Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resexd Structured version   Visualization version   GIF version

Theorem resexd 41694
Description: The restriction of a set is a set. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
resexd.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
resexd (𝜑 → (𝐴𝐵) ∈ V)

Proof of Theorem resexd
StepHypRef Expression
1 resexd.1 . 2 (𝜑𝐴𝑉)
2 resexg 5885 . 2 (𝐴𝑉 → (𝐴𝐵) ∈ V)
31, 2syl 17 1 (𝜑 → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2115  Vcvv 3480  cres 5544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-ext 2796  ax-sep 5189
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1541  df-ex 1782  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-rab 3142  df-v 3482  df-in 3926  df-ss 3936  df-res 5554
This theorem is referenced by:  limsupresre  42264  limsupresico  42268  limsupresuz  42271  limsupres  42273  limsupresxr  42334  liminfresxr  42335  liminfresico  42339  liminfresre  42347  liminfresuz  42352
  Copyright terms: Public domain W3C validator