| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resexg | Structured version Visualization version GIF version | ||
| Description: The restriction of a set is a set. (Contributed by NM, 28-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| resexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resss 5949 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 | |
| 2 | ssexg 5259 | . 2 ⊢ (((𝐴 ↾ 𝐵) ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → (𝐴 ↾ 𝐵) ∈ V) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 ↾ cres 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3904 df-ss 3914 df-res 5626 |
| This theorem is referenced by: resexd 5976 resex 5977 fvtresfn 6931 offres 7915 ressuppss 8113 ressuppssdif 8115 ecelqsw 8693 uniqsw 8699 eceldmqs 8711 resixp 8857 f1imaen3g 8938 dif1enlem 9069 sbthfilem 9107 fsuppres 9277 climres 15482 setsvalg 17077 setsid 17118 symgfixels 19346 qtopres 23613 vtxdginducedm1 29522 redwlk 29649 hhssva 31237 hhsssm 31238 hhshsslem1 31247 resf1o 32713 eulerpartlemmf 34388 exidres 37917 exidresid 37918 xrnresex 38452 unidmqs 38751 lmhmlnmsplit 43179 climresdm 45947 setsv 47477 |
| Copyright terms: Public domain | W3C validator |