MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resexd Structured version   Visualization version   GIF version

Theorem resexd 5979
Description: The restriction of a set is a set. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
resexd.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
resexd (𝜑 → (𝐴𝐵) ∈ V)

Proof of Theorem resexd
StepHypRef Expression
1 resexd.1 . 2 (𝜑𝐴𝑉)
2 resexg 5978 . 2 (𝐴𝑉 → (𝐴𝐵) ∈ V)
31, 2syl 17 1 (𝜑 → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3436  cres 5621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-in 3910  df-ss 3920  df-res 5631
This theorem is referenced by:  gsum2dlem2  19850  tsmspropd  24017  ulmss  26304  elrgspnlem4  33194  lmimdim  33586  aks6d1c6lem3  42165  psrbagres  42539  pwssplit4  43082  limsupresre  45697  limsupresico  45701  limsupresuz  45704  limsupres  45706  limsupresxr  45767  liminfresxr  45768  liminfresico  45772  liminfresre  45780  liminfresuz  45785  isubgriedg  47867  isubgrvtx  47871
  Copyright terms: Public domain W3C validator