel 𝑅𝐴𝑅) → 𝐴 ∈ (V × V))
4 elvv 5741 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
53, 4sylib 217 1 ((Rel 𝑅𝐴𝑅) → ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wex 1773  wcel 2098  Vcvv 3466  wss 3941  cop 4627   × cxp 5665  Rel wrel 5672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-opab 5202  df-xp 5673  df-rel 5674
This theorem is referenced by:  eliunxp  5828  elinxp  6010  unielrel  6264  dfpo2  6286  frxp  8107  frxp2  8125  rntpos  8220  gsum2d2lem  19889  funen1cnv  34609  fundmpss  35260  sscoid  35407  elfuns  35409  eliunxp2  47258
  Copyright terms: Public domain W3C validator