MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resexd Structured version   Visualization version   GIF version

Theorem resexd 6029
Description: The restriction of a set is a set. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
resexd.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
resexd (𝜑 → (𝐴𝐵) ∈ V)

Proof of Theorem resexd
StepHypRef Expression
1 resexd.1 . 2 (𝜑𝐴𝑉)
2 resexg 6028 . 2 (𝐴𝑉 → (𝐴𝐵) ∈ V)
31, 2syl 17 1 (𝜑 → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2104  Vcvv 3472  cres 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-sep 5300
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rab 3431  df-v 3474  df-in 3956  df-ss 3966  df-res 5689
This theorem is referenced by:  gsum2dlem2  19882  tsmspropd  23858  ulmss  26143  lmimdim  32974  psrbagres  41419  pwssplit4  42135  limsupresre  44712  limsupresico  44716  limsupresuz  44719  limsupres  44721  limsupresxr  44782  liminfresxr  44783  liminfresico  44787  liminfresre  44795  liminfresuz  44800
  Copyright terms: Public domain W3C validator