![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > liminfresuz | Structured version Visualization version GIF version |
Description: If the real part of the domain of a function is a subset of the integers, the inferior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
liminfresuz.m | β’ (π β π β β€) |
liminfresuz.z | β’ π = (β€β₯βπ) |
liminfresuz.f | β’ (π β πΉ β π) |
liminfresuz.d | β’ (π β dom (πΉ βΎ β) β β€) |
Ref | Expression |
---|---|
liminfresuz | β’ (π β (lim infβ(πΉ βΎ π)) = (lim infβπΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rescom 6005 | . . . . 5 β’ ((πΉ βΎ π) βΎ β) = ((πΉ βΎ β) βΎ π) | |
2 | 1 | fveq2i 6894 | . . . 4 β’ (lim infβ((πΉ βΎ π) βΎ β)) = (lim infβ((πΉ βΎ β) βΎ π)) |
3 | 2 | a1i 11 | . . 3 β’ (π β (lim infβ((πΉ βΎ π) βΎ β)) = (lim infβ((πΉ βΎ β) βΎ π))) |
4 | relres 6008 | . . . . . . . . . 10 β’ Rel (πΉ βΎ β) | |
5 | 4 | a1i 11 | . . . . . . . . 9 β’ (π β Rel (πΉ βΎ β)) |
6 | liminfresuz.d | . . . . . . . . 9 β’ (π β dom (πΉ βΎ β) β β€) | |
7 | relssres 6020 | . . . . . . . . 9 β’ ((Rel (πΉ βΎ β) β§ dom (πΉ βΎ β) β β€) β ((πΉ βΎ β) βΎ β€) = (πΉ βΎ β)) | |
8 | 5, 6, 7 | syl2anc 583 | . . . . . . . 8 β’ (π β ((πΉ βΎ β) βΎ β€) = (πΉ βΎ β)) |
9 | 8 | eqcomd 2733 | . . . . . . 7 β’ (π β (πΉ βΎ β) = ((πΉ βΎ β) βΎ β€)) |
10 | 9 | reseq1d 5978 | . . . . . 6 β’ (π β ((πΉ βΎ β) βΎ (π[,)+β)) = (((πΉ βΎ β) βΎ β€) βΎ (π[,)+β))) |
11 | resres 5992 | . . . . . . 7 β’ (((πΉ βΎ β) βΎ β€) βΎ (π[,)+β)) = ((πΉ βΎ β) βΎ (β€ β© (π[,)+β))) | |
12 | 11 | a1i 11 | . . . . . 6 β’ (π β (((πΉ βΎ β) βΎ β€) βΎ (π[,)+β)) = ((πΉ βΎ β) βΎ (β€ β© (π[,)+β)))) |
13 | liminfresuz.m | . . . . . . . . 9 β’ (π β π β β€) | |
14 | liminfresuz.z | . . . . . . . . 9 β’ π = (β€β₯βπ) | |
15 | 13, 14 | uzinico 44858 | . . . . . . . 8 β’ (π β π = (β€ β© (π[,)+β))) |
16 | 15 | eqcomd 2733 | . . . . . . 7 β’ (π β (β€ β© (π[,)+β)) = π) |
17 | 16 | reseq2d 5979 | . . . . . 6 β’ (π β ((πΉ βΎ β) βΎ (β€ β© (π[,)+β))) = ((πΉ βΎ β) βΎ π)) |
18 | 10, 12, 17 | 3eqtrrd 2772 | . . . . 5 β’ (π β ((πΉ βΎ β) βΎ π) = ((πΉ βΎ β) βΎ (π[,)+β))) |
19 | 18 | fveq2d 6895 | . . . 4 β’ (π β (lim infβ((πΉ βΎ β) βΎ π)) = (lim infβ((πΉ βΎ β) βΎ (π[,)+β)))) |
20 | 13 | zred 12682 | . . . . 5 β’ (π β π β β) |
21 | eqid 2727 | . . . . 5 β’ (π[,)+β) = (π[,)+β) | |
22 | liminfresuz.f | . . . . . 6 β’ (π β πΉ β π) | |
23 | 22 | resexd 6026 | . . . . 5 β’ (π β (πΉ βΎ β) β V) |
24 | 20, 21, 23 | liminfresico 45072 | . . . 4 β’ (π β (lim infβ((πΉ βΎ β) βΎ (π[,)+β))) = (lim infβ(πΉ βΎ β))) |
25 | 19, 24 | eqtrd 2767 | . . 3 β’ (π β (lim infβ((πΉ βΎ β) βΎ π)) = (lim infβ(πΉ βΎ β))) |
26 | 3, 25 | eqtrd 2767 | . 2 β’ (π β (lim infβ((πΉ βΎ π) βΎ β)) = (lim infβ(πΉ βΎ β))) |
27 | 22 | resexd 6026 | . . 3 β’ (π β (πΉ βΎ π) β V) |
28 | 27 | liminfresre 45080 | . 2 β’ (π β (lim infβ((πΉ βΎ π) βΎ β)) = (lim infβ(πΉ βΎ π))) |
29 | 22 | liminfresre 45080 | . 2 β’ (π β (lim infβ(πΉ βΎ β)) = (lim infβπΉ)) |
30 | 26, 28, 29 | 3eqtr3d 2775 | 1 β’ (π β (lim infβ(πΉ βΎ π)) = (lim infβπΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1534 β wcel 2099 Vcvv 3469 β© cin 3943 β wss 3944 dom cdm 5672 βΎ cres 5674 Rel wrel 5677 βcfv 6542 (class class class)co 7414 βcr 11123 +βcpnf 11261 β€cz 12574 β€β₯cuz 12838 [,)cico 13344 lim infclsi 45052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-pre-sup 11202 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-sup 9451 df-inf 9452 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-nn 12229 df-n0 12489 df-z 12575 df-uz 12839 df-q 12949 df-ico 13348 df-liminf 45053 |
This theorem is referenced by: liminfresuz2 45088 |
Copyright terms: Public domain | W3C validator |