MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvsng Structured version   Visualization version   GIF version

Theorem cnvsng 6223
Description: Converse of a singleton of an ordered pair. (Contributed by NM, 23-Jan-2015.) (Proof shortened by BJ, 12-Feb-2022.)
Assertion
Ref Expression
cnvsng ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})

Proof of Theorem cnvsng
StepHypRef Expression
1 cnvcnvsn 6219 . 2 {⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩}
2 relsnopg 5804 . . . 4 ((𝐵𝑊𝐴𝑉) → Rel {⟨𝐵, 𝐴⟩})
32ancoms 460 . . 3 ((𝐴𝑉𝐵𝑊) → Rel {⟨𝐵, 𝐴⟩})
4 dfrel2 6189 . . 3 (Rel {⟨𝐵, 𝐴⟩} ↔ {⟨𝐵, 𝐴⟩} = {⟨𝐵, 𝐴⟩})
53, 4sylib 217 . 2 ((𝐴𝑉𝐵𝑊) → {⟨𝐵, 𝐴⟩} = {⟨𝐵, 𝐴⟩})
61, 5eqtr3id 2787 1 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {csn 4629  cop 4635  ccnv 5676  Rel wrel 5682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-cnv 5685
This theorem is referenced by:  cnvsn  6226  opswap  6229  funsng  6600  f1oprswap  6878  cnvprop  31918
  Copyright terms: Public domain W3C validator