MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem6 Structured version   Visualization version   GIF version

Theorem tfrlem6 8430
Description: Lemma for transfinite recursion. The union of all acceptable functions is a relation. (Contributed by NM, 8-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem6 Rel recs(𝐹)
Distinct variable group:   𝑥,𝑓,𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem6
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 reluni 5835 . . 3 (Rel 𝐴 ↔ ∀𝑔𝐴 Rel 𝑔)
2 tfrlem.1 . . . . 5 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
32tfrlem4 8427 . . . 4 (𝑔𝐴 → Fun 𝑔)
4 funrel 6591 . . . 4 (Fun 𝑔 → Rel 𝑔)
53, 4syl 17 . . 3 (𝑔𝐴 → Rel 𝑔)
61, 5mprgbir 3068 . 2 Rel 𝐴
72recsfval 8429 . . 3 recs(𝐹) = 𝐴
87releqi 5794 . 2 (Rel recs(𝐹) ↔ Rel 𝐴)
96, 8mpbir 231 1 Rel recs(𝐹)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  {cab 2714  wral 3061  wrex 3070   cuni 4915  cres 5695  Rel wrel 5698  Oncon0 6392  Fun wfun 6563   Fn wfn 6564  cfv 6569  recscrecs 8418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-fo 6575  df-fv 6577  df-ov 7441  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419
This theorem is referenced by:  tfrlem7  8431  tfrlem11  8436  tfrlem15  8440  tfrlem16  8441
  Copyright terms: Public domain W3C validator