Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resexg | Structured version Visualization version GIF version |
Description: The restriction of a set is a set. (Contributed by NM, 28-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
resexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resss 5915 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 | |
2 | ssexg 5251 | . 2 ⊢ (((𝐴 ↾ 𝐵) ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → (𝐴 ↾ 𝐵) ∈ V) | |
3 | 1, 2 | mpan 687 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 Vcvv 3431 ⊆ wss 3892 ↾ cres 5592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 ax-sep 5227 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-in 3899 df-ss 3909 df-res 5602 |
This theorem is referenced by: resexd 5937 resex 5938 fvtresfn 6874 offres 7820 ressuppss 7991 ressuppssdif 7993 resixp 8713 dif1enlem 8934 sbthfilem 8975 fsuppres 9141 climres 15295 setsvalg 16878 setsid 16920 symgfixels 19053 qtopres 22860 vtxdginducedm1 27921 redwlk 28050 hhssva 29628 hhsssm 29629 hhshsslem1 29638 resf1o 31074 eulerpartlemmf 32351 exidres 36045 exidresid 36046 xrnresex 36541 unidmqs 36775 lmhmlnmsplit 40921 climresdm 43373 setsv 44809 |
Copyright terms: Public domain | W3C validator |