![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > resexd | Structured version Visualization version GIF version |
Description: The restriction of a set is a set. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
resexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
resexd | ⊢ (𝜑 → (𝐴 ↾ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | resexg 5692 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ↾ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3397 ↾ cres 5357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-ext 2753 ax-sep 5017 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-v 3399 df-in 3798 df-ss 3805 df-res 5367 |
This theorem is referenced by: limsupresre 40818 limsupresico 40822 limsupresuz 40825 limsupres 40827 limsupresxr 40888 liminfresxr 40889 liminfresico 40893 liminfresre 40901 liminfresuz 40906 |
Copyright terms: Public domain | W3C validator |