Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvsng | Structured version Visualization version GIF version |
Description: Converse of a singleton of an ordered pair. (Contributed by NM, 23-Jan-2015.) (Proof shortened by BJ, 12-Feb-2022.) |
Ref | Expression |
---|---|
cnvsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnvsn 6111 | . 2 ⊢ ◡◡{〈𝐵, 𝐴〉} = ◡{〈𝐴, 𝐵〉} | |
2 | relsnopg 5702 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → Rel {〈𝐵, 𝐴〉}) | |
3 | 2 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Rel {〈𝐵, 𝐴〉}) |
4 | dfrel2 6081 | . . 3 ⊢ (Rel {〈𝐵, 𝐴〉} ↔ ◡◡{〈𝐵, 𝐴〉} = {〈𝐵, 𝐴〉}) | |
5 | 3, 4 | sylib 217 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡◡{〈𝐵, 𝐴〉} = {〈𝐵, 𝐴〉}) |
6 | 1, 5 | eqtr3id 2793 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {csn 4558 〈cop 4564 ◡ccnv 5579 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 |
This theorem is referenced by: cnvsn 6118 opswap 6121 funsng 6469 f1oprswap 6743 cnvprop 30931 |
Copyright terms: Public domain | W3C validator |