Step | Hyp | Ref
| Expression |
1 | | gsum2d.w |
. . . 4
⊢ (𝜑 → 𝐹 finSupp 0 ) |
2 | 1 | fsuppimpd 9065 |
. . 3
⊢ (𝜑 → (𝐹 supp 0 ) ∈
Fin) |
3 | | dmfi 9027 |
. . 3
⊢ ((𝐹 supp 0 ) ∈ Fin → dom
(𝐹 supp 0 ) ∈
Fin) |
4 | 2, 3 | syl 17 |
. 2
⊢ (𝜑 → dom (𝐹 supp 0 ) ∈
Fin) |
5 | | reseq2 5875 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (𝐴 ↾ 𝑥) = (𝐴 ↾ ∅)) |
6 | | res0 5884 |
. . . . . . . . 9
⊢ (𝐴 ↾ ∅) =
∅ |
7 | 5, 6 | eqtrdi 2795 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (𝐴 ↾ 𝑥) = ∅) |
8 | 7 | reseq2d 5880 |
. . . . . . 7
⊢ (𝑥 = ∅ → (𝐹 ↾ (𝐴 ↾ 𝑥)) = (𝐹 ↾ ∅)) |
9 | | res0 5884 |
. . . . . . 7
⊢ (𝐹 ↾ ∅) =
∅ |
10 | 8, 9 | eqtrdi 2795 |
. . . . . 6
⊢ (𝑥 = ∅ → (𝐹 ↾ (𝐴 ↾ 𝑥)) = ∅) |
11 | 10 | oveq2d 7271 |
. . . . 5
⊢ (𝑥 = ∅ → (𝐺 Σg
(𝐹 ↾ (𝐴 ↾ 𝑥))) = (𝐺 Σg
∅)) |
12 | | mpteq1 5163 |
. . . . . . 7
⊢ (𝑥 = ∅ → (𝑗 ∈ 𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) = (𝑗 ∈ ∅ ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) |
13 | | mpt0 6559 |
. . . . . . 7
⊢ (𝑗 ∈ ∅ ↦ (𝐺 Σg
(𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) = ∅ |
14 | 12, 13 | eqtrdi 2795 |
. . . . . 6
⊢ (𝑥 = ∅ → (𝑗 ∈ 𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) = ∅) |
15 | 14 | oveq2d 7271 |
. . . . 5
⊢ (𝑥 = ∅ → (𝐺 Σg
(𝑗 ∈ 𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg
∅)) |
16 | 11, 15 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = ∅ → ((𝐺 Σg
(𝐹 ↾ (𝐴 ↾ 𝑥))) = (𝐺 Σg (𝑗 ∈ 𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) ↔ (𝐺 Σg ∅) =
(𝐺
Σg ∅))) |
17 | 16 | imbi2d 340 |
. . 3
⊢ (𝑥 = ∅ → ((𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ 𝑥))) = (𝐺 Σg (𝑗 ∈ 𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) ↔ (𝜑 → (𝐺 Σg ∅) =
(𝐺
Σg ∅)))) |
18 | | reseq2 5875 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝐴 ↾ 𝑥) = (𝐴 ↾ 𝑦)) |
19 | 18 | reseq2d 5880 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝐹 ↾ (𝐴 ↾ 𝑥)) = (𝐹 ↾ (𝐴 ↾ 𝑦))) |
20 | 19 | oveq2d 7271 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ 𝑥))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ 𝑦)))) |
21 | | mpteq1 5163 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑗 ∈ 𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) = (𝑗 ∈ 𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) |
22 | 21 | oveq2d 7271 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐺 Σg (𝑗 ∈ 𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗 ∈ 𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) |
23 | 20, 22 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝐺 Σg (𝐹 ↾ (𝐴 ↾ 𝑥))) = (𝐺 Σg (𝑗 ∈ 𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) ↔ (𝐺 Σg (𝐹 ↾ (𝐴 ↾ 𝑦))) = (𝐺 Σg (𝑗 ∈ 𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))) |
24 | 23 | imbi2d 340 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ 𝑥))) = (𝐺 Σg (𝑗 ∈ 𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) ↔ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ 𝑦))) = (𝐺 Σg (𝑗 ∈ 𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))))) |
25 | | reseq2 5875 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝐴 ↾ 𝑥) = (𝐴 ↾ (𝑦 ∪ {𝑧}))) |
26 | 25 | reseq2d 5880 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝐹 ↾ (𝐴 ↾ 𝑥)) = (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧})))) |
27 | 26 | oveq2d 7271 |
. . . . 5
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ 𝑥))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))))) |
28 | | mpteq1 5163 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝑗 ∈ 𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) = (𝑗 ∈ (𝑦 ∪ {𝑧}) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) |
29 | 28 | oveq2d 7271 |
. . . . 5
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝐺 Σg (𝑗 ∈ 𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗 ∈ (𝑦 ∪ {𝑧}) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) |
30 | 27, 29 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐺 Σg (𝐹 ↾ (𝐴 ↾ 𝑥))) = (𝐺 Σg (𝑗 ∈ 𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) ↔ (𝐺 Σg (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧})))) = (𝐺 Σg (𝑗 ∈ (𝑦 ∪ {𝑧}) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))) |
31 | 30 | imbi2d 340 |
. . 3
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ 𝑥))) = (𝐺 Σg (𝑗 ∈ 𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) ↔ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧})))) = (𝐺 Σg (𝑗 ∈ (𝑦 ∪ {𝑧}) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))))) |
32 | | reseq2 5875 |
. . . . . . 7
⊢ (𝑥 = dom (𝐹 supp 0 ) → (𝐴 ↾ 𝑥) = (𝐴 ↾ dom (𝐹 supp 0 ))) |
33 | 32 | reseq2d 5880 |
. . . . . 6
⊢ (𝑥 = dom (𝐹 supp 0 ) → (𝐹 ↾ (𝐴 ↾ 𝑥)) = (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))) |
34 | 33 | oveq2d 7271 |
. . . . 5
⊢ (𝑥 = dom (𝐹 supp 0 ) → (𝐺 Σg
(𝐹 ↾ (𝐴 ↾ 𝑥))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 ))))) |
35 | | mpteq1 5163 |
. . . . . 6
⊢ (𝑥 = dom (𝐹 supp 0 ) → (𝑗 ∈ 𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) = (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg
(𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) |
36 | 35 | oveq2d 7271 |
. . . . 5
⊢ (𝑥 = dom (𝐹 supp 0 ) → (𝐺 Σg
(𝑗 ∈ 𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg
(𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) |
37 | 34, 36 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = dom (𝐹 supp 0 ) → ((𝐺 Σg
(𝐹 ↾ (𝐴 ↾ 𝑥))) = (𝐺 Σg (𝑗 ∈ 𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) ↔ (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg
(𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))) |
38 | 37 | imbi2d 340 |
. . 3
⊢ (𝑥 = dom (𝐹 supp 0 ) → ((𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ 𝑥))) = (𝐺 Σg (𝑗 ∈ 𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) ↔ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg
(𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))))) |
39 | | eqidd 2739 |
. . 3
⊢ (𝜑 → (𝐺 Σg ∅) =
(𝐺
Σg ∅)) |
40 | | oveq1 7262 |
. . . . . 6
⊢ ((𝐺 Σg
(𝐹 ↾ (𝐴 ↾ 𝑦))) = (𝐺 Σg (𝑗 ∈ 𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) → ((𝐺 Σg (𝐹 ↾ (𝐴 ↾ 𝑦)))(+g‘𝐺)(𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧})))) = ((𝐺 Σg (𝑗 ∈ 𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))(+g‘𝐺)(𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧}))))) |
41 | | gsum2d.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐺) |
42 | | gsum2d.z |
. . . . . . . . 9
⊢ 0 =
(0g‘𝐺) |
43 | | eqid 2738 |
. . . . . . . . 9
⊢
(+g‘𝐺) = (+g‘𝐺) |
44 | | gsum2d.g |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ CMnd) |
45 | 44 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → 𝐺 ∈ CMnd) |
46 | | gsum2d.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
47 | 46 | resexd 5927 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ↾ (𝑦 ∪ {𝑧})) ∈ V) |
48 | 47 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝐴 ↾ (𝑦 ∪ {𝑧})) ∈ V) |
49 | | gsum2d.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
50 | | resss 5905 |
. . . . . . . . . . 11
⊢ (𝐴 ↾ (𝑦 ∪ {𝑧})) ⊆ 𝐴 |
51 | | fssres 6624 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐴 ↾ (𝑦 ∪ {𝑧})) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))):(𝐴 ↾ (𝑦 ∪ {𝑧}))⟶𝐵) |
52 | 49, 50, 51 | sylancl 585 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))):(𝐴 ↾ (𝑦 ∪ {𝑧}))⟶𝐵) |
53 | 52 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))):(𝐴 ↾ (𝑦 ∪ {𝑧}))⟶𝐵) |
54 | 49 | ffund 6588 |
. . . . . . . . . . . 12
⊢ (𝜑 → Fun 𝐹) |
55 | 54 | funresd 6461 |
. . . . . . . . . . 11
⊢ (𝜑 → Fun (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧})))) |
56 | 55 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → Fun (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧})))) |
57 | 2 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝐹 supp 0 ) ∈
Fin) |
58 | 49, 46 | fexd 7085 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 ∈ V) |
59 | 42 | fvexi 6770 |
. . . . . . . . . . . . 13
⊢ 0 ∈
V |
60 | | ressuppss 7970 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ V ∧ 0 ∈ V)
→ ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) supp 0 ) ⊆ (𝐹 supp 0 )) |
61 | 58, 59, 60 | sylancl 585 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) supp 0 ) ⊆ (𝐹 supp 0 )) |
62 | 61 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) supp 0 ) ⊆ (𝐹 supp 0 )) |
63 | 57, 62 | ssfid 8971 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) supp 0 ) ∈
Fin) |
64 | 58 | resexd 5927 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ∈ V) |
65 | | isfsupp 9062 |
. . . . . . . . . . . 12
⊢ (((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ∈ V ∧ 0 ∈ V) → ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) finSupp 0 ↔ (Fun (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ∧ ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) supp 0 ) ∈
Fin))) |
66 | 64, 59, 65 | sylancl 585 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) finSupp 0 ↔ (Fun (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ∧ ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) supp 0 ) ∈
Fin))) |
67 | 66 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) finSupp 0 ↔ (Fun (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ∧ ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) supp 0 ) ∈
Fin))) |
68 | 56, 63, 67 | mpbir2and 709 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) finSupp 0 ) |
69 | | simprr 769 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ¬ 𝑧 ∈ 𝑦) |
70 | | disjsn 4644 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ 𝑦) |
71 | 69, 70 | sylibr 233 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝑦 ∩ {𝑧}) = ∅) |
72 | 71 | reseq2d 5880 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝐴 ↾ (𝑦 ∩ {𝑧})) = (𝐴 ↾ ∅)) |
73 | | resindi 5896 |
. . . . . . . . . 10
⊢ (𝐴 ↾ (𝑦 ∩ {𝑧})) = ((𝐴 ↾ 𝑦) ∩ (𝐴 ↾ {𝑧})) |
74 | 72, 73, 6 | 3eqtr3g 2802 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ((𝐴 ↾ 𝑦) ∩ (𝐴 ↾ {𝑧})) = ∅) |
75 | | resundi 5894 |
. . . . . . . . . 10
⊢ (𝐴 ↾ (𝑦 ∪ {𝑧})) = ((𝐴 ↾ 𝑦) ∪ (𝐴 ↾ {𝑧})) |
76 | 75 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝐴 ↾ (𝑦 ∪ {𝑧})) = ((𝐴 ↾ 𝑦) ∪ (𝐴 ↾ {𝑧}))) |
77 | 41, 42, 43, 45, 48, 53, 68, 74, 76 | gsumsplit 19444 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧})))) = ((𝐺 Σg ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ↾ (𝐴 ↾ 𝑦)))(+g‘𝐺)(𝐺 Σg ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ↾ (𝐴 ↾ {𝑧}))))) |
78 | | ssun1 4102 |
. . . . . . . . . . 11
⊢ 𝑦 ⊆ (𝑦 ∪ {𝑧}) |
79 | | ssres2 5908 |
. . . . . . . . . . 11
⊢ (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (𝐴 ↾ 𝑦) ⊆ (𝐴 ↾ (𝑦 ∪ {𝑧}))) |
80 | | resabs1 5910 |
. . . . . . . . . . 11
⊢ ((𝐴 ↾ 𝑦) ⊆ (𝐴 ↾ (𝑦 ∪ {𝑧})) → ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ↾ (𝐴 ↾ 𝑦)) = (𝐹 ↾ (𝐴 ↾ 𝑦))) |
81 | 78, 79, 80 | mp2b 10 |
. . . . . . . . . 10
⊢ ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ↾ (𝐴 ↾ 𝑦)) = (𝐹 ↾ (𝐴 ↾ 𝑦)) |
82 | 81 | oveq2i 7266 |
. . . . . . . . 9
⊢ (𝐺 Σg
((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ↾ (𝐴 ↾ 𝑦))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ 𝑦))) |
83 | | ssun2 4103 |
. . . . . . . . . . 11
⊢ {𝑧} ⊆ (𝑦 ∪ {𝑧}) |
84 | | ssres2 5908 |
. . . . . . . . . . 11
⊢ ({𝑧} ⊆ (𝑦 ∪ {𝑧}) → (𝐴 ↾ {𝑧}) ⊆ (𝐴 ↾ (𝑦 ∪ {𝑧}))) |
85 | | resabs1 5910 |
. . . . . . . . . . 11
⊢ ((𝐴 ↾ {𝑧}) ⊆ (𝐴 ↾ (𝑦 ∪ {𝑧})) → ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ↾ (𝐴 ↾ {𝑧})) = (𝐹 ↾ (𝐴 ↾ {𝑧}))) |
86 | 83, 84, 85 | mp2b 10 |
. . . . . . . . . 10
⊢ ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ↾ (𝐴 ↾ {𝑧})) = (𝐹 ↾ (𝐴 ↾ {𝑧})) |
87 | 86 | oveq2i 7266 |
. . . . . . . . 9
⊢ (𝐺 Σg
((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ↾ (𝐴 ↾ {𝑧}))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧}))) |
88 | 82, 87 | oveq12i 7267 |
. . . . . . . 8
⊢ ((𝐺 Σg
((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ↾ (𝐴 ↾ 𝑦)))(+g‘𝐺)(𝐺 Σg ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ↾ (𝐴 ↾ {𝑧})))) = ((𝐺 Σg (𝐹 ↾ (𝐴 ↾ 𝑦)))(+g‘𝐺)(𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧})))) |
89 | 77, 88 | eqtrdi 2795 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧})))) = ((𝐺 Σg (𝐹 ↾ (𝐴 ↾ 𝑦)))(+g‘𝐺)(𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧}))))) |
90 | | simprl 767 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → 𝑦 ∈ Fin) |
91 | | gsum2d.r |
. . . . . . . . . . 11
⊢ (𝜑 → Rel 𝐴) |
92 | | gsum2d.d |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 ∈ 𝑊) |
93 | | gsum2d.s |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝐴 ⊆ 𝐷) |
94 | 41, 42, 44, 46, 91, 92, 93, 49, 1 | gsum2dlem1 19486 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵) |
95 | 94 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) ∧ 𝑗 ∈ 𝑦) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵) |
96 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑧 ∈ V |
97 | 96 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → 𝑧 ∈ V) |
98 | | sneq 4568 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑧 → {𝑗} = {𝑧}) |
99 | 98 | imaeq2d 5958 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑧 → (𝐴 “ {𝑗}) = (𝐴 “ {𝑧})) |
100 | | oveq1 7262 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑧 → (𝑗𝐹𝑘) = (𝑧𝐹𝑘)) |
101 | 99, 100 | mpteq12dv 5161 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑧 → (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) = (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘))) |
102 | 101 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑧 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) = (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘)))) |
103 | 102 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑧 → ((𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵 ↔ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘))) ∈ 𝐵)) |
104 | 103 | imbi2d 340 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑧 → ((𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵) ↔ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘))) ∈ 𝐵))) |
105 | 104, 94 | chvarvv 2003 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘))) ∈ 𝐵) |
106 | 105 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘))) ∈ 𝐵) |
107 | 41, 43, 45, 90, 95, 97, 69, 106, 102 | gsumunsn 19476 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝐺 Σg (𝑗 ∈ (𝑦 ∪ {𝑧}) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) = ((𝐺 Σg (𝑗 ∈ 𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))(+g‘𝐺)(𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘))))) |
108 | 98 | reseq2d 5880 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑧 → (𝐴 ↾ {𝑗}) = (𝐴 ↾ {𝑧})) |
109 | 108 | reseq2d 5880 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑧 → (𝐹 ↾ (𝐴 ↾ {𝑗})) = (𝐹 ↾ (𝐴 ↾ {𝑧}))) |
110 | 109 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑧 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑗}))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧})))) |
111 | 102, 110 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑧 → ((𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑗}))) ↔ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧}))))) |
112 | 111 | imbi2d 340 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑧 → ((𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑗})))) ↔ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧})))))) |
113 | | imaexg 7736 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ 𝑉 → (𝐴 “ {𝑗}) ∈ V) |
114 | 46, 113 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 “ {𝑗}) ∈ V) |
115 | | vex 3426 |
. . . . . . . . . . . . . . . 16
⊢ 𝑗 ∈ V |
116 | | vex 3426 |
. . . . . . . . . . . . . . . 16
⊢ 𝑘 ∈ V |
117 | 115, 116 | elimasn 5986 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (𝐴 “ {𝑗}) ↔ 〈𝑗, 𝑘〉 ∈ 𝐴) |
118 | | df-ov 7258 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗𝐹𝑘) = (𝐹‘〈𝑗, 𝑘〉) |
119 | 49 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 〈𝑗, 𝑘〉 ∈ 𝐴) → (𝐹‘〈𝑗, 𝑘〉) ∈ 𝐵) |
120 | 118, 119 | eqeltrid 2843 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 〈𝑗, 𝑘〉 ∈ 𝐴) → (𝑗𝐹𝑘) ∈ 𝐵) |
121 | 117, 120 | sylan2b 593 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 “ {𝑗})) → (𝑗𝐹𝑘) ∈ 𝐵) |
122 | 121 | fmpttd 6971 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)):(𝐴 “ {𝑗})⟶𝐵) |
123 | | funmpt 6456 |
. . . . . . . . . . . . . . 15
⊢ Fun
(𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) |
124 | 123 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → Fun (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) |
125 | | rnfi 9032 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 supp 0 ) ∈ Fin → ran
(𝐹 supp 0 ) ∈
Fin) |
126 | 2, 125 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ran (𝐹 supp 0 ) ∈
Fin) |
127 | 117 | biimpi 215 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (𝐴 “ {𝑗}) → 〈𝑗, 𝑘〉 ∈ 𝐴) |
128 | 115, 116 | opelrn 5841 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 ) → 𝑘 ∈ ran (𝐹 supp 0 )) |
129 | 128 | con3i 154 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑘 ∈ ran (𝐹 supp 0 ) → ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 )) |
130 | 127, 129 | anim12i 612 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ (𝐴 “ {𝑗}) ∧ ¬ 𝑘 ∈ ran (𝐹 supp 0 )) → (〈𝑗, 𝑘〉 ∈ 𝐴 ∧ ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 ))) |
131 | | eldif 3893 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ((𝐴 “ {𝑗}) ∖ ran (𝐹 supp 0 )) ↔ (𝑘 ∈ (𝐴 “ {𝑗}) ∧ ¬ 𝑘 ∈ ran (𝐹 supp 0 ))) |
132 | | eldif 3893 |
. . . . . . . . . . . . . . . . . 18
⊢
(〈𝑗, 𝑘〉 ∈ (𝐴 ∖ (𝐹 supp 0 )) ↔ (〈𝑗, 𝑘〉 ∈ 𝐴 ∧ ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 ))) |
133 | 130, 131,
132 | 3imtr4i 291 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ((𝐴 “ {𝑗}) ∖ ran (𝐹 supp 0 )) → 〈𝑗, 𝑘〉 ∈ (𝐴 ∖ (𝐹 supp 0 ))) |
134 | | ssidd 3940 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 )) |
135 | 59 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 0 ∈ V) |
136 | 49, 134, 46, 135 | suppssr 7983 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 〈𝑗, 𝑘〉 ∈ (𝐴 ∖ (𝐹 supp 0 ))) → (𝐹‘〈𝑗, 𝑘〉) = 0 ) |
137 | 118, 136 | eqtrid 2790 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 〈𝑗, 𝑘〉 ∈ (𝐴 ∖ (𝐹 supp 0 ))) → (𝑗𝐹𝑘) = 0 ) |
138 | 133, 137 | sylan2 592 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐴 “ {𝑗}) ∖ ran (𝐹 supp 0 ))) → (𝑗𝐹𝑘) = 0 ) |
139 | 138, 114 | suppss2 7987 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) supp 0 ) ⊆ ran (𝐹 supp 0 )) |
140 | 126, 139 | ssfid 8971 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) supp 0 ) ∈
Fin) |
141 | 114 | mptexd 7082 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) ∈ V) |
142 | | isfsupp 9062 |
. . . . . . . . . . . . . . 15
⊢ (((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) ∈ V ∧ 0 ∈ V) → ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) finSupp 0 ↔ (Fun (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) ∧ ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) supp 0 ) ∈
Fin))) |
143 | 141, 59, 142 | sylancl 585 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) finSupp 0 ↔ (Fun (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) ∧ ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) supp 0 ) ∈
Fin))) |
144 | 124, 140,
143 | mpbir2and 709 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) finSupp 0 ) |
145 | | 2ndconst 7912 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ V → (2nd
↾ ({𝑗} × (𝐴 “ {𝑗}))):({𝑗} × (𝐴 “ {𝑗}))–1-1-onto→(𝐴 “ {𝑗})) |
146 | 115, 145 | mp1i 13 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (2nd ↾
({𝑗} × (𝐴 “ {𝑗}))):({𝑗} × (𝐴 “ {𝑗}))–1-1-onto→(𝐴 “ {𝑗})) |
147 | 41, 42, 44, 114, 122, 144, 146 | gsumf1o 19432 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) = (𝐺 Σg ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) ∘ (2nd ↾ ({𝑗} × (𝐴 “ {𝑗})))))) |
148 | | 1st2nd2 7843 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) → 𝑥 = 〈(1st ‘𝑥), (2nd ‘𝑥)〉) |
149 | | xp1st 7836 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) → (1st ‘𝑥) ∈ {𝑗}) |
150 | | elsni 4575 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((1st ‘𝑥) ∈ {𝑗} → (1st ‘𝑥) = 𝑗) |
151 | 149, 150 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) → (1st ‘𝑥) = 𝑗) |
152 | 151 | opeq1d 4807 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) → 〈(1st ‘𝑥), (2nd ‘𝑥)〉 = 〈𝑗, (2nd ‘𝑥)〉) |
153 | 148, 152 | eqtrd 2778 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) → 𝑥 = 〈𝑗, (2nd ‘𝑥)〉) |
154 | 153 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) → (𝐹‘𝑥) = (𝐹‘〈𝑗, (2nd ‘𝑥)〉)) |
155 | | df-ov 7258 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗𝐹(2nd ‘𝑥)) = (𝐹‘〈𝑗, (2nd ‘𝑥)〉) |
156 | 154, 155 | eqtr4di 2797 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) → (𝐹‘𝑥) = (𝑗𝐹(2nd ‘𝑥))) |
157 | 156 | mpteq2ia 5173 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) ↦ (𝐹‘𝑥)) = (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) ↦ (𝑗𝐹(2nd ‘𝑥))) |
158 | 49 | feqmptd 6819 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
159 | 158 | reseq1d 5879 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐹 ↾ (𝐴 ↾ {𝑗})) = ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) ↾ (𝐴 ↾ {𝑗}))) |
160 | | resss 5905 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ↾ {𝑗}) ⊆ 𝐴 |
161 | | resmpt 5934 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ↾ {𝑗}) ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) ↾ (𝐴 ↾ {𝑗})) = (𝑥 ∈ (𝐴 ↾ {𝑗}) ↦ (𝐹‘𝑥))) |
162 | 160, 161 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) ↾ (𝐴 ↾ {𝑗})) = (𝑥 ∈ (𝐴 ↾ {𝑗}) ↦ (𝐹‘𝑥)) |
163 | | ressn 6177 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ↾ {𝑗}) = ({𝑗} × (𝐴 “ {𝑗})) |
164 | 163 | mpteq1i 5166 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (𝐴 ↾ {𝑗}) ↦ (𝐹‘𝑥)) = (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) ↦ (𝐹‘𝑥)) |
165 | 162, 164 | eqtri 2766 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) ↾ (𝐴 ↾ {𝑗})) = (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) ↦ (𝐹‘𝑥)) |
166 | 159, 165 | eqtrdi 2795 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹 ↾ (𝐴 ↾ {𝑗})) = (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) ↦ (𝐹‘𝑥))) |
167 | | xp2nd 7837 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) → (2nd ‘𝑥) ∈ (𝐴 “ {𝑗})) |
168 | 167 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗}))) → (2nd ‘𝑥) ∈ (𝐴 “ {𝑗})) |
169 | | fo2nd 7825 |
. . . . . . . . . . . . . . . . . . 19
⊢
2nd :V–onto→V |
170 | | fof 6672 |
. . . . . . . . . . . . . . . . . . 19
⊢
(2nd :V–onto→V → 2nd
:V⟶V) |
171 | 169, 170 | mp1i 13 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 2nd
:V⟶V) |
172 | 171 | feqmptd 6819 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 2nd = (𝑥 ∈ V ↦
(2nd ‘𝑥))) |
173 | 172 | reseq1d 5879 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (2nd ↾
({𝑗} × (𝐴 “ {𝑗}))) = ((𝑥 ∈ V ↦ (2nd
‘𝑥)) ↾ ({𝑗} × (𝐴 “ {𝑗})))) |
174 | | ssv 3941 |
. . . . . . . . . . . . . . . . 17
⊢ ({𝑗} × (𝐴 “ {𝑗})) ⊆ V |
175 | | resmpt 5934 |
. . . . . . . . . . . . . . . . 17
⊢ (({𝑗} × (𝐴 “ {𝑗})) ⊆ V → ((𝑥 ∈ V ↦ (2nd
‘𝑥)) ↾ ({𝑗} × (𝐴 “ {𝑗}))) = (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) ↦ (2nd ‘𝑥))) |
176 | 174, 175 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ V ↦
(2nd ‘𝑥))
↾ ({𝑗} × (𝐴 “ {𝑗}))) = (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) ↦ (2nd ‘𝑥)) |
177 | 173, 176 | eqtrdi 2795 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (2nd ↾
({𝑗} × (𝐴 “ {𝑗}))) = (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) ↦ (2nd ‘𝑥))) |
178 | | eqidd 2739 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) = (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) |
179 | | oveq2 7263 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (2nd ‘𝑥) → (𝑗𝐹𝑘) = (𝑗𝐹(2nd ‘𝑥))) |
180 | 168, 177,
178, 179 | fmptco 6983 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) ∘ (2nd ↾ ({𝑗} × (𝐴 “ {𝑗})))) = (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) ↦ (𝑗𝐹(2nd ‘𝑥)))) |
181 | 157, 166,
180 | 3eqtr4a 2805 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹 ↾ (𝐴 ↾ {𝑗})) = ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) ∘ (2nd ↾ ({𝑗} × (𝐴 “ {𝑗}))))) |
182 | 181 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑗}))) = (𝐺 Σg ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) ∘ (2nd ↾ ({𝑗} × (𝐴 “ {𝑗})))))) |
183 | 147, 182 | eqtr4d 2781 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑗})))) |
184 | 112, 183 | chvarvv 2003 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧})))) |
185 | 184 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧})))) |
186 | 185 | oveq2d 7271 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ((𝐺 Σg (𝑗 ∈ 𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))(+g‘𝐺)(𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘)))) = ((𝐺 Σg (𝑗 ∈ 𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))(+g‘𝐺)(𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧}))))) |
187 | 107, 186 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝐺 Σg (𝑗 ∈ (𝑦 ∪ {𝑧}) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) = ((𝐺 Σg (𝑗 ∈ 𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))(+g‘𝐺)(𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧}))))) |
188 | 89, 187 | eqeq12d 2754 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ((𝐺 Σg (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧})))) = (𝐺 Σg (𝑗 ∈ (𝑦 ∪ {𝑧}) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) ↔ ((𝐺 Σg (𝐹 ↾ (𝐴 ↾ 𝑦)))(+g‘𝐺)(𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧})))) = ((𝐺 Σg (𝑗 ∈ 𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))(+g‘𝐺)(𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧})))))) |
189 | 40, 188 | syl5ibr 245 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ((𝐺 Σg (𝐹 ↾ (𝐴 ↾ 𝑦))) = (𝐺 Σg (𝑗 ∈ 𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧})))) = (𝐺 Σg (𝑗 ∈ (𝑦 ∪ {𝑧}) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))) |
190 | 189 | expcom 413 |
. . . 4
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝜑 → ((𝐺 Σg (𝐹 ↾ (𝐴 ↾ 𝑦))) = (𝐺 Σg (𝑗 ∈ 𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧})))) = (𝐺 Σg (𝑗 ∈ (𝑦 ∪ {𝑧}) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))))) |
191 | 190 | a2d 29 |
. . 3
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ 𝑦))) = (𝐺 Σg (𝑗 ∈ 𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) → (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧})))) = (𝐺 Σg (𝑗 ∈ (𝑦 ∪ {𝑧}) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))))) |
192 | 17, 24, 31, 38, 39, 191 | findcard2s 8910 |
. 2
⊢ (dom
(𝐹 supp 0 ) ∈ Fin → (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg
(𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))) |
193 | 4, 192 | mpcom 38 |
1
⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg
(𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) |