![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > liminfresuz | Structured version Visualization version GIF version |
Description: If the real part of the domain of a function is a subset of the integers, the inferior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
liminfresuz.m | β’ (π β π β β€) |
liminfresuz.z | β’ π = (β€β₯βπ) |
liminfresuz.f | β’ (π β πΉ β π) |
liminfresuz.d | β’ (π β dom (πΉ βΎ β) β β€) |
Ref | Expression |
---|---|
liminfresuz | β’ (π β (lim infβ(πΉ βΎ π)) = (lim infβπΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rescom 6008 | . . . . 5 β’ ((πΉ βΎ π) βΎ β) = ((πΉ βΎ β) βΎ π) | |
2 | 1 | fveq2i 6895 | . . . 4 β’ (lim infβ((πΉ βΎ π) βΎ β)) = (lim infβ((πΉ βΎ β) βΎ π)) |
3 | 2 | a1i 11 | . . 3 β’ (π β (lim infβ((πΉ βΎ π) βΎ β)) = (lim infβ((πΉ βΎ β) βΎ π))) |
4 | relres 6011 | . . . . . . . . . 10 β’ Rel (πΉ βΎ β) | |
5 | 4 | a1i 11 | . . . . . . . . 9 β’ (π β Rel (πΉ βΎ β)) |
6 | liminfresuz.d | . . . . . . . . 9 β’ (π β dom (πΉ βΎ β) β β€) | |
7 | relssres 6023 | . . . . . . . . 9 β’ ((Rel (πΉ βΎ β) β§ dom (πΉ βΎ β) β β€) β ((πΉ βΎ β) βΎ β€) = (πΉ βΎ β)) | |
8 | 5, 6, 7 | syl2anc 585 | . . . . . . . 8 β’ (π β ((πΉ βΎ β) βΎ β€) = (πΉ βΎ β)) |
9 | 8 | eqcomd 2739 | . . . . . . 7 β’ (π β (πΉ βΎ β) = ((πΉ βΎ β) βΎ β€)) |
10 | 9 | reseq1d 5981 | . . . . . 6 β’ (π β ((πΉ βΎ β) βΎ (π[,)+β)) = (((πΉ βΎ β) βΎ β€) βΎ (π[,)+β))) |
11 | resres 5995 | . . . . . . 7 β’ (((πΉ βΎ β) βΎ β€) βΎ (π[,)+β)) = ((πΉ βΎ β) βΎ (β€ β© (π[,)+β))) | |
12 | 11 | a1i 11 | . . . . . 6 β’ (π β (((πΉ βΎ β) βΎ β€) βΎ (π[,)+β)) = ((πΉ βΎ β) βΎ (β€ β© (π[,)+β)))) |
13 | liminfresuz.m | . . . . . . . . 9 β’ (π β π β β€) | |
14 | liminfresuz.z | . . . . . . . . 9 β’ π = (β€β₯βπ) | |
15 | 13, 14 | uzinico 44273 | . . . . . . . 8 β’ (π β π = (β€ β© (π[,)+β))) |
16 | 15 | eqcomd 2739 | . . . . . . 7 β’ (π β (β€ β© (π[,)+β)) = π) |
17 | 16 | reseq2d 5982 | . . . . . 6 β’ (π β ((πΉ βΎ β) βΎ (β€ β© (π[,)+β))) = ((πΉ βΎ β) βΎ π)) |
18 | 10, 12, 17 | 3eqtrrd 2778 | . . . . 5 β’ (π β ((πΉ βΎ β) βΎ π) = ((πΉ βΎ β) βΎ (π[,)+β))) |
19 | 18 | fveq2d 6896 | . . . 4 β’ (π β (lim infβ((πΉ βΎ β) βΎ π)) = (lim infβ((πΉ βΎ β) βΎ (π[,)+β)))) |
20 | 13 | zred 12666 | . . . . 5 β’ (π β π β β) |
21 | eqid 2733 | . . . . 5 β’ (π[,)+β) = (π[,)+β) | |
22 | liminfresuz.f | . . . . . 6 β’ (π β πΉ β π) | |
23 | 22 | resexd 6029 | . . . . 5 β’ (π β (πΉ βΎ β) β V) |
24 | 20, 21, 23 | liminfresico 44487 | . . . 4 β’ (π β (lim infβ((πΉ βΎ β) βΎ (π[,)+β))) = (lim infβ(πΉ βΎ β))) |
25 | 19, 24 | eqtrd 2773 | . . 3 β’ (π β (lim infβ((πΉ βΎ β) βΎ π)) = (lim infβ(πΉ βΎ β))) |
26 | 3, 25 | eqtrd 2773 | . 2 β’ (π β (lim infβ((πΉ βΎ π) βΎ β)) = (lim infβ(πΉ βΎ β))) |
27 | 22 | resexd 6029 | . . 3 β’ (π β (πΉ βΎ π) β V) |
28 | 27 | liminfresre 44495 | . 2 β’ (π β (lim infβ((πΉ βΎ π) βΎ β)) = (lim infβ(πΉ βΎ π))) |
29 | 22 | liminfresre 44495 | . 2 β’ (π β (lim infβ(πΉ βΎ β)) = (lim infβπΉ)) |
30 | 26, 28, 29 | 3eqtr3d 2781 | 1 β’ (π β (lim infβ(πΉ βΎ π)) = (lim infβπΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 Vcvv 3475 β© cin 3948 β wss 3949 dom cdm 5677 βΎ cres 5679 Rel wrel 5682 βcfv 6544 (class class class)co 7409 βcr 11109 +βcpnf 11245 β€cz 12558 β€β₯cuz 12822 [,)cico 13326 lim infclsi 44467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-q 12933 df-ico 13330 df-liminf 44468 |
This theorem is referenced by: liminfresuz2 44503 |
Copyright terms: Public domain | W3C validator |