Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmimdim Structured version   Visualization version   GIF version

Theorem lmimdim 33648
Description: Module isomorphisms preserve vector space dimensions. (Contributed by Thierry Arnoux, 25-Feb-2025.)
Hypotheses
Ref Expression
lmimdim.1 (𝜑𝐹 ∈ (𝑆 LMIso 𝑇))
lmimdim.2 (𝜑𝑆 ∈ LVec)
Assertion
Ref Expression
lmimdim (𝜑 → (dim‘𝑆) = (dim‘𝑇))

Proof of Theorem lmimdim
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 lmimdim.2 . . . 4 (𝜑𝑆 ∈ LVec)
2 eqid 2736 . . . . 5 (LBasis‘𝑆) = (LBasis‘𝑆)
32lbsex 21131 . . . 4 (𝑆 ∈ LVec → (LBasis‘𝑆) ≠ ∅)
41, 3syl 17 . . 3 (𝜑 → (LBasis‘𝑆) ≠ ∅)
5 n0 4333 . . 3 ((LBasis‘𝑆) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (LBasis‘𝑆))
64, 5sylib 218 . 2 (𝜑 → ∃𝑏 𝑏 ∈ (LBasis‘𝑆))
7 lmimdim.1 . . . . . . 7 (𝜑𝐹 ∈ (𝑆 LMIso 𝑇))
87adantr 480 . . . . . 6 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → 𝐹 ∈ (𝑆 LMIso 𝑇))
98resexd 6020 . . . . 5 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (𝐹𝑏) ∈ V)
10 eqid 2736 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
11 eqid 2736 . . . . . . . 8 (Base‘𝑇) = (Base‘𝑇)
1210, 11lmimf1o 21026 . . . . . . 7 (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇))
13 f1of1 6822 . . . . . . 7 (𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇))
148, 12, 133syl 18 . . . . . 6 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇))
1510, 2lbsss 21040 . . . . . . 7 (𝑏 ∈ (LBasis‘𝑆) → 𝑏 ⊆ (Base‘𝑆))
1615adantl 481 . . . . . 6 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → 𝑏 ⊆ (Base‘𝑆))
17 f1ssres 6786 . . . . . 6 ((𝐹:(Base‘𝑆)–1-1→(Base‘𝑇) ∧ 𝑏 ⊆ (Base‘𝑆)) → (𝐹𝑏):𝑏1-1→(Base‘𝑇))
1814, 16, 17syl2anc 584 . . . . 5 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (𝐹𝑏):𝑏1-1→(Base‘𝑇))
19 hashf1dmrn 14466 . . . . 5 (((𝐹𝑏) ∈ V ∧ (𝐹𝑏):𝑏1-1→(Base‘𝑇)) → (♯‘𝑏) = (♯‘ran (𝐹𝑏)))
209, 18, 19syl2anc 584 . . . 4 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (♯‘𝑏) = (♯‘ran (𝐹𝑏)))
21 df-ima 5672 . . . . 5 (𝐹𝑏) = ran (𝐹𝑏)
2221fveq2i 6884 . . . 4 (♯‘(𝐹𝑏)) = (♯‘ran (𝐹𝑏))
2320, 22eqtr4di 2789 . . 3 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (♯‘𝑏) = (♯‘(𝐹𝑏)))
242dimval 33645 . . . 4 ((𝑆 ∈ LVec ∧ 𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑆) = (♯‘𝑏))
251, 24sylan 580 . . 3 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑆) = (♯‘𝑏))
26 lmimlmhm 21027 . . . . . . 7 (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇))
277, 26syl 17 . . . . . 6 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
28 lmhmlvec 21073 . . . . . . 7 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LVec ↔ 𝑇 ∈ LVec))
2928biimpa 476 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LVec) → 𝑇 ∈ LVec)
3027, 1, 29syl2anc 584 . . . . 5 (𝜑𝑇 ∈ LVec)
3130adantr 480 . . . 4 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → 𝑇 ∈ LVec)
32 eqid 2736 . . . . . 6 (LBasis‘𝑇) = (LBasis‘𝑇)
332, 32lmimlbs 21801 . . . . 5 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝑏 ∈ (LBasis‘𝑆)) → (𝐹𝑏) ∈ (LBasis‘𝑇))
347, 33sylan 580 . . . 4 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (𝐹𝑏) ∈ (LBasis‘𝑇))
3532dimval 33645 . . . 4 ((𝑇 ∈ LVec ∧ (𝐹𝑏) ∈ (LBasis‘𝑇)) → (dim‘𝑇) = (♯‘(𝐹𝑏)))
3631, 34, 35syl2anc 584 . . 3 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑇) = (♯‘(𝐹𝑏)))
3723, 25, 363eqtr4d 2781 . 2 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑆) = (dim‘𝑇))
386, 37exlimddv 1935 1 (𝜑 → (dim‘𝑆) = (dim‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2933  Vcvv 3464  wss 3931  c0 4313  ran crn 5660  cres 5661  cima 5662  1-1wf1 6533  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  chash 14353  Basecbs 17233   LMHom clmhm 20982   LMIso clmim 20983  LBasisclbs 21037  LVecclvec 21065  dimcldim 33643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-reg 9611  ax-inf2 9660  ax-ac2 10482  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-rpss 7722  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-oi 9529  df-r1 9783  df-rank 9784  df-dju 9920  df-card 9958  df-acn 9961  df-ac 10135  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-xnn0 12580  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-tset 17295  df-ple 17296  df-ocomp 17297  df-0g 17460  df-mre 17603  df-mrc 17604  df-mri 17605  df-acs 17606  df-proset 18311  df-drs 18312  df-poset 18330  df-ipo 18543  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-ghm 19201  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-drng 20696  df-lmod 20824  df-lss 20894  df-lsp 20934  df-lmhm 20985  df-lmim 20986  df-lbs 21038  df-lvec 21066  df-lindf 21771  df-linds 21772  df-dim 33644
This theorem is referenced by:  lmicdim  33649  algextdeglem4  33759
  Copyright terms: Public domain W3C validator