MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resexd Structured version   Visualization version   GIF version

Theorem resexd 6057
Description: The restriction of a set is a set. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
resexd.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
resexd (𝜑 → (𝐴𝐵) ∈ V)

Proof of Theorem resexd
StepHypRef Expression
1 resexd.1 . 2 (𝜑𝐴𝑉)
2 resexg 6056 . 2 (𝐴𝑉 → (𝐴𝐵) ∈ V)
31, 2syl 17 1 (𝜑 → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3488  cres 5702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-in 3983  df-ss 3993  df-res 5712
This theorem is referenced by:  gsum2dlem2  20013  tsmspropd  24161  ulmss  26458  lmimdim  33616  aks6d1c6lem3  42129  psrbagres  42501  pwssplit4  43046  limsupresre  45617  limsupresico  45621  limsupresuz  45624  limsupres  45626  limsupresxr  45687  liminfresxr  45688  liminfresico  45692  liminfresre  45700  liminfresuz  45705  isubgriedg  47735  isubgrvtx  47737
  Copyright terms: Public domain W3C validator