| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lmimdim | Structured version Visualization version GIF version | ||
| Description: Module isomorphisms preserve vector space dimensions. (Contributed by Thierry Arnoux, 25-Feb-2025.) |
| Ref | Expression |
|---|---|
| lmimdim.1 | ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMIso 𝑇)) |
| lmimdim.2 | ⊢ (𝜑 → 𝑆 ∈ LVec) |
| Ref | Expression |
|---|---|
| lmimdim | ⊢ (𝜑 → (dim‘𝑆) = (dim‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmimdim.2 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ LVec) | |
| 2 | eqid 2731 | . . . . 5 ⊢ (LBasis‘𝑆) = (LBasis‘𝑆) | |
| 3 | 2 | lbsex 21108 | . . . 4 ⊢ (𝑆 ∈ LVec → (LBasis‘𝑆) ≠ ∅) |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → (LBasis‘𝑆) ≠ ∅) |
| 5 | n0 4302 | . . 3 ⊢ ((LBasis‘𝑆) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (LBasis‘𝑆)) | |
| 6 | 4, 5 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑏 𝑏 ∈ (LBasis‘𝑆)) |
| 7 | lmimdim.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMIso 𝑇)) | |
| 8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → 𝐹 ∈ (𝑆 LMIso 𝑇)) |
| 9 | 8 | resexd 5982 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (𝐹 ↾ 𝑏) ∈ V) |
| 10 | eqid 2731 | . . . . . . . 8 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 11 | eqid 2731 | . . . . . . . 8 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 12 | 10, 11 | lmimf1o 21003 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) |
| 13 | f1of1 6768 | . . . . . . 7 ⊢ (𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇)) | |
| 14 | 8, 12, 13 | 3syl 18 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇)) |
| 15 | 10, 2 | lbsss 21017 | . . . . . . 7 ⊢ (𝑏 ∈ (LBasis‘𝑆) → 𝑏 ⊆ (Base‘𝑆)) |
| 16 | 15 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → 𝑏 ⊆ (Base‘𝑆)) |
| 17 | f1ssres 6732 | . . . . . 6 ⊢ ((𝐹:(Base‘𝑆)–1-1→(Base‘𝑇) ∧ 𝑏 ⊆ (Base‘𝑆)) → (𝐹 ↾ 𝑏):𝑏–1-1→(Base‘𝑇)) | |
| 18 | 14, 16, 17 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (𝐹 ↾ 𝑏):𝑏–1-1→(Base‘𝑇)) |
| 19 | hashf1dmrn 14356 | . . . . 5 ⊢ (((𝐹 ↾ 𝑏) ∈ V ∧ (𝐹 ↾ 𝑏):𝑏–1-1→(Base‘𝑇)) → (♯‘𝑏) = (♯‘ran (𝐹 ↾ 𝑏))) | |
| 20 | 9, 18, 19 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (♯‘𝑏) = (♯‘ran (𝐹 ↾ 𝑏))) |
| 21 | df-ima 5632 | . . . . 5 ⊢ (𝐹 “ 𝑏) = ran (𝐹 ↾ 𝑏) | |
| 22 | 21 | fveq2i 6831 | . . . 4 ⊢ (♯‘(𝐹 “ 𝑏)) = (♯‘ran (𝐹 ↾ 𝑏)) |
| 23 | 20, 22 | eqtr4di 2784 | . . 3 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (♯‘𝑏) = (♯‘(𝐹 “ 𝑏))) |
| 24 | 2 | dimval 33620 | . . . 4 ⊢ ((𝑆 ∈ LVec ∧ 𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑆) = (♯‘𝑏)) |
| 25 | 1, 24 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑆) = (♯‘𝑏)) |
| 26 | lmimlmhm 21004 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇)) | |
| 27 | 7, 26 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
| 28 | lmhmlvec 21050 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LVec ↔ 𝑇 ∈ LVec)) | |
| 29 | 28 | biimpa 476 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LVec) → 𝑇 ∈ LVec) |
| 30 | 27, 1, 29 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ LVec) |
| 31 | 30 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → 𝑇 ∈ LVec) |
| 32 | eqid 2731 | . . . . . 6 ⊢ (LBasis‘𝑇) = (LBasis‘𝑇) | |
| 33 | 2, 32 | lmimlbs 21779 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝑏 ∈ (LBasis‘𝑆)) → (𝐹 “ 𝑏) ∈ (LBasis‘𝑇)) |
| 34 | 7, 33 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (𝐹 “ 𝑏) ∈ (LBasis‘𝑇)) |
| 35 | 32 | dimval 33620 | . . . 4 ⊢ ((𝑇 ∈ LVec ∧ (𝐹 “ 𝑏) ∈ (LBasis‘𝑇)) → (dim‘𝑇) = (♯‘(𝐹 “ 𝑏))) |
| 36 | 31, 34, 35 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑇) = (♯‘(𝐹 “ 𝑏))) |
| 37 | 23, 25, 36 | 3eqtr4d 2776 | . 2 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑆) = (dim‘𝑇)) |
| 38 | 6, 37 | exlimddv 1936 | 1 ⊢ (𝜑 → (dim‘𝑆) = (dim‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ⊆ wss 3897 ∅c0 4282 ran crn 5620 ↾ cres 5621 “ cima 5622 –1-1→wf1 6484 –1-1-onto→wf1o 6486 ‘cfv 6487 (class class class)co 7352 ♯chash 14243 Basecbs 17126 LMHom clmhm 20959 LMIso clmim 20960 LBasisclbs 21014 LVecclvec 21042 dimcldim 33618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-reg 9484 ax-inf2 9537 ax-ac2 10360 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-rpss 7662 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-oi 9402 df-r1 9663 df-rank 9664 df-dju 9800 df-card 9838 df-acn 9841 df-ac 10013 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-xnn0 12461 df-z 12475 df-dec 12595 df-uz 12739 df-fz 13414 df-hash 14244 df-struct 17064 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-mulr 17181 df-tset 17186 df-ple 17187 df-ocomp 17188 df-0g 17351 df-mre 17494 df-mrc 17495 df-mri 17496 df-acs 17497 df-proset 18206 df-drs 18207 df-poset 18225 df-ipo 18440 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-submnd 18698 df-grp 18855 df-minusg 18856 df-sbg 18857 df-subg 19042 df-ghm 19131 df-cmn 19700 df-abl 19701 df-mgp 20065 df-rng 20077 df-ur 20106 df-ring 20159 df-oppr 20261 df-dvdsr 20281 df-unit 20282 df-invr 20312 df-drng 20652 df-lmod 20801 df-lss 20871 df-lsp 20911 df-lmhm 20962 df-lmim 20963 df-lbs 21015 df-lvec 21043 df-lindf 21749 df-linds 21750 df-dim 33619 |
| This theorem is referenced by: lmicdim 33624 algextdeglem4 33740 |
| Copyright terms: Public domain | W3C validator |