| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resexg | Structured version Visualization version GIF version | ||
| Description: The restriction of a set is a set. (Contributed by NM, 28-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| resexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resss 5972 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 | |
| 2 | ssexg 5278 | . 2 ⊢ (((𝐴 ↾ 𝐵) ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → (𝐴 ↾ 𝐵) ∈ V) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 ↾ cres 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-in 3921 df-ss 3931 df-res 5650 |
| This theorem is referenced by: resexd 5999 resex 6000 fvtresfn 6970 offres 7962 ressuppss 8162 ressuppssdif 8164 ecelqsw 8742 uniqsw 8748 eceldmqs 8760 resixp 8906 f1imaen3g 8987 dif1enlem 9120 dif1enlemOLD 9121 sbthfilem 9162 fsuppres 9344 climres 15541 setsvalg 17136 setsid 17177 symgfixels 19364 qtopres 23585 vtxdginducedm1 29471 redwlk 29600 hhssva 31186 hhsssm 31187 hhshsslem1 31196 resf1o 32653 eulerpartlemmf 34366 exidres 37872 exidresid 37873 xrnresex 38392 unidmqs 38646 lmhmlnmsplit 43076 climresdm 45848 setsv 47379 |
| Copyright terms: Public domain | W3C validator |