![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resexd | Structured version Visualization version GIF version |
Description: The restriction of a set is a set. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
resexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
resexd | ⊢ (𝜑 → (𝐴 ↾ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | resexg 6056 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ↾ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 df-ss 3993 df-res 5712 |
This theorem is referenced by: gsum2dlem2 20013 tsmspropd 24161 ulmss 26458 lmimdim 33616 aks6d1c6lem3 42129 psrbagres 42501 pwssplit4 43046 limsupresre 45617 limsupresico 45621 limsupresuz 45624 limsupres 45626 limsupresxr 45687 liminfresxr 45688 liminfresico 45692 liminfresre 45700 liminfresuz 45705 isubgriedg 47735 isubgrvtx 47737 |
Copyright terms: Public domain | W3C validator |