MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resexd Structured version   Visualization version   GIF version

Theorem resexd 5976
Description: The restriction of a set is a set. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
resexd.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
resexd (𝜑 → (𝐴𝐵) ∈ V)

Proof of Theorem resexd
StepHypRef Expression
1 resexd.1 . 2 (𝜑𝐴𝑉)
2 resexg 5975 . 2 (𝐴𝑉 → (𝐴𝐵) ∈ V)
31, 2syl 17 1 (𝜑 → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  Vcvv 3436  cres 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-in 3904  df-ss 3914  df-res 5626
This theorem is referenced by:  gsum2dlem2  19883  tsmspropd  24047  ulmss  26333  elrgspnlem4  33212  lmimdim  33616  aks6d1c6lem3  42264  psrbagres  42638  pwssplit4  43181  limsupresre  45793  limsupresico  45797  limsupresuz  45800  limsupres  45802  limsupresxr  45863  liminfresxr  45864  liminfresico  45868  liminfresre  45876  liminfresuz  45881  isubgriedg  47962  isubgrvtx  47966
  Copyright terms: Public domain W3C validator