Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resexd | Structured version Visualization version GIF version |
Description: The restriction of a set is a set. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
resexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
resexd | ⊢ (𝜑 → (𝐴 ↾ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | resexg 5926 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ↾ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-res 5592 |
This theorem is referenced by: gsum2dlem2 19487 tsmspropd 23191 ulmss 25461 pwssplit4 40830 limsupresre 43127 limsupresico 43131 limsupresuz 43134 limsupres 43136 limsupresxr 43197 liminfresxr 43198 liminfresico 43202 liminfresre 43210 liminfresuz 43215 |
Copyright terms: Public domain | W3C validator |