| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > liminfresuz | Structured version Visualization version GIF version | ||
| Description: If the real part of the domain of a function is a subset of the integers, the inferior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| liminfresuz.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| liminfresuz.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| liminfresuz.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| liminfresuz.d | ⊢ (𝜑 → dom (𝐹 ↾ ℝ) ⊆ ℤ) |
| Ref | Expression |
|---|---|
| liminfresuz | ⊢ (𝜑 → (lim inf‘(𝐹 ↾ 𝑍)) = (lim inf‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescom 5962 | . . . . 5 ⊢ ((𝐹 ↾ 𝑍) ↾ ℝ) = ((𝐹 ↾ ℝ) ↾ 𝑍) | |
| 2 | 1 | fveq2i 6843 | . . . 4 ⊢ (lim inf‘((𝐹 ↾ 𝑍) ↾ ℝ)) = (lim inf‘((𝐹 ↾ ℝ) ↾ 𝑍)) |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → (lim inf‘((𝐹 ↾ 𝑍) ↾ ℝ)) = (lim inf‘((𝐹 ↾ ℝ) ↾ 𝑍))) |
| 4 | relres 5965 | . . . . . . . . . 10 ⊢ Rel (𝐹 ↾ ℝ) | |
| 5 | 4 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → Rel (𝐹 ↾ ℝ)) |
| 6 | liminfresuz.d | . . . . . . . . 9 ⊢ (𝜑 → dom (𝐹 ↾ ℝ) ⊆ ℤ) | |
| 7 | relssres 5982 | . . . . . . . . 9 ⊢ ((Rel (𝐹 ↾ ℝ) ∧ dom (𝐹 ↾ ℝ) ⊆ ℤ) → ((𝐹 ↾ ℝ) ↾ ℤ) = (𝐹 ↾ ℝ)) | |
| 8 | 5, 6, 7 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → ((𝐹 ↾ ℝ) ↾ ℤ) = (𝐹 ↾ ℝ)) |
| 9 | 8 | eqcomd 2735 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ↾ ℝ) = ((𝐹 ↾ ℝ) ↾ ℤ)) |
| 10 | 9 | reseq1d 5938 | . . . . . 6 ⊢ (𝜑 → ((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞)) = (((𝐹 ↾ ℝ) ↾ ℤ) ↾ (𝑀[,)+∞))) |
| 11 | resres 5952 | . . . . . . 7 ⊢ (((𝐹 ↾ ℝ) ↾ ℤ) ↾ (𝑀[,)+∞)) = ((𝐹 ↾ ℝ) ↾ (ℤ ∩ (𝑀[,)+∞))) | |
| 12 | 11 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (((𝐹 ↾ ℝ) ↾ ℤ) ↾ (𝑀[,)+∞)) = ((𝐹 ↾ ℝ) ↾ (ℤ ∩ (𝑀[,)+∞)))) |
| 13 | liminfresuz.m | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 14 | liminfresuz.z | . . . . . . . . 9 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 15 | 13, 14 | uzinico 45530 | . . . . . . . 8 ⊢ (𝜑 → 𝑍 = (ℤ ∩ (𝑀[,)+∞))) |
| 16 | 15 | eqcomd 2735 | . . . . . . 7 ⊢ (𝜑 → (ℤ ∩ (𝑀[,)+∞)) = 𝑍) |
| 17 | 16 | reseq2d 5939 | . . . . . 6 ⊢ (𝜑 → ((𝐹 ↾ ℝ) ↾ (ℤ ∩ (𝑀[,)+∞))) = ((𝐹 ↾ ℝ) ↾ 𝑍)) |
| 18 | 10, 12, 17 | 3eqtrrd 2769 | . . . . 5 ⊢ (𝜑 → ((𝐹 ↾ ℝ) ↾ 𝑍) = ((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞))) |
| 19 | 18 | fveq2d 6844 | . . . 4 ⊢ (𝜑 → (lim inf‘((𝐹 ↾ ℝ) ↾ 𝑍)) = (lim inf‘((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞)))) |
| 20 | 13 | zred 12614 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 21 | eqid 2729 | . . . . 5 ⊢ (𝑀[,)+∞) = (𝑀[,)+∞) | |
| 22 | liminfresuz.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 23 | 22 | resexd 5988 | . . . . 5 ⊢ (𝜑 → (𝐹 ↾ ℝ) ∈ V) |
| 24 | 20, 21, 23 | liminfresico 45742 | . . . 4 ⊢ (𝜑 → (lim inf‘((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞))) = (lim inf‘(𝐹 ↾ ℝ))) |
| 25 | 19, 24 | eqtrd 2764 | . . 3 ⊢ (𝜑 → (lim inf‘((𝐹 ↾ ℝ) ↾ 𝑍)) = (lim inf‘(𝐹 ↾ ℝ))) |
| 26 | 3, 25 | eqtrd 2764 | . 2 ⊢ (𝜑 → (lim inf‘((𝐹 ↾ 𝑍) ↾ ℝ)) = (lim inf‘(𝐹 ↾ ℝ))) |
| 27 | 22 | resexd 5988 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝑍) ∈ V) |
| 28 | 27 | liminfresre 45750 | . 2 ⊢ (𝜑 → (lim inf‘((𝐹 ↾ 𝑍) ↾ ℝ)) = (lim inf‘(𝐹 ↾ 𝑍))) |
| 29 | 22 | liminfresre 45750 | . 2 ⊢ (𝜑 → (lim inf‘(𝐹 ↾ ℝ)) = (lim inf‘𝐹)) |
| 30 | 26, 28, 29 | 3eqtr3d 2772 | 1 ⊢ (𝜑 → (lim inf‘(𝐹 ↾ 𝑍)) = (lim inf‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∩ cin 3910 ⊆ wss 3911 dom cdm 5631 ↾ cres 5633 Rel wrel 5636 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 +∞cpnf 11181 ℤcz 12505 ℤ≥cuz 12769 [,)cico 13284 lim infclsi 45722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-ico 13288 df-liminf 45723 |
| This theorem is referenced by: liminfresuz2 45758 |
| Copyright terms: Public domain | W3C validator |