| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrel | Structured version Visualization version GIF version | ||
| Description: A member of a relation is an ordered pair. (Contributed by NM, 17-Sep-2006.) |
| Ref | Expression |
|---|---|
| elrel | ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel 5626 | . . . 4 ⊢ (Rel 𝑅 ↔ 𝑅 ⊆ (V × V)) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (Rel 𝑅 → 𝑅 ⊆ (V × V)) |
| 3 | 2 | sselda 3930 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 𝐴 ∈ (V × V)) |
| 4 | elvv 5694 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
| 5 | 3, 4 | sylib 218 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 〈cop 4581 × cxp 5617 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-opab 5156 df-xp 5625 df-rel 5626 |
| This theorem is referenced by: eliunxp 5781 elinxp 5972 unielrel 6226 dfpo2 6248 frxp 8062 frxp2 8080 rntpos 8175 gsum2d2lem 19887 funen1cnv 35121 fundmpss 35832 sscoid 35976 elfuns 35978 eliunxp2 48458 |
| Copyright terms: Public domain | W3C validator |