| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resexd | Structured version Visualization version GIF version | ||
| Description: The restriction of a set is a set. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| resexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| resexd | ⊢ (𝜑 → (𝐴 ↾ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | resexg 5998 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ↾ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 ↾ cres 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-in 3921 df-ss 3931 df-res 5650 |
| This theorem is referenced by: gsum2dlem2 19901 tsmspropd 24019 ulmss 26306 elrgspnlem4 33196 lmimdim 33599 aks6d1c6lem3 42160 psrbagres 42534 pwssplit4 43078 limsupresre 45694 limsupresico 45698 limsupresuz 45701 limsupres 45703 limsupresxr 45764 liminfresxr 45765 liminfresico 45769 liminfresre 45777 liminfresuz 45782 isubgriedg 47863 isubgrvtx 47867 |
| Copyright terms: Public domain | W3C validator |