Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > liminfresuz | Structured version Visualization version GIF version |
Description: If the real part of the domain of a function is a subset of the integers, the inferior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
liminfresuz.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
liminfresuz.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
liminfresuz.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
liminfresuz.d | ⊢ (𝜑 → dom (𝐹 ↾ ℝ) ⊆ ℤ) |
Ref | Expression |
---|---|
liminfresuz | ⊢ (𝜑 → (lim inf‘(𝐹 ↾ 𝑍)) = (lim inf‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rescom 5936 | . . . . 5 ⊢ ((𝐹 ↾ 𝑍) ↾ ℝ) = ((𝐹 ↾ ℝ) ↾ 𝑍) | |
2 | 1 | fveq2i 6814 | . . . 4 ⊢ (lim inf‘((𝐹 ↾ 𝑍) ↾ ℝ)) = (lim inf‘((𝐹 ↾ ℝ) ↾ 𝑍)) |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → (lim inf‘((𝐹 ↾ 𝑍) ↾ ℝ)) = (lim inf‘((𝐹 ↾ ℝ) ↾ 𝑍))) |
4 | relres 5939 | . . . . . . . . . 10 ⊢ Rel (𝐹 ↾ ℝ) | |
5 | 4 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → Rel (𝐹 ↾ ℝ)) |
6 | liminfresuz.d | . . . . . . . . 9 ⊢ (𝜑 → dom (𝐹 ↾ ℝ) ⊆ ℤ) | |
7 | relssres 5951 | . . . . . . . . 9 ⊢ ((Rel (𝐹 ↾ ℝ) ∧ dom (𝐹 ↾ ℝ) ⊆ ℤ) → ((𝐹 ↾ ℝ) ↾ ℤ) = (𝐹 ↾ ℝ)) | |
8 | 5, 6, 7 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → ((𝐹 ↾ ℝ) ↾ ℤ) = (𝐹 ↾ ℝ)) |
9 | 8 | eqcomd 2743 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ↾ ℝ) = ((𝐹 ↾ ℝ) ↾ ℤ)) |
10 | 9 | reseq1d 5909 | . . . . . 6 ⊢ (𝜑 → ((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞)) = (((𝐹 ↾ ℝ) ↾ ℤ) ↾ (𝑀[,)+∞))) |
11 | resres 5923 | . . . . . . 7 ⊢ (((𝐹 ↾ ℝ) ↾ ℤ) ↾ (𝑀[,)+∞)) = ((𝐹 ↾ ℝ) ↾ (ℤ ∩ (𝑀[,)+∞))) | |
12 | 11 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (((𝐹 ↾ ℝ) ↾ ℤ) ↾ (𝑀[,)+∞)) = ((𝐹 ↾ ℝ) ↾ (ℤ ∩ (𝑀[,)+∞)))) |
13 | liminfresuz.m | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
14 | liminfresuz.z | . . . . . . . . 9 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
15 | 13, 14 | uzinico 43335 | . . . . . . . 8 ⊢ (𝜑 → 𝑍 = (ℤ ∩ (𝑀[,)+∞))) |
16 | 15 | eqcomd 2743 | . . . . . . 7 ⊢ (𝜑 → (ℤ ∩ (𝑀[,)+∞)) = 𝑍) |
17 | 16 | reseq2d 5910 | . . . . . 6 ⊢ (𝜑 → ((𝐹 ↾ ℝ) ↾ (ℤ ∩ (𝑀[,)+∞))) = ((𝐹 ↾ ℝ) ↾ 𝑍)) |
18 | 10, 12, 17 | 3eqtrrd 2782 | . . . . 5 ⊢ (𝜑 → ((𝐹 ↾ ℝ) ↾ 𝑍) = ((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞))) |
19 | 18 | fveq2d 6815 | . . . 4 ⊢ (𝜑 → (lim inf‘((𝐹 ↾ ℝ) ↾ 𝑍)) = (lim inf‘((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞)))) |
20 | 13 | zred 12499 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
21 | eqid 2737 | . . . . 5 ⊢ (𝑀[,)+∞) = (𝑀[,)+∞) | |
22 | liminfresuz.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
23 | 22 | resexd 5957 | . . . . 5 ⊢ (𝜑 → (𝐹 ↾ ℝ) ∈ V) |
24 | 20, 21, 23 | liminfresico 43549 | . . . 4 ⊢ (𝜑 → (lim inf‘((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞))) = (lim inf‘(𝐹 ↾ ℝ))) |
25 | 19, 24 | eqtrd 2777 | . . 3 ⊢ (𝜑 → (lim inf‘((𝐹 ↾ ℝ) ↾ 𝑍)) = (lim inf‘(𝐹 ↾ ℝ))) |
26 | 3, 25 | eqtrd 2777 | . 2 ⊢ (𝜑 → (lim inf‘((𝐹 ↾ 𝑍) ↾ ℝ)) = (lim inf‘(𝐹 ↾ ℝ))) |
27 | 22 | resexd 5957 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝑍) ∈ V) |
28 | 27 | liminfresre 43557 | . 2 ⊢ (𝜑 → (lim inf‘((𝐹 ↾ 𝑍) ↾ ℝ)) = (lim inf‘(𝐹 ↾ 𝑍))) |
29 | 22 | liminfresre 43557 | . 2 ⊢ (𝜑 → (lim inf‘(𝐹 ↾ ℝ)) = (lim inf‘𝐹)) |
30 | 26, 28, 29 | 3eqtr3d 2785 | 1 ⊢ (𝜑 → (lim inf‘(𝐹 ↾ 𝑍)) = (lim inf‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∩ cin 3896 ⊆ wss 3897 dom cdm 5607 ↾ cres 5609 Rel wrel 5612 ‘cfv 6465 (class class class)co 7315 ℝcr 10943 +∞cpnf 11079 ℤcz 12392 ℤ≥cuz 12655 [,)cico 13154 lim infclsi 43529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 ax-pre-sup 11022 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-1st 7876 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-sup 9271 df-inf 9272 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-div 11706 df-nn 12047 df-n0 12307 df-z 12393 df-uz 12656 df-q 12762 df-ico 13158 df-liminf 43530 |
This theorem is referenced by: liminfresuz2 43565 |
Copyright terms: Public domain | W3C validator |