![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tfrlem6 | Structured version Visualization version GIF version |
Description: Lemma for transfinite recursion. The union of all acceptable functions is a relation. (Contributed by NM, 8-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
Ref | Expression |
---|---|
tfrlem6 | ⊢ Rel recs(𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reluni 5538 | . . 3 ⊢ (Rel ∪ 𝐴 ↔ ∀𝑔 ∈ 𝐴 Rel 𝑔) | |
2 | tfrlem.1 | . . . . 5 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
3 | 2 | tfrlem4 7818 | . . . 4 ⊢ (𝑔 ∈ 𝐴 → Fun 𝑔) |
4 | funrel 6203 | . . . 4 ⊢ (Fun 𝑔 → Rel 𝑔) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑔 ∈ 𝐴 → Rel 𝑔) |
6 | 1, 5 | mprgbir 3098 | . 2 ⊢ Rel ∪ 𝐴 |
7 | 2 | recsfval 7820 | . . 3 ⊢ recs(𝐹) = ∪ 𝐴 |
8 | 7 | releqi 5499 | . 2 ⊢ (Rel recs(𝐹) ↔ Rel ∪ 𝐴) |
9 | 6, 8 | mpbir 223 | 1 ⊢ Rel recs(𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 387 = wceq 1508 ∈ wcel 2051 {cab 2753 ∀wral 3083 ∃wrex 3084 ∪ cuni 4709 ↾ cres 5406 Rel wrel 5409 Oncon0 6027 Fun wfun 6180 Fn wfn 6181 ‘cfv 6186 recscrecs 7810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pr 5183 ax-un 7278 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-ral 3088 df-rex 3089 df-rab 3092 df-v 3412 df-sbc 3677 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-iun 4791 df-br 4927 df-opab 4989 df-tr 5028 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-iota 6150 df-fun 6188 df-fn 6189 df-fv 6194 df-wrecs 7749 df-recs 7811 |
This theorem is referenced by: tfrlem7 7822 tfrlem11 7827 tfrlem15 7831 tfrlem16 7832 |
Copyright terms: Public domain | W3C validator |