MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasaddfnlem Structured version   Visualization version   GIF version

Theorem imasaddfnlem 17574
Description: The image structure operation is a function if the original operation is compatible with the function. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
imasaddf.f (𝜑𝐹:𝑉onto𝐵)
imasaddf.e ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
imasaddflem.a (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
Assertion
Ref Expression
imasaddfnlem (𝜑 Fn (𝐵 × 𝐵))
Distinct variable groups:   𝑞,𝑝,𝐵   𝑎,𝑏,𝑝,𝑞,𝑉   · ,𝑝,𝑞   𝐹,𝑎,𝑏,𝑝,𝑞   𝜑,𝑎,𝑏,𝑝,𝑞   ,𝑎,𝑏,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎,𝑏)   · (𝑎,𝑏)

Proof of Theorem imasaddfnlem
Dummy variables 𝑤 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5474 . . . . . . . . 9 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V
2 fvex 6919 . . . . . . . . 9 (𝐹‘(𝑝 · 𝑞)) ∈ V
31, 2relsnop 5817 . . . . . . . 8 Rel {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}
43rgenw 3062 . . . . . . 7 𝑞𝑉 Rel {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}
5 reliun 5828 . . . . . . 7 (Rel 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ↔ ∀𝑞𝑉 Rel {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
64, 5mpbir 231 . . . . . 6 Rel 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}
76rgenw 3062 . . . . 5 𝑝𝑉 Rel 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}
8 reliun 5828 . . . . 5 (Rel 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ↔ ∀𝑝𝑉 Rel 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
97, 8mpbir 231 . . . 4 Rel 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}
10 imasaddflem.a . . . . 5 (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
1110releqd 5790 . . . 4 (𝜑 → (Rel ↔ Rel 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}))
129, 11mpbiri 258 . . 3 (𝜑 → Rel )
13 imasaddf.f . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝑉onto𝐵)
14 fof 6820 . . . . . . . . . . . . . . . 16 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
1513, 14syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝑉𝐵)
16 ffvelcdm 7100 . . . . . . . . . . . . . . . 16 ((𝐹:𝑉𝐵𝑝𝑉) → (𝐹𝑝) ∈ 𝐵)
17 ffvelcdm 7100 . . . . . . . . . . . . . . . 16 ((𝐹:𝑉𝐵𝑞𝑉) → (𝐹𝑞) ∈ 𝐵)
1816, 17anim12dan 619 . . . . . . . . . . . . . . 15 ((𝐹:𝑉𝐵 ∧ (𝑝𝑉𝑞𝑉)) → ((𝐹𝑝) ∈ 𝐵 ∧ (𝐹𝑞) ∈ 𝐵))
1915, 18sylan 580 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → ((𝐹𝑝) ∈ 𝐵 ∧ (𝐹𝑞) ∈ 𝐵))
20 opelxpi 5725 . . . . . . . . . . . . . 14 (((𝐹𝑝) ∈ 𝐵 ∧ (𝐹𝑞) ∈ 𝐵) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ (𝐵 × 𝐵))
2119, 20syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ (𝐵 × 𝐵))
22 opelxpi 5725 . . . . . . . . . . . . 13 ((⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ (𝐵 × 𝐵) ∧ (𝐹‘(𝑝 · 𝑞)) ∈ V) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ ∈ ((𝐵 × 𝐵) × V))
2321, 2, 22sylancl 586 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ ∈ ((𝐵 × 𝐵) × V))
2423snssd 4813 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × V))
2524anassrs 467 . . . . . . . . . 10 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × V))
2625iunssd 5054 . . . . . . . . 9 ((𝜑𝑝𝑉) → 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × V))
2726iunssd 5054 . . . . . . . 8 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × V))
2810, 27eqsstrd 4033 . . . . . . 7 (𝜑 ⊆ ((𝐵 × 𝐵) × V))
29 dmss 5915 . . . . . . 7 ( ⊆ ((𝐵 × 𝐵) × V) → dom ⊆ dom ((𝐵 × 𝐵) × V))
3028, 29syl 17 . . . . . 6 (𝜑 → dom ⊆ dom ((𝐵 × 𝐵) × V))
31 vn0 4350 . . . . . . 7 V ≠ ∅
32 dmxp 5941 . . . . . . 7 (V ≠ ∅ → dom ((𝐵 × 𝐵) × V) = (𝐵 × 𝐵))
3331, 32ax-mp 5 . . . . . 6 dom ((𝐵 × 𝐵) × V) = (𝐵 × 𝐵)
3430, 33sseqtrdi 4045 . . . . 5 (𝜑 → dom ⊆ (𝐵 × 𝐵))
35 forn 6823 . . . . . . 7 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
3613, 35syl 17 . . . . . 6 (𝜑 → ran 𝐹 = 𝐵)
3736sqxpeqd 5720 . . . . 5 (𝜑 → (ran 𝐹 × ran 𝐹) = (𝐵 × 𝐵))
3834, 37sseqtrrd 4036 . . . 4 (𝜑 → dom ⊆ (ran 𝐹 × ran 𝐹))
3910eleq2d 2824 . . . . . . . . . . . . 13 (𝜑 → (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ ↔ ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}))
4039adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ ↔ ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}))
41 df-br 5148 . . . . . . . . . . . 12 (⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤 ↔ ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ )
42 eliun 4999 . . . . . . . . . . . . 13 (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ↔ ∃𝑝𝑉 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
43 eliun 4999 . . . . . . . . . . . . . 14 (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ↔ ∃𝑞𝑉 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
4443rexbii 3091 . . . . . . . . . . . . 13 (∃𝑝𝑉 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ↔ ∃𝑝𝑉𝑞𝑉 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
4542, 44bitr2i 276 . . . . . . . . . . . 12 (∃𝑝𝑉𝑞𝑉 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ↔ ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
4640, 41, 453bitr4g 314 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤 ↔ ∃𝑝𝑉𝑞𝑉 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}))
47 opex 5474 . . . . . . . . . . . . . . 15 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ V
4847elsn 4645 . . . . . . . . . . . . . 14 (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ↔ ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩)
49 opex 5474 . . . . . . . . . . . . . . . 16 ⟨(𝐹𝑎), (𝐹𝑏)⟩ ∈ V
50 vex 3481 . . . . . . . . . . . . . . . 16 𝑤 ∈ V
5149, 50opth 5486 . . . . . . . . . . . . . . 15 (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ ↔ (⟨(𝐹𝑎), (𝐹𝑏)⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∧ 𝑤 = (𝐹‘(𝑝 · 𝑞))))
52 fvex 6919 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑎) ∈ V
53 fvex 6919 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑏) ∈ V
5452, 53opth 5486 . . . . . . . . . . . . . . . . . 18 (⟨(𝐹𝑎), (𝐹𝑏)⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩ ↔ ((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)))
55 imasaddf.e . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
5654, 55biimtrid 242 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (⟨(𝐹𝑎), (𝐹𝑏)⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩ → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
57 eqeq2 2746 . . . . . . . . . . . . . . . . . 18 ((𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)) → (𝑤 = (𝐹‘(𝑎 · 𝑏)) ↔ 𝑤 = (𝐹‘(𝑝 · 𝑞))))
5857biimprd 248 . . . . . . . . . . . . . . . . 17 ((𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)) → (𝑤 = (𝐹‘(𝑝 · 𝑞)) → 𝑤 = (𝐹‘(𝑎 · 𝑏))))
5956, 58syl6 35 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (⟨(𝐹𝑎), (𝐹𝑏)⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩ → (𝑤 = (𝐹‘(𝑝 · 𝑞)) → 𝑤 = (𝐹‘(𝑎 · 𝑏)))))
6059impd 410 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((⟨(𝐹𝑎), (𝐹𝑏)⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∧ 𝑤 = (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑎 · 𝑏))))
6151, 60biimtrid 242 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ → 𝑤 = (𝐹‘(𝑎 · 𝑏))))
6248, 61biimtrid 242 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} → 𝑤 = (𝐹‘(𝑎 · 𝑏))))
63623expa 1117 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑝𝑉𝑞𝑉)) → (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} → 𝑤 = (𝐹‘(𝑎 · 𝑏))))
6463rexlimdvva 3210 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (∃𝑝𝑉𝑞𝑉 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} → 𝑤 = (𝐹‘(𝑎 · 𝑏))))
6546, 64sylbid 240 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤𝑤 = (𝐹‘(𝑎 · 𝑏))))
6665alrimiv 1924 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ∀𝑤(⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤𝑤 = (𝐹‘(𝑎 · 𝑏))))
67 mo2icl 3722 . . . . . . . . 9 (∀𝑤(⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤𝑤 = (𝐹‘(𝑎 · 𝑏))) → ∃*𝑤⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤)
6866, 67syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ∃*𝑤⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤)
6968ralrimivva 3199 . . . . . . 7 (𝜑 → ∀𝑎𝑉𝑏𝑉 ∃*𝑤⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤)
70 fofn 6822 . . . . . . . . . 10 (𝐹:𝑉onto𝐵𝐹 Fn 𝑉)
7113, 70syl 17 . . . . . . . . 9 (𝜑𝐹 Fn 𝑉)
72 opeq2 4878 . . . . . . . . . . . 12 (𝑧 = (𝐹𝑏) → ⟨(𝐹𝑎), 𝑧⟩ = ⟨(𝐹𝑎), (𝐹𝑏)⟩)
7372breq1d 5157 . . . . . . . . . . 11 (𝑧 = (𝐹𝑏) → (⟨(𝐹𝑎), 𝑧 𝑤 ↔ ⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤))
7473mobidv 2546 . . . . . . . . . 10 (𝑧 = (𝐹𝑏) → (∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤 ↔ ∃*𝑤⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤))
7574ralrn 7107 . . . . . . . . 9 (𝐹 Fn 𝑉 → (∀𝑧 ∈ ran 𝐹∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤 ↔ ∀𝑏𝑉 ∃*𝑤⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤))
7671, 75syl 17 . . . . . . . 8 (𝜑 → (∀𝑧 ∈ ran 𝐹∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤 ↔ ∀𝑏𝑉 ∃*𝑤⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤))
7776ralbidv 3175 . . . . . . 7 (𝜑 → (∀𝑎𝑉𝑧 ∈ ran 𝐹∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤 ↔ ∀𝑎𝑉𝑏𝑉 ∃*𝑤⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤))
7869, 77mpbird 257 . . . . . 6 (𝜑 → ∀𝑎𝑉𝑧 ∈ ran 𝐹∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤)
79 opeq1 4877 . . . . . . . . . . 11 (𝑦 = (𝐹𝑎) → ⟨𝑦, 𝑧⟩ = ⟨(𝐹𝑎), 𝑧⟩)
8079breq1d 5157 . . . . . . . . . 10 (𝑦 = (𝐹𝑎) → (⟨𝑦, 𝑧 𝑤 ↔ ⟨(𝐹𝑎), 𝑧 𝑤))
8180mobidv 2546 . . . . . . . . 9 (𝑦 = (𝐹𝑎) → (∃*𝑤𝑦, 𝑧 𝑤 ↔ ∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤))
8281ralbidv 3175 . . . . . . . 8 (𝑦 = (𝐹𝑎) → (∀𝑧 ∈ ran 𝐹∃*𝑤𝑦, 𝑧 𝑤 ↔ ∀𝑧 ∈ ran 𝐹∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤))
8382ralrn 7107 . . . . . . 7 (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹∃*𝑤𝑦, 𝑧 𝑤 ↔ ∀𝑎𝑉𝑧 ∈ ran 𝐹∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤))
8471, 83syl 17 . . . . . 6 (𝜑 → (∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹∃*𝑤𝑦, 𝑧 𝑤 ↔ ∀𝑎𝑉𝑧 ∈ ran 𝐹∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤))
8578, 84mpbird 257 . . . . 5 (𝜑 → ∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹∃*𝑤𝑦, 𝑧 𝑤)
86 breq1 5150 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥 𝑤 ↔ ⟨𝑦, 𝑧 𝑤))
8786mobidv 2546 . . . . . 6 (𝑥 = ⟨𝑦, 𝑧⟩ → (∃*𝑤 𝑥 𝑤 ↔ ∃*𝑤𝑦, 𝑧 𝑤))
8887ralxp 5854 . . . . 5 (∀𝑥 ∈ (ran 𝐹 × ran 𝐹)∃*𝑤 𝑥 𝑤 ↔ ∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹∃*𝑤𝑦, 𝑧 𝑤)
8985, 88sylibr 234 . . . 4 (𝜑 → ∀𝑥 ∈ (ran 𝐹 × ran 𝐹)∃*𝑤 𝑥 𝑤)
90 ssralv 4063 . . . 4 (dom ⊆ (ran 𝐹 × ran 𝐹) → (∀𝑥 ∈ (ran 𝐹 × ran 𝐹)∃*𝑤 𝑥 𝑤 → ∀𝑥 ∈ dom ∃*𝑤 𝑥 𝑤))
9138, 89, 90sylc 65 . . 3 (𝜑 → ∀𝑥 ∈ dom ∃*𝑤 𝑥 𝑤)
92 dffun7 6594 . . 3 (Fun ↔ (Rel ∧ ∀𝑥 ∈ dom ∃*𝑤 𝑥 𝑤))
9312, 91, 92sylanbrc 583 . 2 (𝜑 → Fun )
94 eqimss2 4054 . . . . . . . . . . 11 ( = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} → 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ )
9510, 94syl 17 . . . . . . . . . 10 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ )
96 iunss 5049 . . . . . . . . . 10 ( 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ↔ ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ )
9795, 96sylib 218 . . . . . . . . 9 (𝜑 → ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ )
98 iunss 5049 . . . . . . . . . . 11 ( 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ↔ ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ )
99 opex 5474 . . . . . . . . . . . . . 14 ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ ∈ V
10099snss 4789 . . . . . . . . . . . . 13 (⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ ∈ ↔ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ )
1011, 2opeldm 5920 . . . . . . . . . . . . 13 (⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ ∈ → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom )
102100, 101sylbir 235 . . . . . . . . . . . 12 ({⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom )
103102ralimi 3080 . . . . . . . . . . 11 (∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ → ∀𝑞𝑉 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom )
10498, 103sylbi 217 . . . . . . . . . 10 ( 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ → ∀𝑞𝑉 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom )
105104ralimi 3080 . . . . . . . . 9 (∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ → ∀𝑝𝑉𝑞𝑉 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom )
10697, 105syl 17 . . . . . . . 8 (𝜑 → ∀𝑝𝑉𝑞𝑉 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom )
107 opeq2 4878 . . . . . . . . . . . 12 (𝑧 = (𝐹𝑞) → ⟨(𝐹𝑝), 𝑧⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩)
108107eleq1d 2823 . . . . . . . . . . 11 (𝑧 = (𝐹𝑞) → (⟨(𝐹𝑝), 𝑧⟩ ∈ dom ↔ ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom ))
109108ralrn 7107 . . . . . . . . . 10 (𝐹 Fn 𝑉 → (∀𝑧 ∈ ran 𝐹⟨(𝐹𝑝), 𝑧⟩ ∈ dom ↔ ∀𝑞𝑉 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom ))
11071, 109syl 17 . . . . . . . . 9 (𝜑 → (∀𝑧 ∈ ran 𝐹⟨(𝐹𝑝), 𝑧⟩ ∈ dom ↔ ∀𝑞𝑉 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom ))
111110ralbidv 3175 . . . . . . . 8 (𝜑 → (∀𝑝𝑉𝑧 ∈ ran 𝐹⟨(𝐹𝑝), 𝑧⟩ ∈ dom ↔ ∀𝑝𝑉𝑞𝑉 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom ))
112106, 111mpbird 257 . . . . . . 7 (𝜑 → ∀𝑝𝑉𝑧 ∈ ran 𝐹⟨(𝐹𝑝), 𝑧⟩ ∈ dom )
113 opeq1 4877 . . . . . . . . . . 11 (𝑦 = (𝐹𝑝) → ⟨𝑦, 𝑧⟩ = ⟨(𝐹𝑝), 𝑧⟩)
114113eleq1d 2823 . . . . . . . . . 10 (𝑦 = (𝐹𝑝) → (⟨𝑦, 𝑧⟩ ∈ dom ↔ ⟨(𝐹𝑝), 𝑧⟩ ∈ dom ))
115114ralbidv 3175 . . . . . . . . 9 (𝑦 = (𝐹𝑝) → (∀𝑧 ∈ ran 𝐹𝑦, 𝑧⟩ ∈ dom ↔ ∀𝑧 ∈ ran 𝐹⟨(𝐹𝑝), 𝑧⟩ ∈ dom ))
116115ralrn 7107 . . . . . . . 8 (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑦, 𝑧⟩ ∈ dom ↔ ∀𝑝𝑉𝑧 ∈ ran 𝐹⟨(𝐹𝑝), 𝑧⟩ ∈ dom ))
11771, 116syl 17 . . . . . . 7 (𝜑 → (∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑦, 𝑧⟩ ∈ dom ↔ ∀𝑝𝑉𝑧 ∈ ran 𝐹⟨(𝐹𝑝), 𝑧⟩ ∈ dom ))
118112, 117mpbird 257 . . . . . 6 (𝜑 → ∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑦, 𝑧⟩ ∈ dom )
119 eleq1 2826 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥 ∈ dom ↔ ⟨𝑦, 𝑧⟩ ∈ dom ))
120119ralxp 5854 . . . . . 6 (∀𝑥 ∈ (ran 𝐹 × ran 𝐹)𝑥 ∈ dom ↔ ∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑦, 𝑧⟩ ∈ dom )
121118, 120sylibr 234 . . . . 5 (𝜑 → ∀𝑥 ∈ (ran 𝐹 × ran 𝐹)𝑥 ∈ dom )
122 dfss3 3983 . . . . 5 ((ran 𝐹 × ran 𝐹) ⊆ dom ↔ ∀𝑥 ∈ (ran 𝐹 × ran 𝐹)𝑥 ∈ dom )
123121, 122sylibr 234 . . . 4 (𝜑 → (ran 𝐹 × ran 𝐹) ⊆ dom )
12437, 123eqsstrrd 4034 . . 3 (𝜑 → (𝐵 × 𝐵) ⊆ dom )
12534, 124eqssd 4012 . 2 (𝜑 → dom = (𝐵 × 𝐵))
126 df-fn 6565 . 2 ( Fn (𝐵 × 𝐵) ↔ (Fun ∧ dom = (𝐵 × 𝐵)))
12793, 125, 126sylanbrc 583 1 (𝜑 Fn (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1534   = wceq 1536  wcel 2105  ∃*wmo 2535  wne 2937  wral 3058  wrex 3067  Vcvv 3477  wss 3962  c0 4338  {csn 4630  cop 4636   ciun 4995   class class class wbr 5147   × cxp 5686  dom cdm 5688  ran crn 5689  Rel wrel 5693  Fun wfun 6556   Fn wfn 6557  wf 6558  ontowfo 6560  cfv 6562  (class class class)co 7430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-fo 6568  df-fv 6570
This theorem is referenced by:  imasaddvallem  17575  imasaddflem  17576  imasaddfn  17577  imasmulfn  17580
  Copyright terms: Public domain W3C validator