Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tfrlem6 | Structured version Visualization version GIF version |
Description: Lemma for transfinite recursion. The union of all acceptable functions is a relation. (Contributed by NM, 8-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
Ref | Expression |
---|---|
tfrlem6 | ⊢ Rel recs(𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reluni 5760 | . . 3 ⊢ (Rel ∪ 𝐴 ↔ ∀𝑔 ∈ 𝐴 Rel 𝑔) | |
2 | tfrlem.1 | . . . . 5 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
3 | 2 | tfrlem4 8280 | . . . 4 ⊢ (𝑔 ∈ 𝐴 → Fun 𝑔) |
4 | funrel 6501 | . . . 4 ⊢ (Fun 𝑔 → Rel 𝑔) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑔 ∈ 𝐴 → Rel 𝑔) |
6 | 1, 5 | mprgbir 3068 | . 2 ⊢ Rel ∪ 𝐴 |
7 | 2 | recsfval 8282 | . . 3 ⊢ recs(𝐹) = ∪ 𝐴 |
8 | 7 | releqi 5719 | . 2 ⊢ (Rel recs(𝐹) ↔ Rel ∪ 𝐴) |
9 | 6, 8 | mpbir 230 | 1 ⊢ Rel recs(𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1540 ∈ wcel 2105 {cab 2713 ∀wral 3061 ∃wrex 3070 ∪ cuni 4852 ↾ cres 5622 Rel wrel 5625 Oncon0 6302 Fun wfun 6473 Fn wfn 6474 ‘cfv 6479 recscrecs 8271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-fo 6485 df-fv 6487 df-ov 7340 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 |
This theorem is referenced by: tfrlem7 8284 tfrlem11 8289 tfrlem15 8293 tfrlem16 8294 |
Copyright terms: Public domain | W3C validator |