Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resexg | Structured version Visualization version GIF version |
Description: The restriction of a set is a set. (Contributed by NM, 28-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
resexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resss 5913 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 | |
2 | ssexg 5250 | . 2 ⊢ (((𝐴 ↾ 𝐵) ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → (𝐴 ↾ 𝐵) ∈ V) | |
3 | 1, 2 | mpan 686 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3430 ⊆ wss 3891 ↾ cres 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-in 3898 df-ss 3908 df-res 5600 |
This theorem is referenced by: resexd 5935 resex 5936 fvtresfn 6871 offres 7812 ressuppss 7983 ressuppssdif 7985 resixp 8695 dif1enlem 8908 sbthfilem 8949 fsuppres 9114 climres 15265 setsvalg 16848 setsid 16890 symgfixels 19023 qtopres 22830 vtxdginducedm1 27891 redwlk 28020 hhssva 29598 hhsssm 29599 hhshsslem1 29608 resf1o 31044 eulerpartlemmf 32321 exidres 36015 exidresid 36016 xrnresex 36511 unidmqs 36745 lmhmlnmsplit 40892 climresdm 43345 setsv 44782 |
Copyright terms: Public domain | W3C validator |