![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wfrrelOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of wfrrel 8385 as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 8-Jun-2018.) |
Ref | Expression |
---|---|
wfrlem6OLD.1 | ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
Ref | Expression |
---|---|
wfrrelOLD | ⊢ Rel 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reluni 5842 | . . 3 ⊢ (Rel ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ↔ ∀𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}Rel 𝑔) | |
2 | eqid 2740 | . . . . 5 ⊢ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | |
3 | 2 | wfrlem2OLD 8365 | . . . 4 ⊢ (𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} → Fun 𝑔) |
4 | funrel 6595 | . . . 4 ⊢ (Fun 𝑔 → Rel 𝑔) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} → Rel 𝑔) |
6 | 1, 5 | mprgbir 3074 | . 2 ⊢ Rel ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
7 | wfrlem6OLD.1 | . . . 4 ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) | |
8 | dfwrecsOLD 8354 | . . . 4 ⊢ wrecs(𝑅, 𝐴, 𝐺) = ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | |
9 | 7, 8 | eqtri 2768 | . . 3 ⊢ 𝐹 = ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
10 | 9 | releqi 5801 | . 2 ⊢ (Rel 𝐹 ↔ Rel ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) |
11 | 6, 10 | mpbir 231 | 1 ⊢ Rel 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cab 2717 ∀wral 3067 ⊆ wss 3976 ∪ cuni 4931 ↾ cres 5702 Rel wrel 5705 Predcpred 6331 Fun wfun 6567 Fn wfn 6568 ‘cfv 6573 wrecscwrecs 8352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-ov 7451 df-2nd 8031 df-frecs 8322 df-wrecs 8353 |
This theorem is referenced by: wfrfunOLD 8375 |
Copyright terms: Public domain | W3C validator |