MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrel Structured version   Visualization version   GIF version

Theorem elrel 5742
Description: A member of a relation is an ordered pair. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
elrel ((Rel 𝑅𝐴𝑅) → ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝑅(𝑥,𝑦)

Proof of Theorem elrel
StepHypRef Expression
1 df-rel 5626 . . . 4 (Rel 𝑅𝑅 ⊆ (V × V))
21biimpi 216 . . 3 (Rel 𝑅𝑅 ⊆ (V × V))
32sselda 3930 . 2 ((Rel 𝑅𝐴𝑅) → 𝐴 ∈ (V × V))
4 elvv 5694 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
53, 4sylib 218 1 ((Rel 𝑅𝐴𝑅) → ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2113  Vcvv 3437  wss 3898  cop 4581   × cxp 5617  Rel wrel 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-opab 5156  df-xp 5625  df-rel 5626
This theorem is referenced by:  eliunxp  5781  elinxp  5972  unielrel  6226  dfpo2  6248  frxp  8062  frxp2  8080  rntpos  8175  gsum2d2lem  19887  funen1cnv  35121  fundmpss  35832  sscoid  35976  elfuns  35978  eliunxp2  48458
  Copyright terms: Public domain W3C validator