Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupresico Structured version   Visualization version   GIF version

Theorem limsupresico 45655
Description: The superior limit doesn't change when a function is restricted to the upper part of the reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupresico.1 (𝜑𝑀 ∈ ℝ)
limsupresico.2 𝑍 = (𝑀[,)+∞)
limsupresico.3 (𝜑𝐹𝑉)
Assertion
Ref Expression
limsupresico (𝜑 → (lim sup‘(𝐹𝑍)) = (lim sup‘𝐹))

Proof of Theorem limsupresico
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupresico.1 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℝ)
21rexrd 11308 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℝ*)
32ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑀 ∈ ℝ*)
4 pnfxr 11312 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
54a1i 11 . . . . . . . . . . . 12 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → +∞ ∈ ℝ*)
6 ressxr 11302 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
74a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → +∞ ∈ ℝ*)
8 icossre 13464 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑀[,)+∞) ⊆ ℝ)
91, 7, 8syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀[,)+∞) ⊆ ℝ)
109adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → (𝑀[,)+∞) ⊆ ℝ)
11 limsupresico.2 . . . . . . . . . . . . . . . . . . 19 𝑍 = (𝑀[,)+∞)
1211eleq2i 2830 . . . . . . . . . . . . . . . . . 18 (𝑘𝑍𝑘 ∈ (𝑀[,)+∞))
1312biimpi 216 . . . . . . . . . . . . . . . . 17 (𝑘𝑍𝑘 ∈ (𝑀[,)+∞))
1413adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → 𝑘 ∈ (𝑀[,)+∞))
1510, 14sseldd 3995 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → 𝑘 ∈ ℝ)
1615adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑘 ∈ ℝ)
17 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦 ∈ (𝑘[,)+∞))
18 elicore 13435 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℝ ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦 ∈ ℝ)
1916, 17, 18syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦 ∈ ℝ)
206, 19sselid 3992 . . . . . . . . . . . 12 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦 ∈ ℝ*)
211ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑀 ∈ ℝ)
222adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → 𝑀 ∈ ℝ*)
234a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → +∞ ∈ ℝ*)
2422, 23, 14icogelbd 45510 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑍) → 𝑀𝑘)
2524adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑀𝑘)
266, 16sselid 3992 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑘 ∈ ℝ*)
2726, 5, 17icogelbd 45510 . . . . . . . . . . . . 13 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑘𝑦)
2821, 16, 19, 25, 27letrd 11415 . . . . . . . . . . . 12 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑀𝑦)
2919ltpnfd 13160 . . . . . . . . . . . 12 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦 < +∞)
303, 5, 20, 28, 29elicod 13433 . . . . . . . . . . 11 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦 ∈ (𝑀[,)+∞))
3130, 11eleqtrrdi 2849 . . . . . . . . . 10 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦𝑍)
3231ssd 45019 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝑘[,)+∞) ⊆ 𝑍)
33 resima2 6035 . . . . . . . . 9 ((𝑘[,)+∞) ⊆ 𝑍 → ((𝐹𝑍) “ (𝑘[,)+∞)) = (𝐹 “ (𝑘[,)+∞)))
3432, 33syl 17 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝐹𝑍) “ (𝑘[,)+∞)) = (𝐹 “ (𝑘[,)+∞)))
3534ineq1d 4226 . . . . . . 7 ((𝜑𝑘𝑍) → (((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
3635supeq1d 9483 . . . . . 6 ((𝜑𝑘𝑍) → sup((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
3736mpteq2dva 5247 . . . . 5 (𝜑 → (𝑘𝑍 ↦ sup((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘𝑍 ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
3837rneqd 5951 . . . 4 (𝜑 → ran (𝑘𝑍 ↦ sup((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran (𝑘𝑍 ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
3911, 9eqsstrid 4043 . . . . 5 (𝜑𝑍 ⊆ ℝ)
4039mptimass 6092 . . . 4 (𝜑 → ((𝑘 ∈ ℝ ↦ sup((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍) = ran (𝑘𝑍 ↦ sup((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
4139mptimass 6092 . . . 4 (𝜑 → ((𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍) = ran (𝑘𝑍 ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
4238, 40, 413eqtr4d 2784 . . 3 (𝜑 → ((𝑘 ∈ ℝ ↦ sup((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍) = ((𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍))
4342infeq1d 9514 . 2 (𝜑 → inf(((𝑘 ∈ ℝ ↦ sup((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍), ℝ*, < ) = inf(((𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍), ℝ*, < ))
44 eqid 2734 . . 3 (𝑘 ∈ ℝ ↦ sup((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
45 limsupresico.3 . . . 4 (𝜑𝐹𝑉)
4645resexd 6047 . . 3 (𝜑 → (𝐹𝑍) ∈ V)
4711supeq1i 9484 . . . . 5 sup(𝑍, ℝ*, < ) = sup((𝑀[,)+∞), ℝ*, < )
4847a1i 11 . . . 4 (𝜑 → sup(𝑍, ℝ*, < ) = sup((𝑀[,)+∞), ℝ*, < ))
491renepnfd 11309 . . . . 5 (𝜑𝑀 ≠ +∞)
50 icopnfsup 13901 . . . . 5 ((𝑀 ∈ ℝ*𝑀 ≠ +∞) → sup((𝑀[,)+∞), ℝ*, < ) = +∞)
512, 49, 50syl2anc 584 . . . 4 (𝜑 → sup((𝑀[,)+∞), ℝ*, < ) = +∞)
5248, 51eqtrd 2774 . . 3 (𝜑 → sup(𝑍, ℝ*, < ) = +∞)
5344, 46, 39, 52limsupval2 15512 . 2 (𝜑 → (lim sup‘(𝐹𝑍)) = inf(((𝑘 ∈ ℝ ↦ sup((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍), ℝ*, < ))
54 eqid 2734 . . 3 (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
5554, 45, 39, 52limsupval2 15512 . 2 (𝜑 → (lim sup‘𝐹) = inf(((𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍), ℝ*, < ))
5643, 53, 553eqtr4d 2784 1 (𝜑 → (lim sup‘(𝐹𝑍)) = (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  wne 2937  Vcvv 3477  cin 3961  wss 3962   class class class wbr 5147  cmpt 5230  ran crn 5689  cres 5690  cima 5691  cfv 6562  (class class class)co 7430  supcsup 9477  infcinf 9478  cr 11151  +∞cpnf 11289  *cxr 11291   < clt 11292  cle 11293  [,)cico 13385  lim supclsp 15502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-q 12988  df-ico 13389  df-limsup 15503
This theorem is referenced by:  limsupresuz  45658  limsupresicompt  45711
  Copyright terms: Public domain W3C validator