MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvsng Structured version   Visualization version   GIF version

Theorem cnvsng 5828
Description: Converse of a singleton of an ordered pair. (Contributed by NM, 23-Jan-2015.) (Proof shortened by BJ, 12-Feb-2022.)
Assertion
Ref Expression
cnvsng ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})

Proof of Theorem cnvsng
StepHypRef Expression
1 cnvcnvsn 5824 . 2 {⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩}
2 relsnopg 5426 . . . 4 ((𝐵𝑊𝐴𝑉) → Rel {⟨𝐵, 𝐴⟩})
32ancoms 448 . . 3 ((𝐴𝑉𝐵𝑊) → Rel {⟨𝐵, 𝐴⟩})
4 dfrel2 5794 . . 3 (Rel {⟨𝐵, 𝐴⟩} ↔ {⟨𝐵, 𝐴⟩} = {⟨𝐵, 𝐴⟩})
53, 4sylib 209 . 2 ((𝐴𝑉𝐵𝑊) → {⟨𝐵, 𝐴⟩} = {⟨𝐵, 𝐴⟩})
61, 5syl5eqr 2854 1 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1637  wcel 2156  {csn 4370  cop 4376  ccnv 5310  Rel wrel 5316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pr 5096
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ral 3101  df-rex 3102  df-rab 3105  df-v 3393  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-sn 4371  df-pr 4373  df-op 4377  df-br 4845  df-opab 4907  df-xp 5317  df-rel 5318  df-cnv 5319
This theorem is referenced by:  cnvsn  5831  opswap  5836  funsng  6147  f1oprswap  6392
  Copyright terms: Public domain W3C validator