MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem6 Structured version   Visualization version   GIF version

Theorem tfrlem6 8380
Description: Lemma for transfinite recursion. The union of all acceptable functions is a relation. (Contributed by NM, 8-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem6 Rel recs(𝐹)
Distinct variable group:   𝑥,𝑓,𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem6
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 reluni 5811 . . 3 (Rel 𝐴 ↔ ∀𝑔𝐴 Rel 𝑔)
2 tfrlem.1 . . . . 5 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
32tfrlem4 8377 . . . 4 (𝑔𝐴 → Fun 𝑔)
4 funrel 6558 . . . 4 (Fun 𝑔 → Rel 𝑔)
53, 4syl 17 . . 3 (𝑔𝐴 → Rel 𝑔)
61, 5mprgbir 3062 . 2 Rel 𝐴
72recsfval 8379 . . 3 recs(𝐹) = 𝐴
87releqi 5770 . 2 (Rel recs(𝐹) ↔ Rel 𝐴)
96, 8mpbir 230 1 Rel recs(𝐹)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1533  wcel 2098  {cab 2703  wral 3055  wrex 3064   cuni 4902  cres 5671  Rel wrel 5674  Oncon0 6357  Fun wfun 6530   Fn wfn 6531  cfv 6536  recscrecs 8368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-fo 6542  df-fv 6544  df-ov 7407  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369
This theorem is referenced by:  tfrlem7  8381  tfrlem11  8386  tfrlem15  8390  tfrlem16  8391
  Copyright terms: Public domain W3C validator