| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lmimdim | Structured version Visualization version GIF version | ||
| Description: Module isomorphisms preserve vector space dimensions. (Contributed by Thierry Arnoux, 25-Feb-2025.) |
| Ref | Expression |
|---|---|
| lmimdim.1 | ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMIso 𝑇)) |
| lmimdim.2 | ⊢ (𝜑 → 𝑆 ∈ LVec) |
| Ref | Expression |
|---|---|
| lmimdim | ⊢ (𝜑 → (dim‘𝑆) = (dim‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmimdim.2 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ LVec) | |
| 2 | eqid 2730 | . . . . 5 ⊢ (LBasis‘𝑆) = (LBasis‘𝑆) | |
| 3 | 2 | lbsex 21095 | . . . 4 ⊢ (𝑆 ∈ LVec → (LBasis‘𝑆) ≠ ∅) |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → (LBasis‘𝑆) ≠ ∅) |
| 5 | n0 4301 | . . 3 ⊢ ((LBasis‘𝑆) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (LBasis‘𝑆)) | |
| 6 | 4, 5 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑏 𝑏 ∈ (LBasis‘𝑆)) |
| 7 | lmimdim.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMIso 𝑇)) | |
| 8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → 𝐹 ∈ (𝑆 LMIso 𝑇)) |
| 9 | 8 | resexd 5974 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (𝐹 ↾ 𝑏) ∈ V) |
| 10 | eqid 2730 | . . . . . . . 8 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 11 | eqid 2730 | . . . . . . . 8 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 12 | 10, 11 | lmimf1o 20990 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) |
| 13 | f1of1 6758 | . . . . . . 7 ⊢ (𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇)) | |
| 14 | 8, 12, 13 | 3syl 18 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇)) |
| 15 | 10, 2 | lbsss 21004 | . . . . . . 7 ⊢ (𝑏 ∈ (LBasis‘𝑆) → 𝑏 ⊆ (Base‘𝑆)) |
| 16 | 15 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → 𝑏 ⊆ (Base‘𝑆)) |
| 17 | f1ssres 6722 | . . . . . 6 ⊢ ((𝐹:(Base‘𝑆)–1-1→(Base‘𝑇) ∧ 𝑏 ⊆ (Base‘𝑆)) → (𝐹 ↾ 𝑏):𝑏–1-1→(Base‘𝑇)) | |
| 18 | 14, 16, 17 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (𝐹 ↾ 𝑏):𝑏–1-1→(Base‘𝑇)) |
| 19 | hashf1dmrn 14342 | . . . . 5 ⊢ (((𝐹 ↾ 𝑏) ∈ V ∧ (𝐹 ↾ 𝑏):𝑏–1-1→(Base‘𝑇)) → (♯‘𝑏) = (♯‘ran (𝐹 ↾ 𝑏))) | |
| 20 | 9, 18, 19 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (♯‘𝑏) = (♯‘ran (𝐹 ↾ 𝑏))) |
| 21 | df-ima 5627 | . . . . 5 ⊢ (𝐹 “ 𝑏) = ran (𝐹 ↾ 𝑏) | |
| 22 | 21 | fveq2i 6820 | . . . 4 ⊢ (♯‘(𝐹 “ 𝑏)) = (♯‘ran (𝐹 ↾ 𝑏)) |
| 23 | 20, 22 | eqtr4di 2783 | . . 3 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (♯‘𝑏) = (♯‘(𝐹 “ 𝑏))) |
| 24 | 2 | dimval 33603 | . . . 4 ⊢ ((𝑆 ∈ LVec ∧ 𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑆) = (♯‘𝑏)) |
| 25 | 1, 24 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑆) = (♯‘𝑏)) |
| 26 | lmimlmhm 20991 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇)) | |
| 27 | 7, 26 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
| 28 | lmhmlvec 21037 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LVec ↔ 𝑇 ∈ LVec)) | |
| 29 | 28 | biimpa 476 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LVec) → 𝑇 ∈ LVec) |
| 30 | 27, 1, 29 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ LVec) |
| 31 | 30 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → 𝑇 ∈ LVec) |
| 32 | eqid 2730 | . . . . . 6 ⊢ (LBasis‘𝑇) = (LBasis‘𝑇) | |
| 33 | 2, 32 | lmimlbs 21766 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝑏 ∈ (LBasis‘𝑆)) → (𝐹 “ 𝑏) ∈ (LBasis‘𝑇)) |
| 34 | 7, 33 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (𝐹 “ 𝑏) ∈ (LBasis‘𝑇)) |
| 35 | 32 | dimval 33603 | . . . 4 ⊢ ((𝑇 ∈ LVec ∧ (𝐹 “ 𝑏) ∈ (LBasis‘𝑇)) → (dim‘𝑇) = (♯‘(𝐹 “ 𝑏))) |
| 36 | 31, 34, 35 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑇) = (♯‘(𝐹 “ 𝑏))) |
| 37 | 23, 25, 36 | 3eqtr4d 2775 | . 2 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑆) = (dim‘𝑇)) |
| 38 | 6, 37 | exlimddv 1936 | 1 ⊢ (𝜑 → (dim‘𝑆) = (dim‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2110 ≠ wne 2926 Vcvv 3434 ⊆ wss 3900 ∅c0 4281 ran crn 5615 ↾ cres 5616 “ cima 5617 –1-1→wf1 6474 –1-1-onto→wf1o 6476 ‘cfv 6477 (class class class)co 7341 ♯chash 14229 Basecbs 17112 LMHom clmhm 20946 LMIso clmim 20947 LBasisclbs 21001 LVecclvec 21029 dimcldim 33601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-reg 9473 ax-inf2 9526 ax-ac2 10346 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-rpss 7651 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-oi 9391 df-r1 9649 df-rank 9650 df-dju 9786 df-card 9824 df-acn 9827 df-ac 9999 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-xnn0 12447 df-z 12461 df-dec 12581 df-uz 12725 df-fz 13400 df-hash 14230 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-tset 17172 df-ple 17173 df-ocomp 17174 df-0g 17337 df-mre 17480 df-mrc 17481 df-mri 17482 df-acs 17483 df-proset 18192 df-drs 18193 df-poset 18211 df-ipo 18426 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-submnd 18684 df-grp 18841 df-minusg 18842 df-sbg 18843 df-subg 19028 df-ghm 19118 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-oppr 20248 df-dvdsr 20268 df-unit 20269 df-invr 20299 df-drng 20639 df-lmod 20788 df-lss 20858 df-lsp 20898 df-lmhm 20949 df-lmim 20950 df-lbs 21002 df-lvec 21030 df-lindf 21736 df-linds 21737 df-dim 33602 |
| This theorem is referenced by: lmicdim 33607 algextdeglem4 33723 |
| Copyright terms: Public domain | W3C validator |