| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > liminfresuz | Structured version Visualization version GIF version | ||
| Description: If the real part of the domain of a function is a subset of the integers, the inferior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| liminfresuz.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| liminfresuz.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| liminfresuz.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| liminfresuz.d | ⊢ (𝜑 → dom (𝐹 ↾ ℝ) ⊆ ℤ) |
| Ref | Expression |
|---|---|
| liminfresuz | ⊢ (𝜑 → (lim inf‘(𝐹 ↾ 𝑍)) = (lim inf‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescom 5994 | . . . . 5 ⊢ ((𝐹 ↾ 𝑍) ↾ ℝ) = ((𝐹 ↾ ℝ) ↾ 𝑍) | |
| 2 | 1 | fveq2i 6884 | . . . 4 ⊢ (lim inf‘((𝐹 ↾ 𝑍) ↾ ℝ)) = (lim inf‘((𝐹 ↾ ℝ) ↾ 𝑍)) |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → (lim inf‘((𝐹 ↾ 𝑍) ↾ ℝ)) = (lim inf‘((𝐹 ↾ ℝ) ↾ 𝑍))) |
| 4 | relres 5997 | . . . . . . . . . 10 ⊢ Rel (𝐹 ↾ ℝ) | |
| 5 | 4 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → Rel (𝐹 ↾ ℝ)) |
| 6 | liminfresuz.d | . . . . . . . . 9 ⊢ (𝜑 → dom (𝐹 ↾ ℝ) ⊆ ℤ) | |
| 7 | relssres 6014 | . . . . . . . . 9 ⊢ ((Rel (𝐹 ↾ ℝ) ∧ dom (𝐹 ↾ ℝ) ⊆ ℤ) → ((𝐹 ↾ ℝ) ↾ ℤ) = (𝐹 ↾ ℝ)) | |
| 8 | 5, 6, 7 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → ((𝐹 ↾ ℝ) ↾ ℤ) = (𝐹 ↾ ℝ)) |
| 9 | 8 | eqcomd 2742 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ↾ ℝ) = ((𝐹 ↾ ℝ) ↾ ℤ)) |
| 10 | 9 | reseq1d 5970 | . . . . . 6 ⊢ (𝜑 → ((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞)) = (((𝐹 ↾ ℝ) ↾ ℤ) ↾ (𝑀[,)+∞))) |
| 11 | resres 5984 | . . . . . . 7 ⊢ (((𝐹 ↾ ℝ) ↾ ℤ) ↾ (𝑀[,)+∞)) = ((𝐹 ↾ ℝ) ↾ (ℤ ∩ (𝑀[,)+∞))) | |
| 12 | 11 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (((𝐹 ↾ ℝ) ↾ ℤ) ↾ (𝑀[,)+∞)) = ((𝐹 ↾ ℝ) ↾ (ℤ ∩ (𝑀[,)+∞)))) |
| 13 | liminfresuz.m | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 14 | liminfresuz.z | . . . . . . . . 9 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 15 | 13, 14 | uzinico 45568 | . . . . . . . 8 ⊢ (𝜑 → 𝑍 = (ℤ ∩ (𝑀[,)+∞))) |
| 16 | 15 | eqcomd 2742 | . . . . . . 7 ⊢ (𝜑 → (ℤ ∩ (𝑀[,)+∞)) = 𝑍) |
| 17 | 16 | reseq2d 5971 | . . . . . 6 ⊢ (𝜑 → ((𝐹 ↾ ℝ) ↾ (ℤ ∩ (𝑀[,)+∞))) = ((𝐹 ↾ ℝ) ↾ 𝑍)) |
| 18 | 10, 12, 17 | 3eqtrrd 2776 | . . . . 5 ⊢ (𝜑 → ((𝐹 ↾ ℝ) ↾ 𝑍) = ((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞))) |
| 19 | 18 | fveq2d 6885 | . . . 4 ⊢ (𝜑 → (lim inf‘((𝐹 ↾ ℝ) ↾ 𝑍)) = (lim inf‘((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞)))) |
| 20 | 13 | zred 12702 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 21 | eqid 2736 | . . . . 5 ⊢ (𝑀[,)+∞) = (𝑀[,)+∞) | |
| 22 | liminfresuz.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 23 | 22 | resexd 6020 | . . . . 5 ⊢ (𝜑 → (𝐹 ↾ ℝ) ∈ V) |
| 24 | 20, 21, 23 | liminfresico 45780 | . . . 4 ⊢ (𝜑 → (lim inf‘((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞))) = (lim inf‘(𝐹 ↾ ℝ))) |
| 25 | 19, 24 | eqtrd 2771 | . . 3 ⊢ (𝜑 → (lim inf‘((𝐹 ↾ ℝ) ↾ 𝑍)) = (lim inf‘(𝐹 ↾ ℝ))) |
| 26 | 3, 25 | eqtrd 2771 | . 2 ⊢ (𝜑 → (lim inf‘((𝐹 ↾ 𝑍) ↾ ℝ)) = (lim inf‘(𝐹 ↾ ℝ))) |
| 27 | 22 | resexd 6020 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝑍) ∈ V) |
| 28 | 27 | liminfresre 45788 | . 2 ⊢ (𝜑 → (lim inf‘((𝐹 ↾ 𝑍) ↾ ℝ)) = (lim inf‘(𝐹 ↾ 𝑍))) |
| 29 | 22 | liminfresre 45788 | . 2 ⊢ (𝜑 → (lim inf‘(𝐹 ↾ ℝ)) = (lim inf‘𝐹)) |
| 30 | 26, 28, 29 | 3eqtr3d 2779 | 1 ⊢ (𝜑 → (lim inf‘(𝐹 ↾ 𝑍)) = (lim inf‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∩ cin 3930 ⊆ wss 3931 dom cdm 5659 ↾ cres 5661 Rel wrel 5664 ‘cfv 6536 (class class class)co 7410 ℝcr 11133 +∞cpnf 11271 ℤcz 12593 ℤ≥cuz 12857 [,)cico 13369 lim infclsi 45760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-q 12970 df-ico 13373 df-liminf 45761 |
| This theorem is referenced by: liminfresuz2 45796 |
| Copyright terms: Public domain | W3C validator |