![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resexg | Structured version Visualization version GIF version |
Description: The restriction of a set is a set. (Contributed by NM, 28-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
resexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resss 6031 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 | |
2 | ssexg 5341 | . 2 ⊢ (((𝐴 ↾ 𝐵) ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → (𝐴 ↾ 𝐵) ∈ V) | |
3 | 1, 2 | mpan 689 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 df-ss 3993 df-res 5712 |
This theorem is referenced by: resexd 6057 resex 6058 fvtresfn 7031 offres 8024 ressuppss 8224 ressuppssdif 8226 resixp 8991 f1imaen3g 9076 dif1enlem 9222 dif1enlemOLD 9223 sbthfilem 9264 fsuppres 9462 climres 15621 setsvalg 17213 setsid 17255 symgfixels 19476 qtopres 23727 vtxdginducedm1 29579 redwlk 29708 hhssva 31289 hhsssm 31290 hhshsslem1 31299 resf1o 32744 eulerpartlemmf 34340 exidres 37838 exidresid 37839 xrnresex 38362 unidmqs 38610 lmhmlnmsplit 43044 climresdm 45771 setsv 47252 |
Copyright terms: Public domain | W3C validator |