Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmimdim Structured version   Visualization version   GIF version

Theorem lmimdim 33655
Description: Module isomorphisms preserve vector space dimensions. (Contributed by Thierry Arnoux, 25-Feb-2025.)
Hypotheses
Ref Expression
lmimdim.1 (𝜑𝐹 ∈ (𝑆 LMIso 𝑇))
lmimdim.2 (𝜑𝑆 ∈ LVec)
Assertion
Ref Expression
lmimdim (𝜑 → (dim‘𝑆) = (dim‘𝑇))

Proof of Theorem lmimdim
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 lmimdim.2 . . . 4 (𝜑𝑆 ∈ LVec)
2 eqid 2736 . . . . 5 (LBasis‘𝑆) = (LBasis‘𝑆)
32lbsex 21168 . . . 4 (𝑆 ∈ LVec → (LBasis‘𝑆) ≠ ∅)
41, 3syl 17 . . 3 (𝜑 → (LBasis‘𝑆) ≠ ∅)
5 n0 4352 . . 3 ((LBasis‘𝑆) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (LBasis‘𝑆))
64, 5sylib 218 . 2 (𝜑 → ∃𝑏 𝑏 ∈ (LBasis‘𝑆))
7 lmimdim.1 . . . . . . 7 (𝜑𝐹 ∈ (𝑆 LMIso 𝑇))
87adantr 480 . . . . . 6 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → 𝐹 ∈ (𝑆 LMIso 𝑇))
98resexd 6045 . . . . 5 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (𝐹𝑏) ∈ V)
10 eqid 2736 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
11 eqid 2736 . . . . . . . 8 (Base‘𝑇) = (Base‘𝑇)
1210, 11lmimf1o 21063 . . . . . . 7 (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇))
13 f1of1 6846 . . . . . . 7 (𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇))
148, 12, 133syl 18 . . . . . 6 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇))
1510, 2lbsss 21077 . . . . . . 7 (𝑏 ∈ (LBasis‘𝑆) → 𝑏 ⊆ (Base‘𝑆))
1615adantl 481 . . . . . 6 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → 𝑏 ⊆ (Base‘𝑆))
17 f1ssres 6810 . . . . . 6 ((𝐹:(Base‘𝑆)–1-1→(Base‘𝑇) ∧ 𝑏 ⊆ (Base‘𝑆)) → (𝐹𝑏):𝑏1-1→(Base‘𝑇))
1814, 16, 17syl2anc 584 . . . . 5 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (𝐹𝑏):𝑏1-1→(Base‘𝑇))
19 hashf1dmrn 14483 . . . . 5 (((𝐹𝑏) ∈ V ∧ (𝐹𝑏):𝑏1-1→(Base‘𝑇)) → (♯‘𝑏) = (♯‘ran (𝐹𝑏)))
209, 18, 19syl2anc 584 . . . 4 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (♯‘𝑏) = (♯‘ran (𝐹𝑏)))
21 df-ima 5697 . . . . 5 (𝐹𝑏) = ran (𝐹𝑏)
2221fveq2i 6908 . . . 4 (♯‘(𝐹𝑏)) = (♯‘ran (𝐹𝑏))
2320, 22eqtr4di 2794 . . 3 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (♯‘𝑏) = (♯‘(𝐹𝑏)))
242dimval 33652 . . . 4 ((𝑆 ∈ LVec ∧ 𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑆) = (♯‘𝑏))
251, 24sylan 580 . . 3 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑆) = (♯‘𝑏))
26 lmimlmhm 21064 . . . . . . 7 (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇))
277, 26syl 17 . . . . . 6 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
28 lmhmlvec 21110 . . . . . . 7 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LVec ↔ 𝑇 ∈ LVec))
2928biimpa 476 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LVec) → 𝑇 ∈ LVec)
3027, 1, 29syl2anc 584 . . . . 5 (𝜑𝑇 ∈ LVec)
3130adantr 480 . . . 4 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → 𝑇 ∈ LVec)
32 eqid 2736 . . . . . 6 (LBasis‘𝑇) = (LBasis‘𝑇)
332, 32lmimlbs 21857 . . . . 5 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝑏 ∈ (LBasis‘𝑆)) → (𝐹𝑏) ∈ (LBasis‘𝑇))
347, 33sylan 580 . . . 4 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (𝐹𝑏) ∈ (LBasis‘𝑇))
3532dimval 33652 . . . 4 ((𝑇 ∈ LVec ∧ (𝐹𝑏) ∈ (LBasis‘𝑇)) → (dim‘𝑇) = (♯‘(𝐹𝑏)))
3631, 34, 35syl2anc 584 . . 3 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑇) = (♯‘(𝐹𝑏)))
3723, 25, 363eqtr4d 2786 . 2 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑆) = (dim‘𝑇))
386, 37exlimddv 1934 1 (𝜑 → (dim‘𝑆) = (dim‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1778  wcel 2107  wne 2939  Vcvv 3479  wss 3950  c0 4332  ran crn 5685  cres 5686  cima 5687  1-1wf1 6557  1-1-ontowf1o 6559  cfv 6560  (class class class)co 7432  chash 14370  Basecbs 17248   LMHom clmhm 21019   LMIso clmim 21020  LBasisclbs 21074  LVecclvec 21102  dimcldim 33650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-reg 9633  ax-inf2 9682  ax-ac2 10504  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-rpss 7744  df-om 7889  df-1st 8015  df-2nd 8016  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-oadd 8511  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-oi 9551  df-r1 9805  df-rank 9806  df-dju 9942  df-card 9980  df-acn 9983  df-ac 10157  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-xnn0 12602  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-hash 14371  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-tset 17317  df-ple 17318  df-ocomp 17319  df-0g 17487  df-mre 17630  df-mrc 17631  df-mri 17632  df-acs 17633  df-proset 18341  df-drs 18342  df-poset 18360  df-ipo 18574  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-subg 19142  df-ghm 19232  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-invr 20389  df-drng 20732  df-lmod 20861  df-lss 20931  df-lsp 20971  df-lmhm 21022  df-lmim 21023  df-lbs 21075  df-lvec 21103  df-lindf 21827  df-linds 21828  df-dim 33651
This theorem is referenced by:  lmicdim  33656  algextdeglem4  33762
  Copyright terms: Public domain W3C validator