MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsum2dlem2 Structured version   Visualization version   GIF version

Theorem gsum2dlem2 19560
Description: Lemma for gsum2d 19561. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 8-Jun-2019.)
Hypotheses
Ref Expression
gsum2d.b 𝐵 = (Base‘𝐺)
gsum2d.z 0 = (0g𝐺)
gsum2d.g (𝜑𝐺 ∈ CMnd)
gsum2d.a (𝜑𝐴𝑉)
gsum2d.r (𝜑 → Rel 𝐴)
gsum2d.d (𝜑𝐷𝑊)
gsum2d.s (𝜑 → dom 𝐴𝐷)
gsum2d.f (𝜑𝐹:𝐴𝐵)
gsum2d.w (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsum2dlem2 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
Distinct variable groups:   𝑗,𝑘,𝐴   𝑗,𝐹,𝑘   𝑗,𝐺,𝑘   𝜑,𝑗,𝑘   𝐵,𝑗,𝑘   𝐷,𝑗,𝑘   0 ,𝑗,𝑘
Allowed substitution hints:   𝑉(𝑗,𝑘)   𝑊(𝑗,𝑘)

Proof of Theorem gsum2dlem2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsum2d.w . . . 4 (𝜑𝐹 finSupp 0 )
21fsuppimpd 9123 . . 3 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
3 dmfi 9085 . . 3 ((𝐹 supp 0 ) ∈ Fin → dom (𝐹 supp 0 ) ∈ Fin)
42, 3syl 17 . 2 (𝜑 → dom (𝐹 supp 0 ) ∈ Fin)
5 reseq2 5880 . . . . . . . . 9 (𝑥 = ∅ → (𝐴𝑥) = (𝐴 ↾ ∅))
6 res0 5889 . . . . . . . . 9 (𝐴 ↾ ∅) = ∅
75, 6eqtrdi 2794 . . . . . . . 8 (𝑥 = ∅ → (𝐴𝑥) = ∅)
87reseq2d 5885 . . . . . . 7 (𝑥 = ∅ → (𝐹 ↾ (𝐴𝑥)) = (𝐹 ↾ ∅))
9 res0 5889 . . . . . . 7 (𝐹 ↾ ∅) = ∅
108, 9eqtrdi 2794 . . . . . 6 (𝑥 = ∅ → (𝐹 ↾ (𝐴𝑥)) = ∅)
1110oveq2d 7284 . . . . 5 (𝑥 = ∅ → (𝐺 Σg (𝐹 ↾ (𝐴𝑥))) = (𝐺 Σg ∅))
12 mpteq1 5167 . . . . . . 7 (𝑥 = ∅ → (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) = (𝑗 ∈ ∅ ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))
13 mpt0 6568 . . . . . . 7 (𝑗 ∈ ∅ ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) = ∅
1412, 13eqtrdi 2794 . . . . . 6 (𝑥 = ∅ → (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) = ∅)
1514oveq2d 7284 . . . . 5 (𝑥 = ∅ → (𝐺 Σg (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg ∅))
1611, 15eqeq12d 2754 . . . 4 (𝑥 = ∅ → ((𝐺 Σg (𝐹 ↾ (𝐴𝑥))) = (𝐺 Σg (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) ↔ (𝐺 Σg ∅) = (𝐺 Σg ∅)))
1716imbi2d 341 . . 3 (𝑥 = ∅ → ((𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴𝑥))) = (𝐺 Σg (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) ↔ (𝜑 → (𝐺 Σg ∅) = (𝐺 Σg ∅))))
18 reseq2 5880 . . . . . . 7 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
1918reseq2d 5885 . . . . . 6 (𝑥 = 𝑦 → (𝐹 ↾ (𝐴𝑥)) = (𝐹 ↾ (𝐴𝑦)))
2019oveq2d 7284 . . . . 5 (𝑥 = 𝑦 → (𝐺 Σg (𝐹 ↾ (𝐴𝑥))) = (𝐺 Σg (𝐹 ↾ (𝐴𝑦))))
21 mpteq1 5167 . . . . . 6 (𝑥 = 𝑦 → (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) = (𝑗𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))
2221oveq2d 7284 . . . . 5 (𝑥 = 𝑦 → (𝐺 Σg (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
2320, 22eqeq12d 2754 . . . 4 (𝑥 = 𝑦 → ((𝐺 Σg (𝐹 ↾ (𝐴𝑥))) = (𝐺 Σg (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) ↔ (𝐺 Σg (𝐹 ↾ (𝐴𝑦))) = (𝐺 Σg (𝑗𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))))
2423imbi2d 341 . . 3 (𝑥 = 𝑦 → ((𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴𝑥))) = (𝐺 Σg (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) ↔ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴𝑦))) = (𝐺 Σg (𝑗𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))))
25 reseq2 5880 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐴𝑥) = (𝐴 ↾ (𝑦 ∪ {𝑧})))
2625reseq2d 5885 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐹 ↾ (𝐴𝑥)) = (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))))
2726oveq2d 7284 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐺 Σg (𝐹 ↾ (𝐴𝑥))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧})))))
28 mpteq1 5167 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) = (𝑗 ∈ (𝑦 ∪ {𝑧}) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))
2928oveq2d 7284 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐺 Σg (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗 ∈ (𝑦 ∪ {𝑧}) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
3027, 29eqeq12d 2754 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐺 Σg (𝐹 ↾ (𝐴𝑥))) = (𝐺 Σg (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) ↔ (𝐺 Σg (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧})))) = (𝐺 Σg (𝑗 ∈ (𝑦 ∪ {𝑧}) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))))
3130imbi2d 341 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴𝑥))) = (𝐺 Σg (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) ↔ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧})))) = (𝐺 Σg (𝑗 ∈ (𝑦 ∪ {𝑧}) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))))
32 reseq2 5880 . . . . . . 7 (𝑥 = dom (𝐹 supp 0 ) → (𝐴𝑥) = (𝐴 ↾ dom (𝐹 supp 0 )))
3332reseq2d 5885 . . . . . 6 (𝑥 = dom (𝐹 supp 0 ) → (𝐹 ↾ (𝐴𝑥)) = (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 ))))
3433oveq2d 7284 . . . . 5 (𝑥 = dom (𝐹 supp 0 ) → (𝐺 Σg (𝐹 ↾ (𝐴𝑥))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))))
35 mpteq1 5167 . . . . . 6 (𝑥 = dom (𝐹 supp 0 ) → (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) = (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))
3635oveq2d 7284 . . . . 5 (𝑥 = dom (𝐹 supp 0 ) → (𝐺 Σg (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
3734, 36eqeq12d 2754 . . . 4 (𝑥 = dom (𝐹 supp 0 ) → ((𝐺 Σg (𝐹 ↾ (𝐴𝑥))) = (𝐺 Σg (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) ↔ (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))))
3837imbi2d 341 . . 3 (𝑥 = dom (𝐹 supp 0 ) → ((𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴𝑥))) = (𝐺 Σg (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) ↔ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))))
39 eqidd 2739 . . 3 (𝜑 → (𝐺 Σg ∅) = (𝐺 Σg ∅))
40 oveq1 7275 . . . . . 6 ((𝐺 Σg (𝐹 ↾ (𝐴𝑦))) = (𝐺 Σg (𝑗𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) → ((𝐺 Σg (𝐹 ↾ (𝐴𝑦)))(+g𝐺)(𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧})))) = ((𝐺 Σg (𝑗𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))(+g𝐺)(𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧})))))
41 gsum2d.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
42 gsum2d.z . . . . . . . . 9 0 = (0g𝐺)
43 eqid 2738 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
44 gsum2d.g . . . . . . . . . 10 (𝜑𝐺 ∈ CMnd)
4544adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝐺 ∈ CMnd)
46 gsum2d.a . . . . . . . . . . 11 (𝜑𝐴𝑉)
4746resexd 5932 . . . . . . . . . 10 (𝜑 → (𝐴 ↾ (𝑦 ∪ {𝑧})) ∈ V)
4847adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐴 ↾ (𝑦 ∪ {𝑧})) ∈ V)
49 gsum2d.f . . . . . . . . . . 11 (𝜑𝐹:𝐴𝐵)
50 resss 5910 . . . . . . . . . . 11 (𝐴 ↾ (𝑦 ∪ {𝑧})) ⊆ 𝐴
51 fssres 6633 . . . . . . . . . . 11 ((𝐹:𝐴𝐵 ∧ (𝐴 ↾ (𝑦 ∪ {𝑧})) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))):(𝐴 ↾ (𝑦 ∪ {𝑧}))⟶𝐵)
5249, 50, 51sylancl 586 . . . . . . . . . 10 (𝜑 → (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))):(𝐴 ↾ (𝑦 ∪ {𝑧}))⟶𝐵)
5352adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))):(𝐴 ↾ (𝑦 ∪ {𝑧}))⟶𝐵)
5449ffund 6597 . . . . . . . . . . . 12 (𝜑 → Fun 𝐹)
5554funresd 6470 . . . . . . . . . . 11 (𝜑 → Fun (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))))
5655adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → Fun (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))))
572adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐹 supp 0 ) ∈ Fin)
5849, 46fexd 7096 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ V)
5942fvexi 6781 . . . . . . . . . . . . 13 0 ∈ V
60 ressuppss 7987 . . . . . . . . . . . . 13 ((𝐹 ∈ V ∧ 0 ∈ V) → ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) supp 0 ) ⊆ (𝐹 supp 0 ))
6158, 59, 60sylancl 586 . . . . . . . . . . . 12 (𝜑 → ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) supp 0 ) ⊆ (𝐹 supp 0 ))
6261adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) supp 0 ) ⊆ (𝐹 supp 0 ))
6357, 62ssfid 9030 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) supp 0 ) ∈ Fin)
6458resexd 5932 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ∈ V)
65 isfsupp 9120 . . . . . . . . . . . 12 (((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ∈ V ∧ 0 ∈ V) → ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) finSupp 0 ↔ (Fun (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ∧ ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) supp 0 ) ∈ Fin)))
6664, 59, 65sylancl 586 . . . . . . . . . . 11 (𝜑 → ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) finSupp 0 ↔ (Fun (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ∧ ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) supp 0 ) ∈ Fin)))
6766adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) finSupp 0 ↔ (Fun (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ∧ ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) supp 0 ) ∈ Fin)))
6856, 63, 67mpbir2and 710 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) finSupp 0 )
69 simprr 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ¬ 𝑧𝑦)
70 disjsn 4648 . . . . . . . . . . . 12 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
7169, 70sylibr 233 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝑦 ∩ {𝑧}) = ∅)
7271reseq2d 5885 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐴 ↾ (𝑦 ∩ {𝑧})) = (𝐴 ↾ ∅))
73 resindi 5901 . . . . . . . . . 10 (𝐴 ↾ (𝑦 ∩ {𝑧})) = ((𝐴𝑦) ∩ (𝐴 ↾ {𝑧}))
7472, 73, 63eqtr3g 2801 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((𝐴𝑦) ∩ (𝐴 ↾ {𝑧})) = ∅)
75 resundi 5899 . . . . . . . . . 10 (𝐴 ↾ (𝑦 ∪ {𝑧})) = ((𝐴𝑦) ∪ (𝐴 ↾ {𝑧}))
7675a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐴 ↾ (𝑦 ∪ {𝑧})) = ((𝐴𝑦) ∪ (𝐴 ↾ {𝑧})))
7741, 42, 43, 45, 48, 53, 68, 74, 76gsumsplit 19517 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧})))) = ((𝐺 Σg ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ↾ (𝐴𝑦)))(+g𝐺)(𝐺 Σg ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ↾ (𝐴 ↾ {𝑧})))))
78 ssun1 4106 . . . . . . . . . . 11 𝑦 ⊆ (𝑦 ∪ {𝑧})
79 ssres2 5913 . . . . . . . . . . 11 (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (𝐴𝑦) ⊆ (𝐴 ↾ (𝑦 ∪ {𝑧})))
80 resabs1 5915 . . . . . . . . . . 11 ((𝐴𝑦) ⊆ (𝐴 ↾ (𝑦 ∪ {𝑧})) → ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ↾ (𝐴𝑦)) = (𝐹 ↾ (𝐴𝑦)))
8178, 79, 80mp2b 10 . . . . . . . . . 10 ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ↾ (𝐴𝑦)) = (𝐹 ↾ (𝐴𝑦))
8281oveq2i 7279 . . . . . . . . 9 (𝐺 Σg ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ↾ (𝐴𝑦))) = (𝐺 Σg (𝐹 ↾ (𝐴𝑦)))
83 ssun2 4107 . . . . . . . . . . 11 {𝑧} ⊆ (𝑦 ∪ {𝑧})
84 ssres2 5913 . . . . . . . . . . 11 ({𝑧} ⊆ (𝑦 ∪ {𝑧}) → (𝐴 ↾ {𝑧}) ⊆ (𝐴 ↾ (𝑦 ∪ {𝑧})))
85 resabs1 5915 . . . . . . . . . . 11 ((𝐴 ↾ {𝑧}) ⊆ (𝐴 ↾ (𝑦 ∪ {𝑧})) → ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ↾ (𝐴 ↾ {𝑧})) = (𝐹 ↾ (𝐴 ↾ {𝑧})))
8683, 84, 85mp2b 10 . . . . . . . . . 10 ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ↾ (𝐴 ↾ {𝑧})) = (𝐹 ↾ (𝐴 ↾ {𝑧}))
8786oveq2i 7279 . . . . . . . . 9 (𝐺 Σg ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ↾ (𝐴 ↾ {𝑧}))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧})))
8882, 87oveq12i 7280 . . . . . . . 8 ((𝐺 Σg ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ↾ (𝐴𝑦)))(+g𝐺)(𝐺 Σg ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ↾ (𝐴 ↾ {𝑧})))) = ((𝐺 Σg (𝐹 ↾ (𝐴𝑦)))(+g𝐺)(𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧}))))
8977, 88eqtrdi 2794 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧})))) = ((𝐺 Σg (𝐹 ↾ (𝐴𝑦)))(+g𝐺)(𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧})))))
90 simprl 768 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑦 ∈ Fin)
91 gsum2d.r . . . . . . . . . . 11 (𝜑 → Rel 𝐴)
92 gsum2d.d . . . . . . . . . . 11 (𝜑𝐷𝑊)
93 gsum2d.s . . . . . . . . . . 11 (𝜑 → dom 𝐴𝐷)
9441, 42, 44, 46, 91, 92, 93, 49, 1gsum2dlem1 19559 . . . . . . . . . 10 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵)
9594ad2antrr 723 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) ∧ 𝑗𝑦) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵)
96 vex 3434 . . . . . . . . . 10 𝑧 ∈ V
9796a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑧 ∈ V)
98 sneq 4572 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑧 → {𝑗} = {𝑧})
9998imaeq2d 5963 . . . . . . . . . . . . . . 15 (𝑗 = 𝑧 → (𝐴 “ {𝑗}) = (𝐴 “ {𝑧}))
100 oveq1 7275 . . . . . . . . . . . . . . 15 (𝑗 = 𝑧 → (𝑗𝐹𝑘) = (𝑧𝐹𝑘))
10199, 100mpteq12dv 5165 . . . . . . . . . . . . . 14 (𝑗 = 𝑧 → (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) = (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘)))
102101oveq2d 7284 . . . . . . . . . . . . 13 (𝑗 = 𝑧 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) = (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘))))
103102eleq1d 2823 . . . . . . . . . . . 12 (𝑗 = 𝑧 → ((𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵 ↔ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘))) ∈ 𝐵))
104103imbi2d 341 . . . . . . . . . . 11 (𝑗 = 𝑧 → ((𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵) ↔ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘))) ∈ 𝐵)))
105104, 94chvarvv 2002 . . . . . . . . . 10 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘))) ∈ 𝐵)
106105adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘))) ∈ 𝐵)
10741, 43, 45, 90, 95, 97, 69, 106, 102gsumunsn 19549 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐺 Σg (𝑗 ∈ (𝑦 ∪ {𝑧}) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) = ((𝐺 Σg (𝑗𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))(+g𝐺)(𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘)))))
10898reseq2d 5885 . . . . . . . . . . . . . . 15 (𝑗 = 𝑧 → (𝐴 ↾ {𝑗}) = (𝐴 ↾ {𝑧}))
109108reseq2d 5885 . . . . . . . . . . . . . 14 (𝑗 = 𝑧 → (𝐹 ↾ (𝐴 ↾ {𝑗})) = (𝐹 ↾ (𝐴 ↾ {𝑧})))
110109oveq2d 7284 . . . . . . . . . . . . 13 (𝑗 = 𝑧 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑗}))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧}))))
111102, 110eqeq12d 2754 . . . . . . . . . . . 12 (𝑗 = 𝑧 → ((𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑗}))) ↔ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧})))))
112111imbi2d 341 . . . . . . . . . . 11 (𝑗 = 𝑧 → ((𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑗})))) ↔ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧}))))))
113 imaexg 7753 . . . . . . . . . . . . . 14 (𝐴𝑉 → (𝐴 “ {𝑗}) ∈ V)
11446, 113syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐴 “ {𝑗}) ∈ V)
115 vex 3434 . . . . . . . . . . . . . . . 16 𝑗 ∈ V
116 vex 3434 . . . . . . . . . . . . . . . 16 𝑘 ∈ V
117115, 116elimasn 5991 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝐴 “ {𝑗}) ↔ ⟨𝑗, 𝑘⟩ ∈ 𝐴)
118 df-ov 7271 . . . . . . . . . . . . . . . 16 (𝑗𝐹𝑘) = (𝐹‘⟨𝑗, 𝑘⟩)
11949ffvelrnda 6954 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ⟨𝑗, 𝑘⟩ ∈ 𝐴) → (𝐹‘⟨𝑗, 𝑘⟩) ∈ 𝐵)
120118, 119eqeltrid 2843 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ⟨𝑗, 𝑘⟩ ∈ 𝐴) → (𝑗𝐹𝑘) ∈ 𝐵)
121117, 120sylan2b 594 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐴 “ {𝑗})) → (𝑗𝐹𝑘) ∈ 𝐵)
122121fmpttd 6982 . . . . . . . . . . . . 13 (𝜑 → (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)):(𝐴 “ {𝑗})⟶𝐵)
123 funmpt 6465 . . . . . . . . . . . . . . 15 Fun (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))
124123a1i 11 . . . . . . . . . . . . . 14 (𝜑 → Fun (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))
125 rnfi 9090 . . . . . . . . . . . . . . . 16 ((𝐹 supp 0 ) ∈ Fin → ran (𝐹 supp 0 ) ∈ Fin)
1262, 125syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ran (𝐹 supp 0 ) ∈ Fin)
127117biimpi 215 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (𝐴 “ {𝑗}) → ⟨𝑗, 𝑘⟩ ∈ 𝐴)
128115, 116opelrn 5846 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ) → 𝑘 ∈ ran (𝐹 supp 0 ))
129128con3i 154 . . . . . . . . . . . . . . . . . . 19 𝑘 ∈ ran (𝐹 supp 0 ) → ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ))
130127, 129anim12i 613 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ (𝐴 “ {𝑗}) ∧ ¬ 𝑘 ∈ ran (𝐹 supp 0 )) → (⟨𝑗, 𝑘⟩ ∈ 𝐴 ∧ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )))
131 eldif 3897 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ((𝐴 “ {𝑗}) ∖ ran (𝐹 supp 0 )) ↔ (𝑘 ∈ (𝐴 “ {𝑗}) ∧ ¬ 𝑘 ∈ ran (𝐹 supp 0 )))
132 eldif 3897 . . . . . . . . . . . . . . . . . 18 (⟨𝑗, 𝑘⟩ ∈ (𝐴 ∖ (𝐹 supp 0 )) ↔ (⟨𝑗, 𝑘⟩ ∈ 𝐴 ∧ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )))
133130, 131, 1323imtr4i 292 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ((𝐴 “ {𝑗}) ∖ ran (𝐹 supp 0 )) → ⟨𝑗, 𝑘⟩ ∈ (𝐴 ∖ (𝐹 supp 0 )))
134 ssidd 3944 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
13559a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑0 ∈ V)
13649, 134, 46, 135suppssr 8000 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ⟨𝑗, 𝑘⟩ ∈ (𝐴 ∖ (𝐹 supp 0 ))) → (𝐹‘⟨𝑗, 𝑘⟩) = 0 )
137118, 136eqtrid 2790 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ⟨𝑗, 𝑘⟩ ∈ (𝐴 ∖ (𝐹 supp 0 ))) → (𝑗𝐹𝑘) = 0 )
138133, 137sylan2 593 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ((𝐴 “ {𝑗}) ∖ ran (𝐹 supp 0 ))) → (𝑗𝐹𝑘) = 0 )
139138, 114suppss2 8004 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) supp 0 ) ⊆ ran (𝐹 supp 0 ))
140126, 139ssfid 9030 . . . . . . . . . . . . . 14 (𝜑 → ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) supp 0 ) ∈ Fin)
141114mptexd 7093 . . . . . . . . . . . . . . 15 (𝜑 → (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) ∈ V)
142 isfsupp 9120 . . . . . . . . . . . . . . 15 (((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) ∈ V ∧ 0 ∈ V) → ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) finSupp 0 ↔ (Fun (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) ∧ ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) supp 0 ) ∈ Fin)))
143141, 59, 142sylancl 586 . . . . . . . . . . . . . 14 (𝜑 → ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) finSupp 0 ↔ (Fun (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) ∧ ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) supp 0 ) ∈ Fin)))
144124, 140, 143mpbir2and 710 . . . . . . . . . . . . 13 (𝜑 → (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) finSupp 0 )
145 2ndconst 7929 . . . . . . . . . . . . . 14 (𝑗 ∈ V → (2nd ↾ ({𝑗} × (𝐴 “ {𝑗}))):({𝑗} × (𝐴 “ {𝑗}))–1-1-onto→(𝐴 “ {𝑗}))
146115, 145mp1i 13 . . . . . . . . . . . . 13 (𝜑 → (2nd ↾ ({𝑗} × (𝐴 “ {𝑗}))):({𝑗} × (𝐴 “ {𝑗}))–1-1-onto→(𝐴 “ {𝑗}))
14741, 42, 44, 114, 122, 144, 146gsumf1o 19505 . . . . . . . . . . . 12 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) = (𝐺 Σg ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) ∘ (2nd ↾ ({𝑗} × (𝐴 “ {𝑗}))))))
148 1st2nd2 7860 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
149 xp1st 7853 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) → (1st𝑥) ∈ {𝑗})
150 elsni 4579 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑥) ∈ {𝑗} → (1st𝑥) = 𝑗)
151149, 150syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) → (1st𝑥) = 𝑗)
152151opeq1d 4811 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) → ⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑗, (2nd𝑥)⟩)
153148, 152eqtrd 2778 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) → 𝑥 = ⟨𝑗, (2nd𝑥)⟩)
154153fveq2d 6771 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) → (𝐹𝑥) = (𝐹‘⟨𝑗, (2nd𝑥)⟩))
155 df-ov 7271 . . . . . . . . . . . . . . . 16 (𝑗𝐹(2nd𝑥)) = (𝐹‘⟨𝑗, (2nd𝑥)⟩)
156154, 155eqtr4di 2796 . . . . . . . . . . . . . . 15 (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) → (𝐹𝑥) = (𝑗𝐹(2nd𝑥)))
157156mpteq2ia 5177 . . . . . . . . . . . . . 14 (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) ↦ (𝐹𝑥)) = (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) ↦ (𝑗𝐹(2nd𝑥)))
15849feqmptd 6830 . . . . . . . . . . . . . . . 16 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
159158reseq1d 5884 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 ↾ (𝐴 ↾ {𝑗})) = ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐴 ↾ {𝑗})))
160 resss 5910 . . . . . . . . . . . . . . . . 17 (𝐴 ↾ {𝑗}) ⊆ 𝐴
161 resmpt 5939 . . . . . . . . . . . . . . . . 17 ((𝐴 ↾ {𝑗}) ⊆ 𝐴 → ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐴 ↾ {𝑗})) = (𝑥 ∈ (𝐴 ↾ {𝑗}) ↦ (𝐹𝑥)))
162160, 161ax-mp 5 . . . . . . . . . . . . . . . 16 ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐴 ↾ {𝑗})) = (𝑥 ∈ (𝐴 ↾ {𝑗}) ↦ (𝐹𝑥))
163 ressn 6182 . . . . . . . . . . . . . . . . 17 (𝐴 ↾ {𝑗}) = ({𝑗} × (𝐴 “ {𝑗}))
164163mpteq1i 5170 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴 ↾ {𝑗}) ↦ (𝐹𝑥)) = (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) ↦ (𝐹𝑥))
165162, 164eqtri 2766 . . . . . . . . . . . . . . 15 ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐴 ↾ {𝑗})) = (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) ↦ (𝐹𝑥))
166159, 165eqtrdi 2794 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 ↾ (𝐴 ↾ {𝑗})) = (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) ↦ (𝐹𝑥)))
167 xp2nd 7854 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) → (2nd𝑥) ∈ (𝐴 “ {𝑗}))
168167adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗}))) → (2nd𝑥) ∈ (𝐴 “ {𝑗}))
169 fo2nd 7842 . . . . . . . . . . . . . . . . . . 19 2nd :V–onto→V
170 fof 6681 . . . . . . . . . . . . . . . . . . 19 (2nd :V–onto→V → 2nd :V⟶V)
171169, 170mp1i 13 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2nd :V⟶V)
172171feqmptd 6830 . . . . . . . . . . . . . . . . 17 (𝜑 → 2nd = (𝑥 ∈ V ↦ (2nd𝑥)))
173172reseq1d 5884 . . . . . . . . . . . . . . . 16 (𝜑 → (2nd ↾ ({𝑗} × (𝐴 “ {𝑗}))) = ((𝑥 ∈ V ↦ (2nd𝑥)) ↾ ({𝑗} × (𝐴 “ {𝑗}))))
174 ssv 3945 . . . . . . . . . . . . . . . . 17 ({𝑗} × (𝐴 “ {𝑗})) ⊆ V
175 resmpt 5939 . . . . . . . . . . . . . . . . 17 (({𝑗} × (𝐴 “ {𝑗})) ⊆ V → ((𝑥 ∈ V ↦ (2nd𝑥)) ↾ ({𝑗} × (𝐴 “ {𝑗}))) = (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) ↦ (2nd𝑥)))
176174, 175ax-mp 5 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ V ↦ (2nd𝑥)) ↾ ({𝑗} × (𝐴 “ {𝑗}))) = (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) ↦ (2nd𝑥))
177173, 176eqtrdi 2794 . . . . . . . . . . . . . . 15 (𝜑 → (2nd ↾ ({𝑗} × (𝐴 “ {𝑗}))) = (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) ↦ (2nd𝑥)))
178 eqidd 2739 . . . . . . . . . . . . . . 15 (𝜑 → (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) = (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))
179 oveq2 7276 . . . . . . . . . . . . . . 15 (𝑘 = (2nd𝑥) → (𝑗𝐹𝑘) = (𝑗𝐹(2nd𝑥)))
180168, 177, 178, 179fmptco 6994 . . . . . . . . . . . . . 14 (𝜑 → ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) ∘ (2nd ↾ ({𝑗} × (𝐴 “ {𝑗})))) = (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) ↦ (𝑗𝐹(2nd𝑥))))
181157, 166, 1803eqtr4a 2804 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ↾ (𝐴 ↾ {𝑗})) = ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) ∘ (2nd ↾ ({𝑗} × (𝐴 “ {𝑗})))))
182181oveq2d 7284 . . . . . . . . . . . 12 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑗}))) = (𝐺 Σg ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) ∘ (2nd ↾ ({𝑗} × (𝐴 “ {𝑗}))))))
183147, 182eqtr4d 2781 . . . . . . . . . . 11 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑗}))))
184112, 183chvarvv 2002 . . . . . . . . . 10 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧}))))
185184adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧}))))
186185oveq2d 7284 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((𝐺 Σg (𝑗𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))(+g𝐺)(𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘)))) = ((𝐺 Σg (𝑗𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))(+g𝐺)(𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧})))))
187107, 186eqtrd 2778 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐺 Σg (𝑗 ∈ (𝑦 ∪ {𝑧}) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) = ((𝐺 Σg (𝑗𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))(+g𝐺)(𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧})))))
18889, 187eqeq12d 2754 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((𝐺 Σg (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧})))) = (𝐺 Σg (𝑗 ∈ (𝑦 ∪ {𝑧}) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) ↔ ((𝐺 Σg (𝐹 ↾ (𝐴𝑦)))(+g𝐺)(𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧})))) = ((𝐺 Σg (𝑗𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))(+g𝐺)(𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧}))))))
18940, 188syl5ibr 245 . . . . 5 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((𝐺 Σg (𝐹 ↾ (𝐴𝑦))) = (𝐺 Σg (𝑗𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧})))) = (𝐺 Σg (𝑗 ∈ (𝑦 ∪ {𝑧}) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))))
190189expcom 414 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝜑 → ((𝐺 Σg (𝐹 ↾ (𝐴𝑦))) = (𝐺 Σg (𝑗𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧})))) = (𝐺 Σg (𝑗 ∈ (𝑦 ∪ {𝑧}) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))))
191190a2d 29 . . 3 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴𝑦))) = (𝐺 Σg (𝑗𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) → (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧})))) = (𝐺 Σg (𝑗 ∈ (𝑦 ∪ {𝑧}) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))))
19217, 24, 31, 38, 39, 191findcard2s 8936 . 2 (dom (𝐹 supp 0 ) ∈ Fin → (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))))
1934, 192mpcom 38 1 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3430  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4257  {csn 4562  cop 4568   class class class wbr 5074  cmpt 5157   × cxp 5583  dom cdm 5585  ran crn 5586  cres 5587  cima 5588  ccom 5589  Rel wrel 5590  Fun wfun 6421  wf 6423  ontowfo 6425  1-1-ontowf1o 6426  cfv 6427  (class class class)co 7268  1st c1st 7819  2nd c2nd 7820   supp csupp 7965  Fincfn 8721   finSupp cfsupp 9116  Basecbs 16900  +gcplusg 16950  0gc0g 17138   Σg cgsu 17139  CMndccmn 19374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-cnex 10915  ax-resscn 10916  ax-1cn 10917  ax-icn 10918  ax-addcl 10919  ax-addrcl 10920  ax-mulcl 10921  ax-mulrcl 10922  ax-mulcom 10923  ax-addass 10924  ax-mulass 10925  ax-distr 10926  ax-i2m1 10927  ax-1ne0 10928  ax-1rid 10929  ax-rnegex 10930  ax-rrecex 10931  ax-cnre 10932  ax-pre-lttri 10933  ax-pre-lttrn 10934  ax-pre-ltadd 10935  ax-pre-mulgt0 10936
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-se 5541  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-isom 6436  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7704  df-1st 7821  df-2nd 7822  df-supp 7966  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-1o 8285  df-er 8486  df-en 8722  df-dom 8723  df-sdom 8724  df-fin 8725  df-fsupp 9117  df-oi 9257  df-card 9685  df-pnf 10999  df-mnf 11000  df-xr 11001  df-ltxr 11002  df-le 11003  df-sub 11195  df-neg 11196  df-nn 11962  df-2 12024  df-n0 12222  df-z 12308  df-uz 12571  df-fz 13228  df-fzo 13371  df-seq 13710  df-hash 14033  df-sets 16853  df-slot 16871  df-ndx 16883  df-base 16901  df-ress 16930  df-plusg 16963  df-0g 17140  df-gsum 17141  df-mre 17283  df-mrc 17284  df-acs 17286  df-mgm 18314  df-sgrp 18363  df-mnd 18374  df-submnd 18419  df-mulg 18689  df-cntz 18911  df-cmn 19376
This theorem is referenced by:  gsum2d  19561
  Copyright terms: Public domain W3C validator