Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmimdim Structured version   Visualization version   GIF version

Theorem lmimdim 33599
Description: Module isomorphisms preserve vector space dimensions. (Contributed by Thierry Arnoux, 25-Feb-2025.)
Hypotheses
Ref Expression
lmimdim.1 (𝜑𝐹 ∈ (𝑆 LMIso 𝑇))
lmimdim.2 (𝜑𝑆 ∈ LVec)
Assertion
Ref Expression
lmimdim (𝜑 → (dim‘𝑆) = (dim‘𝑇))

Proof of Theorem lmimdim
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 lmimdim.2 . . . 4 (𝜑𝑆 ∈ LVec)
2 eqid 2729 . . . . 5 (LBasis‘𝑆) = (LBasis‘𝑆)
32lbsex 21075 . . . 4 (𝑆 ∈ LVec → (LBasis‘𝑆) ≠ ∅)
41, 3syl 17 . . 3 (𝜑 → (LBasis‘𝑆) ≠ ∅)
5 n0 4316 . . 3 ((LBasis‘𝑆) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (LBasis‘𝑆))
64, 5sylib 218 . 2 (𝜑 → ∃𝑏 𝑏 ∈ (LBasis‘𝑆))
7 lmimdim.1 . . . . . . 7 (𝜑𝐹 ∈ (𝑆 LMIso 𝑇))
87adantr 480 . . . . . 6 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → 𝐹 ∈ (𝑆 LMIso 𝑇))
98resexd 5999 . . . . 5 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (𝐹𝑏) ∈ V)
10 eqid 2729 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
11 eqid 2729 . . . . . . . 8 (Base‘𝑇) = (Base‘𝑇)
1210, 11lmimf1o 20970 . . . . . . 7 (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇))
13 f1of1 6799 . . . . . . 7 (𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇))
148, 12, 133syl 18 . . . . . 6 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇))
1510, 2lbsss 20984 . . . . . . 7 (𝑏 ∈ (LBasis‘𝑆) → 𝑏 ⊆ (Base‘𝑆))
1615adantl 481 . . . . . 6 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → 𝑏 ⊆ (Base‘𝑆))
17 f1ssres 6763 . . . . . 6 ((𝐹:(Base‘𝑆)–1-1→(Base‘𝑇) ∧ 𝑏 ⊆ (Base‘𝑆)) → (𝐹𝑏):𝑏1-1→(Base‘𝑇))
1814, 16, 17syl2anc 584 . . . . 5 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (𝐹𝑏):𝑏1-1→(Base‘𝑇))
19 hashf1dmrn 14408 . . . . 5 (((𝐹𝑏) ∈ V ∧ (𝐹𝑏):𝑏1-1→(Base‘𝑇)) → (♯‘𝑏) = (♯‘ran (𝐹𝑏)))
209, 18, 19syl2anc 584 . . . 4 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (♯‘𝑏) = (♯‘ran (𝐹𝑏)))
21 df-ima 5651 . . . . 5 (𝐹𝑏) = ran (𝐹𝑏)
2221fveq2i 6861 . . . 4 (♯‘(𝐹𝑏)) = (♯‘ran (𝐹𝑏))
2320, 22eqtr4di 2782 . . 3 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (♯‘𝑏) = (♯‘(𝐹𝑏)))
242dimval 33596 . . . 4 ((𝑆 ∈ LVec ∧ 𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑆) = (♯‘𝑏))
251, 24sylan 580 . . 3 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑆) = (♯‘𝑏))
26 lmimlmhm 20971 . . . . . . 7 (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇))
277, 26syl 17 . . . . . 6 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
28 lmhmlvec 21017 . . . . . . 7 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LVec ↔ 𝑇 ∈ LVec))
2928biimpa 476 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LVec) → 𝑇 ∈ LVec)
3027, 1, 29syl2anc 584 . . . . 5 (𝜑𝑇 ∈ LVec)
3130adantr 480 . . . 4 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → 𝑇 ∈ LVec)
32 eqid 2729 . . . . . 6 (LBasis‘𝑇) = (LBasis‘𝑇)
332, 32lmimlbs 21745 . . . . 5 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝑏 ∈ (LBasis‘𝑆)) → (𝐹𝑏) ∈ (LBasis‘𝑇))
347, 33sylan 580 . . . 4 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (𝐹𝑏) ∈ (LBasis‘𝑇))
3532dimval 33596 . . . 4 ((𝑇 ∈ LVec ∧ (𝐹𝑏) ∈ (LBasis‘𝑇)) → (dim‘𝑇) = (♯‘(𝐹𝑏)))
3631, 34, 35syl2anc 584 . . 3 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑇) = (♯‘(𝐹𝑏)))
3723, 25, 363eqtr4d 2774 . 2 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑆) = (dim‘𝑇))
386, 37exlimddv 1935 1 (𝜑 → (dim‘𝑆) = (dim‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  Vcvv 3447  wss 3914  c0 4296  ran crn 5639  cres 5640  cima 5641  1-1wf1 6508  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  chash 14295  Basecbs 17179   LMHom clmhm 20926   LMIso clmim 20927  LBasisclbs 20981  LVecclvec 21009  dimcldim 33594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-rpss 7699  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-oi 9463  df-r1 9717  df-rank 9718  df-dju 9854  df-card 9892  df-acn 9895  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-tset 17239  df-ple 17240  df-ocomp 17241  df-0g 17404  df-mre 17547  df-mrc 17548  df-mri 17549  df-acs 17550  df-proset 18255  df-drs 18256  df-poset 18274  df-ipo 18487  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-ghm 19145  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-drng 20640  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lmhm 20929  df-lmim 20930  df-lbs 20982  df-lvec 21010  df-lindf 21715  df-linds 21716  df-dim 33595
This theorem is referenced by:  lmicdim  33600  algextdeglem4  33710
  Copyright terms: Public domain W3C validator