| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resexg | Structured version Visualization version GIF version | ||
| Description: The restriction of a set is a set. (Contributed by NM, 28-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| resexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resss 5952 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 | |
| 2 | ssexg 5262 | . 2 ⊢ (((𝐴 ↾ 𝐵) ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → (𝐴 ↾ 𝐵) ∈ V) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3436 ⊆ wss 3903 ↾ cres 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-in 3910 df-ss 3920 df-res 5631 |
| This theorem is referenced by: resexd 5979 resex 5980 fvtresfn 6932 offres 7918 ressuppss 8116 ressuppssdif 8118 ecelqsw 8696 uniqsw 8702 eceldmqs 8714 resixp 8860 f1imaen3g 8941 dif1enlem 9073 sbthfilem 9112 fsuppres 9283 climres 15482 setsvalg 17077 setsid 17118 symgfixels 19313 qtopres 23583 vtxdginducedm1 29493 redwlk 29620 hhssva 31205 hhsssm 31206 hhshsslem1 31215 resf1o 32682 eulerpartlemmf 34359 exidres 37878 exidresid 37879 xrnresex 38398 unidmqs 38652 lmhmlnmsplit 43080 climresdm 45851 setsv 47382 |
| Copyright terms: Public domain | W3C validator |