| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resexd | Structured version Visualization version GIF version | ||
| Description: The restriction of a set is a set. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| resexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| resexd | ⊢ (𝜑 → (𝐴 ↾ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | resexg 6001 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ↾ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 ↾ cres 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-in 3924 df-ss 3934 df-res 5653 |
| This theorem is referenced by: gsum2dlem2 19908 tsmspropd 24026 ulmss 26313 elrgspnlem4 33203 lmimdim 33606 aks6d1c6lem3 42167 psrbagres 42541 pwssplit4 43085 limsupresre 45701 limsupresico 45705 limsupresuz 45708 limsupres 45710 limsupresxr 45771 liminfresxr 45772 liminfresico 45776 liminfresre 45784 liminfresuz 45789 isubgriedg 47867 isubgrvtx 47871 |
| Copyright terms: Public domain | W3C validator |