![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resexg | Structured version Visualization version GIF version |
Description: The restriction of a set is a set. (Contributed by NM, 28-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
resexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resss 6022 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 | |
2 | ssexg 5329 | . 2 ⊢ (((𝐴 ↾ 𝐵) ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → (𝐴 ↾ 𝐵) ∈ V) | |
3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 ↾ cres 5691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-in 3970 df-ss 3980 df-res 5701 |
This theorem is referenced by: resexd 6048 resex 6049 fvtresfn 7018 offres 8007 ressuppss 8207 ressuppssdif 8209 resixp 8972 f1imaen3g 9055 dif1enlem 9195 dif1enlemOLD 9196 sbthfilem 9236 fsuppres 9431 climres 15608 setsvalg 17200 setsid 17242 symgfixels 19467 qtopres 23722 vtxdginducedm1 29576 redwlk 29705 hhssva 31286 hhsssm 31287 hhshsslem1 31296 resf1o 32748 eulerpartlemmf 34357 exidres 37865 exidresid 37866 xrnresex 38388 unidmqs 38636 lmhmlnmsplit 43076 climresdm 45806 setsv 47303 |
Copyright terms: Public domain | W3C validator |