MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasaddfnlem Structured version   Visualization version   GIF version

Theorem imasaddfnlem 17432
Description: The image structure operation is a function if the original operation is compatible with the function. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
imasaddf.f (𝜑𝐹:𝑉onto𝐵)
imasaddf.e ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
imasaddflem.a (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
Assertion
Ref Expression
imasaddfnlem (𝜑 Fn (𝐵 × 𝐵))
Distinct variable groups:   𝑞,𝑝,𝐵   𝑎,𝑏,𝑝,𝑞,𝑉   · ,𝑝,𝑞   𝐹,𝑎,𝑏,𝑝,𝑞   𝜑,𝑎,𝑏,𝑝,𝑞   ,𝑎,𝑏,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎,𝑏)   · (𝑎,𝑏)

Proof of Theorem imasaddfnlem
Dummy variables 𝑤 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5402 . . . . . . . . 9 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V
2 fvex 6835 . . . . . . . . 9 (𝐹‘(𝑝 · 𝑞)) ∈ V
31, 2relsnop 5744 . . . . . . . 8 Rel {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}
43rgenw 3051 . . . . . . 7 𝑞𝑉 Rel {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}
5 reliun 5755 . . . . . . 7 (Rel 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ↔ ∀𝑞𝑉 Rel {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
64, 5mpbir 231 . . . . . 6 Rel 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}
76rgenw 3051 . . . . 5 𝑝𝑉 Rel 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}
8 reliun 5755 . . . . 5 (Rel 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ↔ ∀𝑝𝑉 Rel 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
97, 8mpbir 231 . . . 4 Rel 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}
10 imasaddflem.a . . . . 5 (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
1110releqd 5718 . . . 4 (𝜑 → (Rel ↔ Rel 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}))
129, 11mpbiri 258 . . 3 (𝜑 → Rel )
13 imasaddf.f . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝑉onto𝐵)
14 fof 6735 . . . . . . . . . . . . . . . 16 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
1513, 14syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝑉𝐵)
16 ffvelcdm 7014 . . . . . . . . . . . . . . . 16 ((𝐹:𝑉𝐵𝑝𝑉) → (𝐹𝑝) ∈ 𝐵)
17 ffvelcdm 7014 . . . . . . . . . . . . . . . 16 ((𝐹:𝑉𝐵𝑞𝑉) → (𝐹𝑞) ∈ 𝐵)
1816, 17anim12dan 619 . . . . . . . . . . . . . . 15 ((𝐹:𝑉𝐵 ∧ (𝑝𝑉𝑞𝑉)) → ((𝐹𝑝) ∈ 𝐵 ∧ (𝐹𝑞) ∈ 𝐵))
1915, 18sylan 580 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → ((𝐹𝑝) ∈ 𝐵 ∧ (𝐹𝑞) ∈ 𝐵))
20 opelxpi 5651 . . . . . . . . . . . . . 14 (((𝐹𝑝) ∈ 𝐵 ∧ (𝐹𝑞) ∈ 𝐵) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ (𝐵 × 𝐵))
2119, 20syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ (𝐵 × 𝐵))
22 opelxpi 5651 . . . . . . . . . . . . 13 ((⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ (𝐵 × 𝐵) ∧ (𝐹‘(𝑝 · 𝑞)) ∈ V) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ ∈ ((𝐵 × 𝐵) × V))
2321, 2, 22sylancl 586 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ ∈ ((𝐵 × 𝐵) × V))
2423snssd 4758 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × V))
2524anassrs 467 . . . . . . . . . 10 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × V))
2625iunssd 4997 . . . . . . . . 9 ((𝜑𝑝𝑉) → 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × V))
2726iunssd 4997 . . . . . . . 8 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × V))
2810, 27eqsstrd 3964 . . . . . . 7 (𝜑 ⊆ ((𝐵 × 𝐵) × V))
29 dmss 5841 . . . . . . 7 ( ⊆ ((𝐵 × 𝐵) × V) → dom ⊆ dom ((𝐵 × 𝐵) × V))
3028, 29syl 17 . . . . . 6 (𝜑 → dom ⊆ dom ((𝐵 × 𝐵) × V))
31 vn0 4292 . . . . . . 7 V ≠ ∅
32 dmxp 5868 . . . . . . 7 (V ≠ ∅ → dom ((𝐵 × 𝐵) × V) = (𝐵 × 𝐵))
3331, 32ax-mp 5 . . . . . 6 dom ((𝐵 × 𝐵) × V) = (𝐵 × 𝐵)
3430, 33sseqtrdi 3970 . . . . 5 (𝜑 → dom ⊆ (𝐵 × 𝐵))
35 forn 6738 . . . . . . 7 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
3613, 35syl 17 . . . . . 6 (𝜑 → ran 𝐹 = 𝐵)
3736sqxpeqd 5646 . . . . 5 (𝜑 → (ran 𝐹 × ran 𝐹) = (𝐵 × 𝐵))
3834, 37sseqtrrd 3967 . . . 4 (𝜑 → dom ⊆ (ran 𝐹 × ran 𝐹))
3910eleq2d 2817 . . . . . . . . . . . . 13 (𝜑 → (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ ↔ ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}))
4039adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ ↔ ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}))
41 df-br 5090 . . . . . . . . . . . 12 (⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤 ↔ ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ )
42 eliun 4943 . . . . . . . . . . . . 13 (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ↔ ∃𝑝𝑉 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
43 eliun 4943 . . . . . . . . . . . . . 14 (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ↔ ∃𝑞𝑉 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
4443rexbii 3079 . . . . . . . . . . . . 13 (∃𝑝𝑉 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ↔ ∃𝑝𝑉𝑞𝑉 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
4542, 44bitr2i 276 . . . . . . . . . . . 12 (∃𝑝𝑉𝑞𝑉 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ↔ ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
4640, 41, 453bitr4g 314 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤 ↔ ∃𝑝𝑉𝑞𝑉 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}))
47 opex 5402 . . . . . . . . . . . . . . 15 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ V
4847elsn 4588 . . . . . . . . . . . . . 14 (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ↔ ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩)
49 opex 5402 . . . . . . . . . . . . . . . 16 ⟨(𝐹𝑎), (𝐹𝑏)⟩ ∈ V
50 vex 3440 . . . . . . . . . . . . . . . 16 𝑤 ∈ V
5149, 50opth 5414 . . . . . . . . . . . . . . 15 (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ ↔ (⟨(𝐹𝑎), (𝐹𝑏)⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∧ 𝑤 = (𝐹‘(𝑝 · 𝑞))))
52 fvex 6835 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑎) ∈ V
53 fvex 6835 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑏) ∈ V
5452, 53opth 5414 . . . . . . . . . . . . . . . . . 18 (⟨(𝐹𝑎), (𝐹𝑏)⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩ ↔ ((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)))
55 imasaddf.e . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
5654, 55biimtrid 242 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (⟨(𝐹𝑎), (𝐹𝑏)⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩ → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
57 eqeq2 2743 . . . . . . . . . . . . . . . . . 18 ((𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)) → (𝑤 = (𝐹‘(𝑎 · 𝑏)) ↔ 𝑤 = (𝐹‘(𝑝 · 𝑞))))
5857biimprd 248 . . . . . . . . . . . . . . . . 17 ((𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)) → (𝑤 = (𝐹‘(𝑝 · 𝑞)) → 𝑤 = (𝐹‘(𝑎 · 𝑏))))
5956, 58syl6 35 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (⟨(𝐹𝑎), (𝐹𝑏)⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩ → (𝑤 = (𝐹‘(𝑝 · 𝑞)) → 𝑤 = (𝐹‘(𝑎 · 𝑏)))))
6059impd 410 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((⟨(𝐹𝑎), (𝐹𝑏)⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∧ 𝑤 = (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑎 · 𝑏))))
6151, 60biimtrid 242 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ → 𝑤 = (𝐹‘(𝑎 · 𝑏))))
6248, 61biimtrid 242 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} → 𝑤 = (𝐹‘(𝑎 · 𝑏))))
63623expa 1118 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑝𝑉𝑞𝑉)) → (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} → 𝑤 = (𝐹‘(𝑎 · 𝑏))))
6463rexlimdvva 3189 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (∃𝑝𝑉𝑞𝑉 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} → 𝑤 = (𝐹‘(𝑎 · 𝑏))))
6546, 64sylbid 240 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤𝑤 = (𝐹‘(𝑎 · 𝑏))))
6665alrimiv 1928 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ∀𝑤(⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤𝑤 = (𝐹‘(𝑎 · 𝑏))))
67 mo2icl 3668 . . . . . . . . 9 (∀𝑤(⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤𝑤 = (𝐹‘(𝑎 · 𝑏))) → ∃*𝑤⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤)
6866, 67syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ∃*𝑤⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤)
6968ralrimivva 3175 . . . . . . 7 (𝜑 → ∀𝑎𝑉𝑏𝑉 ∃*𝑤⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤)
70 fofn 6737 . . . . . . . . . 10 (𝐹:𝑉onto𝐵𝐹 Fn 𝑉)
7113, 70syl 17 . . . . . . . . 9 (𝜑𝐹 Fn 𝑉)
72 opeq2 4823 . . . . . . . . . . . 12 (𝑧 = (𝐹𝑏) → ⟨(𝐹𝑎), 𝑧⟩ = ⟨(𝐹𝑎), (𝐹𝑏)⟩)
7372breq1d 5099 . . . . . . . . . . 11 (𝑧 = (𝐹𝑏) → (⟨(𝐹𝑎), 𝑧 𝑤 ↔ ⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤))
7473mobidv 2544 . . . . . . . . . 10 (𝑧 = (𝐹𝑏) → (∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤 ↔ ∃*𝑤⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤))
7574ralrn 7021 . . . . . . . . 9 (𝐹 Fn 𝑉 → (∀𝑧 ∈ ran 𝐹∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤 ↔ ∀𝑏𝑉 ∃*𝑤⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤))
7671, 75syl 17 . . . . . . . 8 (𝜑 → (∀𝑧 ∈ ran 𝐹∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤 ↔ ∀𝑏𝑉 ∃*𝑤⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤))
7776ralbidv 3155 . . . . . . 7 (𝜑 → (∀𝑎𝑉𝑧 ∈ ran 𝐹∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤 ↔ ∀𝑎𝑉𝑏𝑉 ∃*𝑤⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤))
7869, 77mpbird 257 . . . . . 6 (𝜑 → ∀𝑎𝑉𝑧 ∈ ran 𝐹∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤)
79 opeq1 4822 . . . . . . . . . . 11 (𝑦 = (𝐹𝑎) → ⟨𝑦, 𝑧⟩ = ⟨(𝐹𝑎), 𝑧⟩)
8079breq1d 5099 . . . . . . . . . 10 (𝑦 = (𝐹𝑎) → (⟨𝑦, 𝑧 𝑤 ↔ ⟨(𝐹𝑎), 𝑧 𝑤))
8180mobidv 2544 . . . . . . . . 9 (𝑦 = (𝐹𝑎) → (∃*𝑤𝑦, 𝑧 𝑤 ↔ ∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤))
8281ralbidv 3155 . . . . . . . 8 (𝑦 = (𝐹𝑎) → (∀𝑧 ∈ ran 𝐹∃*𝑤𝑦, 𝑧 𝑤 ↔ ∀𝑧 ∈ ran 𝐹∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤))
8382ralrn 7021 . . . . . . 7 (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹∃*𝑤𝑦, 𝑧 𝑤 ↔ ∀𝑎𝑉𝑧 ∈ ran 𝐹∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤))
8471, 83syl 17 . . . . . 6 (𝜑 → (∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹∃*𝑤𝑦, 𝑧 𝑤 ↔ ∀𝑎𝑉𝑧 ∈ ran 𝐹∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤))
8578, 84mpbird 257 . . . . 5 (𝜑 → ∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹∃*𝑤𝑦, 𝑧 𝑤)
86 breq1 5092 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥 𝑤 ↔ ⟨𝑦, 𝑧 𝑤))
8786mobidv 2544 . . . . . 6 (𝑥 = ⟨𝑦, 𝑧⟩ → (∃*𝑤 𝑥 𝑤 ↔ ∃*𝑤𝑦, 𝑧 𝑤))
8887ralxp 5780 . . . . 5 (∀𝑥 ∈ (ran 𝐹 × ran 𝐹)∃*𝑤 𝑥 𝑤 ↔ ∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹∃*𝑤𝑦, 𝑧 𝑤)
8985, 88sylibr 234 . . . 4 (𝜑 → ∀𝑥 ∈ (ran 𝐹 × ran 𝐹)∃*𝑤 𝑥 𝑤)
90 ssralv 3998 . . . 4 (dom ⊆ (ran 𝐹 × ran 𝐹) → (∀𝑥 ∈ (ran 𝐹 × ran 𝐹)∃*𝑤 𝑥 𝑤 → ∀𝑥 ∈ dom ∃*𝑤 𝑥 𝑤))
9138, 89, 90sylc 65 . . 3 (𝜑 → ∀𝑥 ∈ dom ∃*𝑤 𝑥 𝑤)
92 dffun7 6508 . . 3 (Fun ↔ (Rel ∧ ∀𝑥 ∈ dom ∃*𝑤 𝑥 𝑤))
9312, 91, 92sylanbrc 583 . 2 (𝜑 → Fun )
94 eqimss2 3989 . . . . . . . . . . 11 ( = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} → 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ )
9510, 94syl 17 . . . . . . . . . 10 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ )
96 iunss 4992 . . . . . . . . . 10 ( 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ↔ ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ )
9795, 96sylib 218 . . . . . . . . 9 (𝜑 → ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ )
98 iunss 4992 . . . . . . . . . . 11 ( 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ↔ ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ )
99 opex 5402 . . . . . . . . . . . . . 14 ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ ∈ V
10099snss 4734 . . . . . . . . . . . . 13 (⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ ∈ ↔ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ )
1011, 2opeldm 5846 . . . . . . . . . . . . 13 (⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ ∈ → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom )
102100, 101sylbir 235 . . . . . . . . . . . 12 ({⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom )
103102ralimi 3069 . . . . . . . . . . 11 (∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ → ∀𝑞𝑉 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom )
10498, 103sylbi 217 . . . . . . . . . 10 ( 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ → ∀𝑞𝑉 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom )
105104ralimi 3069 . . . . . . . . 9 (∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ → ∀𝑝𝑉𝑞𝑉 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom )
10697, 105syl 17 . . . . . . . 8 (𝜑 → ∀𝑝𝑉𝑞𝑉 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom )
107 opeq2 4823 . . . . . . . . . . . 12 (𝑧 = (𝐹𝑞) → ⟨(𝐹𝑝), 𝑧⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩)
108107eleq1d 2816 . . . . . . . . . . 11 (𝑧 = (𝐹𝑞) → (⟨(𝐹𝑝), 𝑧⟩ ∈ dom ↔ ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom ))
109108ralrn 7021 . . . . . . . . . 10 (𝐹 Fn 𝑉 → (∀𝑧 ∈ ran 𝐹⟨(𝐹𝑝), 𝑧⟩ ∈ dom ↔ ∀𝑞𝑉 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom ))
11071, 109syl 17 . . . . . . . . 9 (𝜑 → (∀𝑧 ∈ ran 𝐹⟨(𝐹𝑝), 𝑧⟩ ∈ dom ↔ ∀𝑞𝑉 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom ))
111110ralbidv 3155 . . . . . . . 8 (𝜑 → (∀𝑝𝑉𝑧 ∈ ran 𝐹⟨(𝐹𝑝), 𝑧⟩ ∈ dom ↔ ∀𝑝𝑉𝑞𝑉 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom ))
112106, 111mpbird 257 . . . . . . 7 (𝜑 → ∀𝑝𝑉𝑧 ∈ ran 𝐹⟨(𝐹𝑝), 𝑧⟩ ∈ dom )
113 opeq1 4822 . . . . . . . . . . 11 (𝑦 = (𝐹𝑝) → ⟨𝑦, 𝑧⟩ = ⟨(𝐹𝑝), 𝑧⟩)
114113eleq1d 2816 . . . . . . . . . 10 (𝑦 = (𝐹𝑝) → (⟨𝑦, 𝑧⟩ ∈ dom ↔ ⟨(𝐹𝑝), 𝑧⟩ ∈ dom ))
115114ralbidv 3155 . . . . . . . . 9 (𝑦 = (𝐹𝑝) → (∀𝑧 ∈ ran 𝐹𝑦, 𝑧⟩ ∈ dom ↔ ∀𝑧 ∈ ran 𝐹⟨(𝐹𝑝), 𝑧⟩ ∈ dom ))
116115ralrn 7021 . . . . . . . 8 (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑦, 𝑧⟩ ∈ dom ↔ ∀𝑝𝑉𝑧 ∈ ran 𝐹⟨(𝐹𝑝), 𝑧⟩ ∈ dom ))
11771, 116syl 17 . . . . . . 7 (𝜑 → (∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑦, 𝑧⟩ ∈ dom ↔ ∀𝑝𝑉𝑧 ∈ ran 𝐹⟨(𝐹𝑝), 𝑧⟩ ∈ dom ))
118112, 117mpbird 257 . . . . . 6 (𝜑 → ∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑦, 𝑧⟩ ∈ dom )
119 eleq1 2819 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥 ∈ dom ↔ ⟨𝑦, 𝑧⟩ ∈ dom ))
120119ralxp 5780 . . . . . 6 (∀𝑥 ∈ (ran 𝐹 × ran 𝐹)𝑥 ∈ dom ↔ ∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑦, 𝑧⟩ ∈ dom )
121118, 120sylibr 234 . . . . 5 (𝜑 → ∀𝑥 ∈ (ran 𝐹 × ran 𝐹)𝑥 ∈ dom )
122 dfss3 3918 . . . . 5 ((ran 𝐹 × ran 𝐹) ⊆ dom ↔ ∀𝑥 ∈ (ran 𝐹 × ran 𝐹)𝑥 ∈ dom )
123121, 122sylibr 234 . . . 4 (𝜑 → (ran 𝐹 × ran 𝐹) ⊆ dom )
12437, 123eqsstrrd 3965 . . 3 (𝜑 → (𝐵 × 𝐵) ⊆ dom )
12534, 124eqssd 3947 . 2 (𝜑 → dom = (𝐵 × 𝐵))
126 df-fn 6484 . 2 ( Fn (𝐵 × 𝐵) ↔ (Fun ∧ dom = (𝐵 × 𝐵)))
12793, 125, 126sylanbrc 583 1 (𝜑 Fn (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1539   = wceq 1541  wcel 2111  ∃*wmo 2533  wne 2928  wral 3047  wrex 3056  Vcvv 3436  wss 3897  c0 4280  {csn 4573  cop 4579   ciun 4939   class class class wbr 5089   × cxp 5612  dom cdm 5614  ran crn 5615  Rel wrel 5619  Fun wfun 6475   Fn wfn 6476  wf 6477  ontowfo 6479  cfv 6481  (class class class)co 7346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489
This theorem is referenced by:  imasaddvallem  17433  imasaddflem  17434  imasaddfn  17435  imasmulfn  17438
  Copyright terms: Public domain W3C validator