![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvsng | Structured version Visualization version GIF version |
Description: Converse of a singleton of an ordered pair. (Contributed by NM, 23-Jan-2015.) (Proof shortened by BJ, 12-Feb-2022.) |
Ref | Expression |
---|---|
cnvsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnvsn 6175 | . 2 ⊢ ◡◡{⟨𝐵, 𝐴⟩} = ◡{⟨𝐴, 𝐵⟩} | |
2 | relsnopg 5763 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → Rel {⟨𝐵, 𝐴⟩}) | |
3 | 2 | ancoms 460 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Rel {⟨𝐵, 𝐴⟩}) |
4 | dfrel2 6145 | . . 3 ⊢ (Rel {⟨𝐵, 𝐴⟩} ↔ ◡◡{⟨𝐵, 𝐴⟩} = {⟨𝐵, 𝐴⟩}) | |
5 | 3, 4 | sylib 217 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡◡{⟨𝐵, 𝐴⟩} = {⟨𝐵, 𝐴⟩}) |
6 | 1, 5 | eqtr3id 2787 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {csn 4590 ⟨cop 4596 ◡ccnv 5636 Rel wrel 5642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-br 5110 df-opab 5172 df-xp 5643 df-rel 5644 df-cnv 5645 |
This theorem is referenced by: cnvsn 6182 opswap 6185 funsng 6556 f1oprswap 6832 cnvprop 31664 |
Copyright terms: Public domain | W3C validator |