| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resexg | Structured version Visualization version GIF version | ||
| Description: The restriction of a set is a set. (Contributed by NM, 28-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| resexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resss 5962 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 | |
| 2 | ssexg 5273 | . 2 ⊢ (((𝐴 ↾ 𝐵) ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → (𝐴 ↾ 𝐵) ∈ V) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 ↾ cres 5633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-in 3918 df-ss 3928 df-res 5643 |
| This theorem is referenced by: resexd 5989 resex 5990 fvtresfn 6953 offres 7942 ressuppss 8140 ressuppssdif 8142 ecelqsw 8720 uniqsw 8726 eceldmqs 8738 resixp 8884 f1imaen3g 8965 dif1enlem 9098 dif1enlemOLD 9099 sbthfilem 9140 fsuppres 9321 climres 15519 setsvalg 17114 setsid 17155 symgfixels 19350 qtopres 23620 vtxdginducedm1 29526 redwlk 29653 hhssva 31238 hhsssm 31239 hhshsslem1 31248 resf1o 32705 eulerpartlemmf 34361 exidres 37867 exidresid 37868 xrnresex 38387 unidmqs 38641 lmhmlnmsplit 43071 climresdm 45843 setsv 47374 |
| Copyright terms: Public domain | W3C validator |