Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resexg | Structured version Visualization version GIF version |
Description: The restriction of a set is a set. (Contributed by NM, 28-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
resexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resss 5928 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 | |
2 | ssexg 5256 | . 2 ⊢ (((𝐴 ↾ 𝐵) ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → (𝐴 ↾ 𝐵) ∈ V) | |
3 | 1, 2 | mpan 688 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 Vcvv 3437 ⊆ wss 3892 ↾ cres 5602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3287 df-v 3439 df-in 3899 df-ss 3909 df-res 5612 |
This theorem is referenced by: resexd 5950 resex 5951 fvtresfn 6909 offres 7858 ressuppss 8030 ressuppssdif 8032 resixp 8752 dif1enlem 8981 sbthfilem 9022 fsuppres 9197 climres 15329 setsvalg 16912 setsid 16954 symgfixels 19087 qtopres 22894 vtxdginducedm1 27955 redwlk 28085 hhssva 29664 hhsssm 29665 hhshsslem1 29674 resf1o 31110 eulerpartlemmf 32387 exidres 36080 exidresid 36081 xrnresex 36574 unidmqs 36808 lmhmlnmsplit 40950 climresdm 43440 setsv 44888 |
Copyright terms: Public domain | W3C validator |