![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resexg | Structured version Visualization version GIF version |
Description: The restriction of a set is a set. (Contributed by NM, 28-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
resexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resss 6004 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 | |
2 | ssexg 5317 | . 2 ⊢ (((𝐴 ↾ 𝐵) ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → (𝐴 ↾ 𝐵) ∈ V) | |
3 | 1, 2 | mpan 689 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 Vcvv 3470 ⊆ wss 3945 ↾ cres 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5293 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3429 df-v 3472 df-in 3952 df-ss 3962 df-res 5684 |
This theorem is referenced by: resexd 6026 resex 6027 fvtresfn 7001 offres 7981 ressuppss 8181 ressuppssdif 8183 resixp 8945 dif1enlem 9174 dif1enlemOLD 9175 sbthfilem 9219 fsuppres 9410 climres 15545 setsvalg 17128 setsid 17170 symgfixels 19382 qtopres 23595 vtxdginducedm1 29350 redwlk 29479 hhssva 31060 hhsssm 31061 hhshsslem1 31070 resf1o 32506 eulerpartlemmf 33989 exidres 37345 exidresid 37346 xrnresex 37872 unidmqs 38120 lmhmlnmsplit 42505 climresdm 45232 setsv 46712 |
Copyright terms: Public domain | W3C validator |