| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfrlem6 | Structured version Visualization version GIF version | ||
| Description: Lemma for transfinite recursion. The union of all acceptable functions is a relation. (Contributed by NM, 8-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.) |
| Ref | Expression |
|---|---|
| tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| Ref | Expression |
|---|---|
| tfrlem6 | ⊢ Rel recs(𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reluni 5783 | . . 3 ⊢ (Rel ∪ 𝐴 ↔ ∀𝑔 ∈ 𝐴 Rel 𝑔) | |
| 2 | tfrlem.1 | . . . . 5 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
| 3 | 2 | tfrlem4 8349 | . . . 4 ⊢ (𝑔 ∈ 𝐴 → Fun 𝑔) |
| 4 | funrel 6535 | . . . 4 ⊢ (Fun 𝑔 → Rel 𝑔) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑔 ∈ 𝐴 → Rel 𝑔) |
| 6 | 1, 5 | mprgbir 3052 | . 2 ⊢ Rel ∪ 𝐴 |
| 7 | 2 | recsfval 8351 | . . 3 ⊢ recs(𝐹) = ∪ 𝐴 |
| 8 | 7 | releqi 5742 | . 2 ⊢ (Rel recs(𝐹) ↔ Rel ∪ 𝐴) |
| 9 | 6, 8 | mpbir 231 | 1 ⊢ Rel recs(𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 ∀wral 3045 ∃wrex 3054 ∪ cuni 4873 ↾ cres 5642 Rel wrel 5645 Oncon0 6334 Fun wfun 6507 Fn wfn 6508 ‘cfv 6513 recscrecs 8341 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fo 6519 df-fv 6521 df-ov 7392 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 |
| This theorem is referenced by: tfrlem7 8353 tfrlem11 8358 tfrlem15 8362 tfrlem16 8363 |
| Copyright terms: Public domain | W3C validator |