| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfrlem6 | Structured version Visualization version GIF version | ||
| Description: Lemma for transfinite recursion. The union of all acceptable functions is a relation. (Contributed by NM, 8-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.) |
| Ref | Expression |
|---|---|
| tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| Ref | Expression |
|---|---|
| tfrlem6 | ⊢ Rel recs(𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reluni 5808 | . . 3 ⊢ (Rel ∪ 𝐴 ↔ ∀𝑔 ∈ 𝐴 Rel 𝑔) | |
| 2 | tfrlem.1 | . . . . 5 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
| 3 | 2 | tfrlem4 8401 | . . . 4 ⊢ (𝑔 ∈ 𝐴 → Fun 𝑔) |
| 4 | funrel 6563 | . . . 4 ⊢ (Fun 𝑔 → Rel 𝑔) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑔 ∈ 𝐴 → Rel 𝑔) |
| 6 | 1, 5 | mprgbir 3057 | . 2 ⊢ Rel ∪ 𝐴 |
| 7 | 2 | recsfval 8403 | . . 3 ⊢ recs(𝐹) = ∪ 𝐴 |
| 8 | 7 | releqi 5767 | . 2 ⊢ (Rel recs(𝐹) ↔ Rel ∪ 𝐴) |
| 9 | 6, 8 | mpbir 231 | 1 ⊢ Rel recs(𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2712 ∀wral 3050 ∃wrex 3059 ∪ cuni 4887 ↾ cres 5667 Rel wrel 5670 Oncon0 6363 Fun wfun 6535 Fn wfn 6536 ‘cfv 6541 recscrecs 8392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fo 6547 df-fv 6549 df-ov 7416 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 |
| This theorem is referenced by: tfrlem7 8405 tfrlem11 8410 tfrlem15 8414 tfrlem16 8415 |
| Copyright terms: Public domain | W3C validator |