| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resexg | Structured version Visualization version GIF version | ||
| Description: The restriction of a set is a set. (Contributed by NM, 28-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| resexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resss 5961 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 | |
| 2 | ssexg 5273 | . 2 ⊢ (((𝐴 ↾ 𝐵) ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → (𝐴 ↾ 𝐵) ∈ V) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 ↾ cres 5633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-in 3918 df-ss 3928 df-res 5643 |
| This theorem is referenced by: resexd 5988 resex 5989 fvtresfn 6952 offres 7941 ressuppss 8139 ressuppssdif 8141 ecelqsw 8719 uniqsw 8725 eceldmqs 8737 resixp 8883 f1imaen3g 8964 dif1enlem 9097 dif1enlemOLD 9098 sbthfilem 9139 fsuppres 9320 climres 15518 setsvalg 17113 setsid 17154 symgfixels 19349 qtopres 23619 vtxdginducedm1 29525 redwlk 29652 hhssva 31237 hhsssm 31238 hhshsslem1 31247 resf1o 32704 eulerpartlemmf 34360 exidres 37866 exidresid 37867 xrnresex 38386 unidmqs 38640 lmhmlnmsplit 43070 climresdm 45842 setsv 47373 |
| Copyright terms: Public domain | W3C validator |