| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resexg | Structured version Visualization version GIF version | ||
| Description: The restriction of a set is a set. (Contributed by NM, 28-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| resexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resss 5993 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 | |
| 2 | ssexg 5298 | . 2 ⊢ (((𝐴 ↾ 𝐵) ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → (𝐴 ↾ 𝐵) ∈ V) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 ↾ cres 5661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-in 3938 df-ss 3948 df-res 5671 |
| This theorem is referenced by: resexd 6020 resex 6021 fvtresfn 6993 offres 7987 ressuppss 8187 ressuppssdif 8189 resixp 8952 f1imaen3g 9035 dif1enlem 9175 dif1enlemOLD 9176 sbthfilem 9217 fsuppres 9410 climres 15596 setsvalg 17190 setsid 17231 symgfixels 19420 qtopres 23641 vtxdginducedm1 29528 redwlk 29657 hhssva 31243 hhsssm 31244 hhshsslem1 31253 resf1o 32712 eulerpartlemmf 34412 exidres 37907 exidresid 37908 xrnresex 38429 unidmqs 38677 lmhmlnmsplit 43086 climresdm 45859 setsv 47372 |
| Copyright terms: Public domain | W3C validator |