MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasaddfnlem Structured version   Visualization version   GIF version

Theorem imasaddfnlem 17474
Description: The image structure operation is a function if the original operation is compatible with the function. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
imasaddf.f (๐œ‘ โ†’ ๐น:๐‘‰โ€“ontoโ†’๐ต)
imasaddf.e ((๐œ‘ โˆง (๐‘Ž โˆˆ ๐‘‰ โˆง ๐‘ โˆˆ ๐‘‰) โˆง (๐‘ โˆˆ ๐‘‰ โˆง ๐‘ž โˆˆ ๐‘‰)) โ†’ (((๐นโ€˜๐‘Ž) = (๐นโ€˜๐‘) โˆง (๐นโ€˜๐‘) = (๐นโ€˜๐‘ž)) โ†’ (๐นโ€˜(๐‘Ž ยท ๐‘)) = (๐นโ€˜(๐‘ ยท ๐‘ž))))
imasaddflem.a (๐œ‘ โ†’ โˆ™ = โˆช ๐‘ โˆˆ ๐‘‰ โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ})
Assertion
Ref Expression
imasaddfnlem (๐œ‘ โ†’ โˆ™ Fn (๐ต ร— ๐ต))
Distinct variable groups:   ๐‘ž,๐‘,๐ต   ๐‘Ž,๐‘,๐‘,๐‘ž,๐‘‰   ยท ,๐‘,๐‘ž   ๐น,๐‘Ž,๐‘,๐‘,๐‘ž   ๐œ‘,๐‘Ž,๐‘,๐‘,๐‘ž   โˆ™ ,๐‘Ž,๐‘,๐‘,๐‘ž
Allowed substitution hints:   ๐ต(๐‘Ž,๐‘)   ยท (๐‘Ž,๐‘)

Proof of Theorem imasaddfnlem
Dummy variables ๐‘ค ๐‘ฆ ๐‘ง ๐‘ฅ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5465 . . . . . . . . 9 โŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ โˆˆ V
2 fvex 6905 . . . . . . . . 9 (๐นโ€˜(๐‘ ยท ๐‘ž)) โˆˆ V
31, 2relsnop 5806 . . . . . . . 8 Rel {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ}
43rgenw 3066 . . . . . . 7 โˆ€๐‘ž โˆˆ ๐‘‰ Rel {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ}
5 reliun 5817 . . . . . . 7 (Rel โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โ†” โˆ€๐‘ž โˆˆ ๐‘‰ Rel {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ})
64, 5mpbir 230 . . . . . 6 Rel โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ}
76rgenw 3066 . . . . 5 โˆ€๐‘ โˆˆ ๐‘‰ Rel โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ}
8 reliun 5817 . . . . 5 (Rel โˆช ๐‘ โˆˆ ๐‘‰ โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โ†” โˆ€๐‘ โˆˆ ๐‘‰ Rel โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ})
97, 8mpbir 230 . . . 4 Rel โˆช ๐‘ โˆˆ ๐‘‰ โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ}
10 imasaddflem.a . . . . 5 (๐œ‘ โ†’ โˆ™ = โˆช ๐‘ โˆˆ ๐‘‰ โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ})
1110releqd 5779 . . . 4 (๐œ‘ โ†’ (Rel โˆ™ โ†” Rel โˆช ๐‘ โˆˆ ๐‘‰ โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ}))
129, 11mpbiri 258 . . 3 (๐œ‘ โ†’ Rel โˆ™ )
13 imasaddf.f . . . . . . . . . . . . . . . 16 (๐œ‘ โ†’ ๐น:๐‘‰โ€“ontoโ†’๐ต)
14 fof 6806 . . . . . . . . . . . . . . . 16 (๐น:๐‘‰โ€“ontoโ†’๐ต โ†’ ๐น:๐‘‰โŸถ๐ต)
1513, 14syl 17 . . . . . . . . . . . . . . 15 (๐œ‘ โ†’ ๐น:๐‘‰โŸถ๐ต)
16 ffvelcdm 7084 . . . . . . . . . . . . . . . 16 ((๐น:๐‘‰โŸถ๐ต โˆง ๐‘ โˆˆ ๐‘‰) โ†’ (๐นโ€˜๐‘) โˆˆ ๐ต)
17 ffvelcdm 7084 . . . . . . . . . . . . . . . 16 ((๐น:๐‘‰โŸถ๐ต โˆง ๐‘ž โˆˆ ๐‘‰) โ†’ (๐นโ€˜๐‘ž) โˆˆ ๐ต)
1816, 17anim12dan 620 . . . . . . . . . . . . . . 15 ((๐น:๐‘‰โŸถ๐ต โˆง (๐‘ โˆˆ ๐‘‰ โˆง ๐‘ž โˆˆ ๐‘‰)) โ†’ ((๐นโ€˜๐‘) โˆˆ ๐ต โˆง (๐นโ€˜๐‘ž) โˆˆ ๐ต))
1915, 18sylan 581 . . . . . . . . . . . . . 14 ((๐œ‘ โˆง (๐‘ โˆˆ ๐‘‰ โˆง ๐‘ž โˆˆ ๐‘‰)) โ†’ ((๐นโ€˜๐‘) โˆˆ ๐ต โˆง (๐นโ€˜๐‘ž) โˆˆ ๐ต))
20 opelxpi 5714 . . . . . . . . . . . . . 14 (((๐นโ€˜๐‘) โˆˆ ๐ต โˆง (๐นโ€˜๐‘ž) โˆˆ ๐ต) โ†’ โŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ โˆˆ (๐ต ร— ๐ต))
2119, 20syl 17 . . . . . . . . . . . . 13 ((๐œ‘ โˆง (๐‘ โˆˆ ๐‘‰ โˆง ๐‘ž โˆˆ ๐‘‰)) โ†’ โŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ โˆˆ (๐ต ร— ๐ต))
22 opelxpi 5714 . . . . . . . . . . . . 13 ((โŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ โˆˆ (๐ต ร— ๐ต) โˆง (๐นโ€˜(๐‘ ยท ๐‘ž)) โˆˆ V) โ†’ โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ โˆˆ ((๐ต ร— ๐ต) ร— V))
2321, 2, 22sylancl 587 . . . . . . . . . . . 12 ((๐œ‘ โˆง (๐‘ โˆˆ ๐‘‰ โˆง ๐‘ž โˆˆ ๐‘‰)) โ†’ โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ โˆˆ ((๐ต ร— ๐ต) ร— V))
2423snssd 4813 . . . . . . . . . . 11 ((๐œ‘ โˆง (๐‘ โˆˆ ๐‘‰ โˆง ๐‘ž โˆˆ ๐‘‰)) โ†’ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โŠ† ((๐ต ร— ๐ต) ร— V))
2524anassrs 469 . . . . . . . . . 10 (((๐œ‘ โˆง ๐‘ โˆˆ ๐‘‰) โˆง ๐‘ž โˆˆ ๐‘‰) โ†’ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โŠ† ((๐ต ร— ๐ต) ร— V))
2625iunssd 5054 . . . . . . . . 9 ((๐œ‘ โˆง ๐‘ โˆˆ ๐‘‰) โ†’ โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โŠ† ((๐ต ร— ๐ต) ร— V))
2726iunssd 5054 . . . . . . . 8 (๐œ‘ โ†’ โˆช ๐‘ โˆˆ ๐‘‰ โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โŠ† ((๐ต ร— ๐ต) ร— V))
2810, 27eqsstrd 4021 . . . . . . 7 (๐œ‘ โ†’ โˆ™ โŠ† ((๐ต ร— ๐ต) ร— V))
29 dmss 5903 . . . . . . 7 ( โˆ™ โŠ† ((๐ต ร— ๐ต) ร— V) โ†’ dom โˆ™ โŠ† dom ((๐ต ร— ๐ต) ร— V))
3028, 29syl 17 . . . . . 6 (๐œ‘ โ†’ dom โˆ™ โŠ† dom ((๐ต ร— ๐ต) ร— V))
31 vn0 4339 . . . . . . 7 V โ‰  โˆ…
32 dmxp 5929 . . . . . . 7 (V โ‰  โˆ… โ†’ dom ((๐ต ร— ๐ต) ร— V) = (๐ต ร— ๐ต))
3331, 32ax-mp 5 . . . . . 6 dom ((๐ต ร— ๐ต) ร— V) = (๐ต ร— ๐ต)
3430, 33sseqtrdi 4033 . . . . 5 (๐œ‘ โ†’ dom โˆ™ โŠ† (๐ต ร— ๐ต))
35 forn 6809 . . . . . . 7 (๐น:๐‘‰โ€“ontoโ†’๐ต โ†’ ran ๐น = ๐ต)
3613, 35syl 17 . . . . . 6 (๐œ‘ โ†’ ran ๐น = ๐ต)
3736sqxpeqd 5709 . . . . 5 (๐œ‘ โ†’ (ran ๐น ร— ran ๐น) = (๐ต ร— ๐ต))
3834, 37sseqtrrd 4024 . . . 4 (๐œ‘ โ†’ dom โˆ™ โŠ† (ran ๐น ร— ran ๐น))
3910eleq2d 2820 . . . . . . . . . . . . 13 (๐œ‘ โ†’ (โŸจโŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ, ๐‘คโŸฉ โˆˆ โˆ™ โ†” โŸจโŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ, ๐‘คโŸฉ โˆˆ โˆช ๐‘ โˆˆ ๐‘‰ โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ}))
4039adantr 482 . . . . . . . . . . . 12 ((๐œ‘ โˆง (๐‘Ž โˆˆ ๐‘‰ โˆง ๐‘ โˆˆ ๐‘‰)) โ†’ (โŸจโŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ, ๐‘คโŸฉ โˆˆ โˆ™ โ†” โŸจโŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ, ๐‘คโŸฉ โˆˆ โˆช ๐‘ โˆˆ ๐‘‰ โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ}))
41 df-br 5150 . . . . . . . . . . . 12 (โŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ โˆ™ ๐‘ค โ†” โŸจโŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ, ๐‘คโŸฉ โˆˆ โˆ™ )
42 eliun 5002 . . . . . . . . . . . . 13 (โŸจโŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ, ๐‘คโŸฉ โˆˆ โˆช ๐‘ โˆˆ ๐‘‰ โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โ†” โˆƒ๐‘ โˆˆ ๐‘‰ โŸจโŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ, ๐‘คโŸฉ โˆˆ โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ})
43 eliun 5002 . . . . . . . . . . . . . 14 (โŸจโŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ, ๐‘คโŸฉ โˆˆ โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โ†” โˆƒ๐‘ž โˆˆ ๐‘‰ โŸจโŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ, ๐‘คโŸฉ โˆˆ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ})
4443rexbii 3095 . . . . . . . . . . . . 13 (โˆƒ๐‘ โˆˆ ๐‘‰ โŸจโŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ, ๐‘คโŸฉ โˆˆ โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โ†” โˆƒ๐‘ โˆˆ ๐‘‰ โˆƒ๐‘ž โˆˆ ๐‘‰ โŸจโŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ, ๐‘คโŸฉ โˆˆ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ})
4542, 44bitr2i 276 . . . . . . . . . . . 12 (โˆƒ๐‘ โˆˆ ๐‘‰ โˆƒ๐‘ž โˆˆ ๐‘‰ โŸจโŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ, ๐‘คโŸฉ โˆˆ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โ†” โŸจโŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ, ๐‘คโŸฉ โˆˆ โˆช ๐‘ โˆˆ ๐‘‰ โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ})
4640, 41, 453bitr4g 314 . . . . . . . . . . 11 ((๐œ‘ โˆง (๐‘Ž โˆˆ ๐‘‰ โˆง ๐‘ โˆˆ ๐‘‰)) โ†’ (โŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ โˆ™ ๐‘ค โ†” โˆƒ๐‘ โˆˆ ๐‘‰ โˆƒ๐‘ž โˆˆ ๐‘‰ โŸจโŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ, ๐‘คโŸฉ โˆˆ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ}))
47 opex 5465 . . . . . . . . . . . . . . 15 โŸจโŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ, ๐‘คโŸฉ โˆˆ V
4847elsn 4644 . . . . . . . . . . . . . 14 (โŸจโŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ, ๐‘คโŸฉ โˆˆ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โ†” โŸจโŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ, ๐‘คโŸฉ = โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ)
49 opex 5465 . . . . . . . . . . . . . . . 16 โŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ โˆˆ V
50 vex 3479 . . . . . . . . . . . . . . . 16 ๐‘ค โˆˆ V
5149, 50opth 5477 . . . . . . . . . . . . . . 15 (โŸจโŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ, ๐‘คโŸฉ = โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ โ†” (โŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ = โŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ โˆง ๐‘ค = (๐นโ€˜(๐‘ ยท ๐‘ž))))
52 fvex 6905 . . . . . . . . . . . . . . . . . . 19 (๐นโ€˜๐‘Ž) โˆˆ V
53 fvex 6905 . . . . . . . . . . . . . . . . . . 19 (๐นโ€˜๐‘) โˆˆ V
5452, 53opth 5477 . . . . . . . . . . . . . . . . . 18 (โŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ = โŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ โ†” ((๐นโ€˜๐‘Ž) = (๐นโ€˜๐‘) โˆง (๐นโ€˜๐‘) = (๐นโ€˜๐‘ž)))
55 imasaddf.e . . . . . . . . . . . . . . . . . 18 ((๐œ‘ โˆง (๐‘Ž โˆˆ ๐‘‰ โˆง ๐‘ โˆˆ ๐‘‰) โˆง (๐‘ โˆˆ ๐‘‰ โˆง ๐‘ž โˆˆ ๐‘‰)) โ†’ (((๐นโ€˜๐‘Ž) = (๐นโ€˜๐‘) โˆง (๐นโ€˜๐‘) = (๐นโ€˜๐‘ž)) โ†’ (๐นโ€˜(๐‘Ž ยท ๐‘)) = (๐นโ€˜(๐‘ ยท ๐‘ž))))
5654, 55biimtrid 241 . . . . . . . . . . . . . . . . 17 ((๐œ‘ โˆง (๐‘Ž โˆˆ ๐‘‰ โˆง ๐‘ โˆˆ ๐‘‰) โˆง (๐‘ โˆˆ ๐‘‰ โˆง ๐‘ž โˆˆ ๐‘‰)) โ†’ (โŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ = โŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ โ†’ (๐นโ€˜(๐‘Ž ยท ๐‘)) = (๐นโ€˜(๐‘ ยท ๐‘ž))))
57 eqeq2 2745 . . . . . . . . . . . . . . . . . 18 ((๐นโ€˜(๐‘Ž ยท ๐‘)) = (๐นโ€˜(๐‘ ยท ๐‘ž)) โ†’ (๐‘ค = (๐นโ€˜(๐‘Ž ยท ๐‘)) โ†” ๐‘ค = (๐นโ€˜(๐‘ ยท ๐‘ž))))
5857biimprd 247 . . . . . . . . . . . . . . . . 17 ((๐นโ€˜(๐‘Ž ยท ๐‘)) = (๐นโ€˜(๐‘ ยท ๐‘ž)) โ†’ (๐‘ค = (๐นโ€˜(๐‘ ยท ๐‘ž)) โ†’ ๐‘ค = (๐นโ€˜(๐‘Ž ยท ๐‘))))
5956, 58syl6 35 . . . . . . . . . . . . . . . 16 ((๐œ‘ โˆง (๐‘Ž โˆˆ ๐‘‰ โˆง ๐‘ โˆˆ ๐‘‰) โˆง (๐‘ โˆˆ ๐‘‰ โˆง ๐‘ž โˆˆ ๐‘‰)) โ†’ (โŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ = โŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ โ†’ (๐‘ค = (๐นโ€˜(๐‘ ยท ๐‘ž)) โ†’ ๐‘ค = (๐นโ€˜(๐‘Ž ยท ๐‘)))))
6059impd 412 . . . . . . . . . . . . . . 15 ((๐œ‘ โˆง (๐‘Ž โˆˆ ๐‘‰ โˆง ๐‘ โˆˆ ๐‘‰) โˆง (๐‘ โˆˆ ๐‘‰ โˆง ๐‘ž โˆˆ ๐‘‰)) โ†’ ((โŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ = โŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ โˆง ๐‘ค = (๐นโ€˜(๐‘ ยท ๐‘ž))) โ†’ ๐‘ค = (๐นโ€˜(๐‘Ž ยท ๐‘))))
6151, 60biimtrid 241 . . . . . . . . . . . . . 14 ((๐œ‘ โˆง (๐‘Ž โˆˆ ๐‘‰ โˆง ๐‘ โˆˆ ๐‘‰) โˆง (๐‘ โˆˆ ๐‘‰ โˆง ๐‘ž โˆˆ ๐‘‰)) โ†’ (โŸจโŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ, ๐‘คโŸฉ = โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ โ†’ ๐‘ค = (๐นโ€˜(๐‘Ž ยท ๐‘))))
6248, 61biimtrid 241 . . . . . . . . . . . . 13 ((๐œ‘ โˆง (๐‘Ž โˆˆ ๐‘‰ โˆง ๐‘ โˆˆ ๐‘‰) โˆง (๐‘ โˆˆ ๐‘‰ โˆง ๐‘ž โˆˆ ๐‘‰)) โ†’ (โŸจโŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ, ๐‘คโŸฉ โˆˆ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โ†’ ๐‘ค = (๐นโ€˜(๐‘Ž ยท ๐‘))))
63623expa 1119 . . . . . . . . . . . 12 (((๐œ‘ โˆง (๐‘Ž โˆˆ ๐‘‰ โˆง ๐‘ โˆˆ ๐‘‰)) โˆง (๐‘ โˆˆ ๐‘‰ โˆง ๐‘ž โˆˆ ๐‘‰)) โ†’ (โŸจโŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ, ๐‘คโŸฉ โˆˆ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โ†’ ๐‘ค = (๐นโ€˜(๐‘Ž ยท ๐‘))))
6463rexlimdvva 3212 . . . . . . . . . . 11 ((๐œ‘ โˆง (๐‘Ž โˆˆ ๐‘‰ โˆง ๐‘ โˆˆ ๐‘‰)) โ†’ (โˆƒ๐‘ โˆˆ ๐‘‰ โˆƒ๐‘ž โˆˆ ๐‘‰ โŸจโŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ, ๐‘คโŸฉ โˆˆ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โ†’ ๐‘ค = (๐นโ€˜(๐‘Ž ยท ๐‘))))
6546, 64sylbid 239 . . . . . . . . . 10 ((๐œ‘ โˆง (๐‘Ž โˆˆ ๐‘‰ โˆง ๐‘ โˆˆ ๐‘‰)) โ†’ (โŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ โˆ™ ๐‘ค โ†’ ๐‘ค = (๐นโ€˜(๐‘Ž ยท ๐‘))))
6665alrimiv 1931 . . . . . . . . 9 ((๐œ‘ โˆง (๐‘Ž โˆˆ ๐‘‰ โˆง ๐‘ โˆˆ ๐‘‰)) โ†’ โˆ€๐‘ค(โŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ โˆ™ ๐‘ค โ†’ ๐‘ค = (๐นโ€˜(๐‘Ž ยท ๐‘))))
67 mo2icl 3711 . . . . . . . . 9 (โˆ€๐‘ค(โŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ โˆ™ ๐‘ค โ†’ ๐‘ค = (๐นโ€˜(๐‘Ž ยท ๐‘))) โ†’ โˆƒ*๐‘คโŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ โˆ™ ๐‘ค)
6866, 67syl 17 . . . . . . . 8 ((๐œ‘ โˆง (๐‘Ž โˆˆ ๐‘‰ โˆง ๐‘ โˆˆ ๐‘‰)) โ†’ โˆƒ*๐‘คโŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ โˆ™ ๐‘ค)
6968ralrimivva 3201 . . . . . . 7 (๐œ‘ โ†’ โˆ€๐‘Ž โˆˆ ๐‘‰ โˆ€๐‘ โˆˆ ๐‘‰ โˆƒ*๐‘คโŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ โˆ™ ๐‘ค)
70 fofn 6808 . . . . . . . . . 10 (๐น:๐‘‰โ€“ontoโ†’๐ต โ†’ ๐น Fn ๐‘‰)
7113, 70syl 17 . . . . . . . . 9 (๐œ‘ โ†’ ๐น Fn ๐‘‰)
72 opeq2 4875 . . . . . . . . . . . 12 (๐‘ง = (๐นโ€˜๐‘) โ†’ โŸจ(๐นโ€˜๐‘Ž), ๐‘งโŸฉ = โŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ)
7372breq1d 5159 . . . . . . . . . . 11 (๐‘ง = (๐นโ€˜๐‘) โ†’ (โŸจ(๐นโ€˜๐‘Ž), ๐‘งโŸฉ โˆ™ ๐‘ค โ†” โŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ โˆ™ ๐‘ค))
7473mobidv 2544 . . . . . . . . . 10 (๐‘ง = (๐นโ€˜๐‘) โ†’ (โˆƒ*๐‘คโŸจ(๐นโ€˜๐‘Ž), ๐‘งโŸฉ โˆ™ ๐‘ค โ†” โˆƒ*๐‘คโŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ โˆ™ ๐‘ค))
7574ralrn 7090 . . . . . . . . 9 (๐น Fn ๐‘‰ โ†’ (โˆ€๐‘ง โˆˆ ran ๐นโˆƒ*๐‘คโŸจ(๐นโ€˜๐‘Ž), ๐‘งโŸฉ โˆ™ ๐‘ค โ†” โˆ€๐‘ โˆˆ ๐‘‰ โˆƒ*๐‘คโŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ โˆ™ ๐‘ค))
7671, 75syl 17 . . . . . . . 8 (๐œ‘ โ†’ (โˆ€๐‘ง โˆˆ ran ๐นโˆƒ*๐‘คโŸจ(๐นโ€˜๐‘Ž), ๐‘งโŸฉ โˆ™ ๐‘ค โ†” โˆ€๐‘ โˆˆ ๐‘‰ โˆƒ*๐‘คโŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ โˆ™ ๐‘ค))
7776ralbidv 3178 . . . . . . 7 (๐œ‘ โ†’ (โˆ€๐‘Ž โˆˆ ๐‘‰ โˆ€๐‘ง โˆˆ ran ๐นโˆƒ*๐‘คโŸจ(๐นโ€˜๐‘Ž), ๐‘งโŸฉ โˆ™ ๐‘ค โ†” โˆ€๐‘Ž โˆˆ ๐‘‰ โˆ€๐‘ โˆˆ ๐‘‰ โˆƒ*๐‘คโŸจ(๐นโ€˜๐‘Ž), (๐นโ€˜๐‘)โŸฉ โˆ™ ๐‘ค))
7869, 77mpbird 257 . . . . . 6 (๐œ‘ โ†’ โˆ€๐‘Ž โˆˆ ๐‘‰ โˆ€๐‘ง โˆˆ ran ๐นโˆƒ*๐‘คโŸจ(๐นโ€˜๐‘Ž), ๐‘งโŸฉ โˆ™ ๐‘ค)
79 opeq1 4874 . . . . . . . . . . 11 (๐‘ฆ = (๐นโ€˜๐‘Ž) โ†’ โŸจ๐‘ฆ, ๐‘งโŸฉ = โŸจ(๐นโ€˜๐‘Ž), ๐‘งโŸฉ)
8079breq1d 5159 . . . . . . . . . 10 (๐‘ฆ = (๐นโ€˜๐‘Ž) โ†’ (โŸจ๐‘ฆ, ๐‘งโŸฉ โˆ™ ๐‘ค โ†” โŸจ(๐นโ€˜๐‘Ž), ๐‘งโŸฉ โˆ™ ๐‘ค))
8180mobidv 2544 . . . . . . . . 9 (๐‘ฆ = (๐นโ€˜๐‘Ž) โ†’ (โˆƒ*๐‘คโŸจ๐‘ฆ, ๐‘งโŸฉ โˆ™ ๐‘ค โ†” โˆƒ*๐‘คโŸจ(๐นโ€˜๐‘Ž), ๐‘งโŸฉ โˆ™ ๐‘ค))
8281ralbidv 3178 . . . . . . . 8 (๐‘ฆ = (๐นโ€˜๐‘Ž) โ†’ (โˆ€๐‘ง โˆˆ ran ๐นโˆƒ*๐‘คโŸจ๐‘ฆ, ๐‘งโŸฉ โˆ™ ๐‘ค โ†” โˆ€๐‘ง โˆˆ ran ๐นโˆƒ*๐‘คโŸจ(๐นโ€˜๐‘Ž), ๐‘งโŸฉ โˆ™ ๐‘ค))
8382ralrn 7090 . . . . . . 7 (๐น Fn ๐‘‰ โ†’ (โˆ€๐‘ฆ โˆˆ ran ๐นโˆ€๐‘ง โˆˆ ran ๐นโˆƒ*๐‘คโŸจ๐‘ฆ, ๐‘งโŸฉ โˆ™ ๐‘ค โ†” โˆ€๐‘Ž โˆˆ ๐‘‰ โˆ€๐‘ง โˆˆ ran ๐นโˆƒ*๐‘คโŸจ(๐นโ€˜๐‘Ž), ๐‘งโŸฉ โˆ™ ๐‘ค))
8471, 83syl 17 . . . . . 6 (๐œ‘ โ†’ (โˆ€๐‘ฆ โˆˆ ran ๐นโˆ€๐‘ง โˆˆ ran ๐นโˆƒ*๐‘คโŸจ๐‘ฆ, ๐‘งโŸฉ โˆ™ ๐‘ค โ†” โˆ€๐‘Ž โˆˆ ๐‘‰ โˆ€๐‘ง โˆˆ ran ๐นโˆƒ*๐‘คโŸจ(๐นโ€˜๐‘Ž), ๐‘งโŸฉ โˆ™ ๐‘ค))
8578, 84mpbird 257 . . . . 5 (๐œ‘ โ†’ โˆ€๐‘ฆ โˆˆ ran ๐นโˆ€๐‘ง โˆˆ ran ๐นโˆƒ*๐‘คโŸจ๐‘ฆ, ๐‘งโŸฉ โˆ™ ๐‘ค)
86 breq1 5152 . . . . . . 7 (๐‘ฅ = โŸจ๐‘ฆ, ๐‘งโŸฉ โ†’ (๐‘ฅ โˆ™ ๐‘ค โ†” โŸจ๐‘ฆ, ๐‘งโŸฉ โˆ™ ๐‘ค))
8786mobidv 2544 . . . . . 6 (๐‘ฅ = โŸจ๐‘ฆ, ๐‘งโŸฉ โ†’ (โˆƒ*๐‘ค ๐‘ฅ โˆ™ ๐‘ค โ†” โˆƒ*๐‘คโŸจ๐‘ฆ, ๐‘งโŸฉ โˆ™ ๐‘ค))
8887ralxp 5842 . . . . 5 (โˆ€๐‘ฅ โˆˆ (ran ๐น ร— ran ๐น)โˆƒ*๐‘ค ๐‘ฅ โˆ™ ๐‘ค โ†” โˆ€๐‘ฆ โˆˆ ran ๐นโˆ€๐‘ง โˆˆ ran ๐นโˆƒ*๐‘คโŸจ๐‘ฆ, ๐‘งโŸฉ โˆ™ ๐‘ค)
8985, 88sylibr 233 . . . 4 (๐œ‘ โ†’ โˆ€๐‘ฅ โˆˆ (ran ๐น ร— ran ๐น)โˆƒ*๐‘ค ๐‘ฅ โˆ™ ๐‘ค)
90 ssralv 4051 . . . 4 (dom โˆ™ โŠ† (ran ๐น ร— ran ๐น) โ†’ (โˆ€๐‘ฅ โˆˆ (ran ๐น ร— ran ๐น)โˆƒ*๐‘ค ๐‘ฅ โˆ™ ๐‘ค โ†’ โˆ€๐‘ฅ โˆˆ dom โˆ™ โˆƒ*๐‘ค ๐‘ฅ โˆ™ ๐‘ค))
9138, 89, 90sylc 65 . . 3 (๐œ‘ โ†’ โˆ€๐‘ฅ โˆˆ dom โˆ™ โˆƒ*๐‘ค ๐‘ฅ โˆ™ ๐‘ค)
92 dffun7 6576 . . 3 (Fun โˆ™ โ†” (Rel โˆ™ โˆง โˆ€๐‘ฅ โˆˆ dom โˆ™ โˆƒ*๐‘ค ๐‘ฅ โˆ™ ๐‘ค))
9312, 91, 92sylanbrc 584 . 2 (๐œ‘ โ†’ Fun โˆ™ )
94 eqimss2 4042 . . . . . . . . . . 11 ( โˆ™ = โˆช ๐‘ โˆˆ ๐‘‰ โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โ†’ โˆช ๐‘ โˆˆ ๐‘‰ โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โŠ† โˆ™ )
9510, 94syl 17 . . . . . . . . . 10 (๐œ‘ โ†’ โˆช ๐‘ โˆˆ ๐‘‰ โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โŠ† โˆ™ )
96 iunss 5049 . . . . . . . . . 10 (โˆช ๐‘ โˆˆ ๐‘‰ โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โŠ† โˆ™ โ†” โˆ€๐‘ โˆˆ ๐‘‰ โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โŠ† โˆ™ )
9795, 96sylib 217 . . . . . . . . 9 (๐œ‘ โ†’ โˆ€๐‘ โˆˆ ๐‘‰ โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โŠ† โˆ™ )
98 iunss 5049 . . . . . . . . . . 11 (โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โŠ† โˆ™ โ†” โˆ€๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โŠ† โˆ™ )
99 opex 5465 . . . . . . . . . . . . . 14 โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ โˆˆ V
10099snss 4790 . . . . . . . . . . . . 13 (โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ โˆˆ โˆ™ โ†” {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โŠ† โˆ™ )
1011, 2opeldm 5908 . . . . . . . . . . . . 13 (โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ โˆˆ โˆ™ โ†’ โŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ โˆˆ dom โˆ™ )
102100, 101sylbir 234 . . . . . . . . . . . 12 ({โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โŠ† โˆ™ โ†’ โŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ โˆˆ dom โˆ™ )
103102ralimi 3084 . . . . . . . . . . 11 (โˆ€๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โŠ† โˆ™ โ†’ โˆ€๐‘ž โˆˆ ๐‘‰ โŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ โˆˆ dom โˆ™ )
10498, 103sylbi 216 . . . . . . . . . 10 (โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โŠ† โˆ™ โ†’ โˆ€๐‘ž โˆˆ ๐‘‰ โŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ โˆˆ dom โˆ™ )
105104ralimi 3084 . . . . . . . . 9 (โˆ€๐‘ โˆˆ ๐‘‰ โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โŠ† โˆ™ โ†’ โˆ€๐‘ โˆˆ ๐‘‰ โˆ€๐‘ž โˆˆ ๐‘‰ โŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ โˆˆ dom โˆ™ )
10697, 105syl 17 . . . . . . . 8 (๐œ‘ โ†’ โˆ€๐‘ โˆˆ ๐‘‰ โˆ€๐‘ž โˆˆ ๐‘‰ โŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ โˆˆ dom โˆ™ )
107 opeq2 4875 . . . . . . . . . . . 12 (๐‘ง = (๐นโ€˜๐‘ž) โ†’ โŸจ(๐นโ€˜๐‘), ๐‘งโŸฉ = โŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ)
108107eleq1d 2819 . . . . . . . . . . 11 (๐‘ง = (๐นโ€˜๐‘ž) โ†’ (โŸจ(๐นโ€˜๐‘), ๐‘งโŸฉ โˆˆ dom โˆ™ โ†” โŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ โˆˆ dom โˆ™ ))
109108ralrn 7090 . . . . . . . . . 10 (๐น Fn ๐‘‰ โ†’ (โˆ€๐‘ง โˆˆ ran ๐นโŸจ(๐นโ€˜๐‘), ๐‘งโŸฉ โˆˆ dom โˆ™ โ†” โˆ€๐‘ž โˆˆ ๐‘‰ โŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ โˆˆ dom โˆ™ ))
11071, 109syl 17 . . . . . . . . 9 (๐œ‘ โ†’ (โˆ€๐‘ง โˆˆ ran ๐นโŸจ(๐นโ€˜๐‘), ๐‘งโŸฉ โˆˆ dom โˆ™ โ†” โˆ€๐‘ž โˆˆ ๐‘‰ โŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ โˆˆ dom โˆ™ ))
111110ralbidv 3178 . . . . . . . 8 (๐œ‘ โ†’ (โˆ€๐‘ โˆˆ ๐‘‰ โˆ€๐‘ง โˆˆ ran ๐นโŸจ(๐นโ€˜๐‘), ๐‘งโŸฉ โˆˆ dom โˆ™ โ†” โˆ€๐‘ โˆˆ ๐‘‰ โˆ€๐‘ž โˆˆ ๐‘‰ โŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ โˆˆ dom โˆ™ ))
112106, 111mpbird 257 . . . . . . 7 (๐œ‘ โ†’ โˆ€๐‘ โˆˆ ๐‘‰ โˆ€๐‘ง โˆˆ ran ๐นโŸจ(๐นโ€˜๐‘), ๐‘งโŸฉ โˆˆ dom โˆ™ )
113 opeq1 4874 . . . . . . . . . . 11 (๐‘ฆ = (๐นโ€˜๐‘) โ†’ โŸจ๐‘ฆ, ๐‘งโŸฉ = โŸจ(๐นโ€˜๐‘), ๐‘งโŸฉ)
114113eleq1d 2819 . . . . . . . . . 10 (๐‘ฆ = (๐นโ€˜๐‘) โ†’ (โŸจ๐‘ฆ, ๐‘งโŸฉ โˆˆ dom โˆ™ โ†” โŸจ(๐นโ€˜๐‘), ๐‘งโŸฉ โˆˆ dom โˆ™ ))
115114ralbidv 3178 . . . . . . . . 9 (๐‘ฆ = (๐นโ€˜๐‘) โ†’ (โˆ€๐‘ง โˆˆ ran ๐นโŸจ๐‘ฆ, ๐‘งโŸฉ โˆˆ dom โˆ™ โ†” โˆ€๐‘ง โˆˆ ran ๐นโŸจ(๐นโ€˜๐‘), ๐‘งโŸฉ โˆˆ dom โˆ™ ))
116115ralrn 7090 . . . . . . . 8 (๐น Fn ๐‘‰ โ†’ (โˆ€๐‘ฆ โˆˆ ran ๐นโˆ€๐‘ง โˆˆ ran ๐นโŸจ๐‘ฆ, ๐‘งโŸฉ โˆˆ dom โˆ™ โ†” โˆ€๐‘ โˆˆ ๐‘‰ โˆ€๐‘ง โˆˆ ran ๐นโŸจ(๐นโ€˜๐‘), ๐‘งโŸฉ โˆˆ dom โˆ™ ))
11771, 116syl 17 . . . . . . 7 (๐œ‘ โ†’ (โˆ€๐‘ฆ โˆˆ ran ๐นโˆ€๐‘ง โˆˆ ran ๐นโŸจ๐‘ฆ, ๐‘งโŸฉ โˆˆ dom โˆ™ โ†” โˆ€๐‘ โˆˆ ๐‘‰ โˆ€๐‘ง โˆˆ ran ๐นโŸจ(๐นโ€˜๐‘), ๐‘งโŸฉ โˆˆ dom โˆ™ ))
118112, 117mpbird 257 . . . . . 6 (๐œ‘ โ†’ โˆ€๐‘ฆ โˆˆ ran ๐นโˆ€๐‘ง โˆˆ ran ๐นโŸจ๐‘ฆ, ๐‘งโŸฉ โˆˆ dom โˆ™ )
119 eleq1 2822 . . . . . . 7 (๐‘ฅ = โŸจ๐‘ฆ, ๐‘งโŸฉ โ†’ (๐‘ฅ โˆˆ dom โˆ™ โ†” โŸจ๐‘ฆ, ๐‘งโŸฉ โˆˆ dom โˆ™ ))
120119ralxp 5842 . . . . . 6 (โˆ€๐‘ฅ โˆˆ (ran ๐น ร— ran ๐น)๐‘ฅ โˆˆ dom โˆ™ โ†” โˆ€๐‘ฆ โˆˆ ran ๐นโˆ€๐‘ง โˆˆ ran ๐นโŸจ๐‘ฆ, ๐‘งโŸฉ โˆˆ dom โˆ™ )
121118, 120sylibr 233 . . . . 5 (๐œ‘ โ†’ โˆ€๐‘ฅ โˆˆ (ran ๐น ร— ran ๐น)๐‘ฅ โˆˆ dom โˆ™ )
122 dfss3 3971 . . . . 5 ((ran ๐น ร— ran ๐น) โŠ† dom โˆ™ โ†” โˆ€๐‘ฅ โˆˆ (ran ๐น ร— ran ๐น)๐‘ฅ โˆˆ dom โˆ™ )
123121, 122sylibr 233 . . . 4 (๐œ‘ โ†’ (ran ๐น ร— ran ๐น) โŠ† dom โˆ™ )
12437, 123eqsstrrd 4022 . . 3 (๐œ‘ โ†’ (๐ต ร— ๐ต) โŠ† dom โˆ™ )
12534, 124eqssd 4000 . 2 (๐œ‘ โ†’ dom โˆ™ = (๐ต ร— ๐ต))
126 df-fn 6547 . 2 ( โˆ™ Fn (๐ต ร— ๐ต) โ†” (Fun โˆ™ โˆง dom โˆ™ = (๐ต ร— ๐ต)))
12793, 125, 126sylanbrc 584 1 (๐œ‘ โ†’ โˆ™ Fn (๐ต ร— ๐ต))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 397   โˆง w3a 1088  โˆ€wal 1540   = wceq 1542   โˆˆ wcel 2107  โˆƒ*wmo 2533   โ‰  wne 2941  โˆ€wral 3062  โˆƒwrex 3071  Vcvv 3475   โŠ† wss 3949  โˆ…c0 4323  {csn 4629  โŸจcop 4635  โˆช ciun 4998   class class class wbr 5149   ร— cxp 5675  dom cdm 5677  ran crn 5678  Rel wrel 5682  Fun wfun 6538   Fn wfn 6539  โŸถwf 6540  โ€“ontoโ†’wfo 6542  โ€˜cfv 6544  (class class class)co 7409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fo 6550  df-fv 6552
This theorem is referenced by:  imasaddvallem  17475  imasaddflem  17476  imasaddfn  17477  imasmulfn  17480
  Copyright terms: Public domain W3C validator