![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmimdim | Structured version Visualization version GIF version |
Description: Module isomorphisms preserve vector space dimensions. (Contributed by Thierry Arnoux, 25-Feb-2025.) |
Ref | Expression |
---|---|
lmimdim.1 | ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMIso 𝑇)) |
lmimdim.2 | ⊢ (𝜑 → 𝑆 ∈ LVec) |
Ref | Expression |
---|---|
lmimdim | ⊢ (𝜑 → (dim‘𝑆) = (dim‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmimdim.2 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ LVec) | |
2 | eqid 2727 | . . . . 5 ⊢ (LBasis‘𝑆) = (LBasis‘𝑆) | |
3 | 2 | lbsex 21035 | . . . 4 ⊢ (𝑆 ∈ LVec → (LBasis‘𝑆) ≠ ∅) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → (LBasis‘𝑆) ≠ ∅) |
5 | n0 4342 | . . 3 ⊢ ((LBasis‘𝑆) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (LBasis‘𝑆)) | |
6 | 4, 5 | sylib 217 | . 2 ⊢ (𝜑 → ∃𝑏 𝑏 ∈ (LBasis‘𝑆)) |
7 | lmimdim.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMIso 𝑇)) | |
8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → 𝐹 ∈ (𝑆 LMIso 𝑇)) |
9 | 8 | resexd 6026 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (𝐹 ↾ 𝑏) ∈ V) |
10 | eqid 2727 | . . . . . . . 8 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
11 | eqid 2727 | . . . . . . . 8 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
12 | 10, 11 | lmimf1o 20930 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) |
13 | f1of1 6832 | . . . . . . 7 ⊢ (𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇)) | |
14 | 8, 12, 13 | 3syl 18 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇)) |
15 | 10, 2 | lbsss 20944 | . . . . . . 7 ⊢ (𝑏 ∈ (LBasis‘𝑆) → 𝑏 ⊆ (Base‘𝑆)) |
16 | 15 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → 𝑏 ⊆ (Base‘𝑆)) |
17 | f1ssres 6795 | . . . . . 6 ⊢ ((𝐹:(Base‘𝑆)–1-1→(Base‘𝑇) ∧ 𝑏 ⊆ (Base‘𝑆)) → (𝐹 ↾ 𝑏):𝑏–1-1→(Base‘𝑇)) | |
18 | 14, 16, 17 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (𝐹 ↾ 𝑏):𝑏–1-1→(Base‘𝑇)) |
19 | hashf1dmrn 14420 | . . . . 5 ⊢ (((𝐹 ↾ 𝑏) ∈ V ∧ (𝐹 ↾ 𝑏):𝑏–1-1→(Base‘𝑇)) → (♯‘𝑏) = (♯‘ran (𝐹 ↾ 𝑏))) | |
20 | 9, 18, 19 | syl2anc 583 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (♯‘𝑏) = (♯‘ran (𝐹 ↾ 𝑏))) |
21 | df-ima 5685 | . . . . 5 ⊢ (𝐹 “ 𝑏) = ran (𝐹 ↾ 𝑏) | |
22 | 21 | fveq2i 6894 | . . . 4 ⊢ (♯‘(𝐹 “ 𝑏)) = (♯‘ran (𝐹 ↾ 𝑏)) |
23 | 20, 22 | eqtr4di 2785 | . . 3 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (♯‘𝑏) = (♯‘(𝐹 “ 𝑏))) |
24 | 2 | dimval 33217 | . . . 4 ⊢ ((𝑆 ∈ LVec ∧ 𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑆) = (♯‘𝑏)) |
25 | 1, 24 | sylan 579 | . . 3 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑆) = (♯‘𝑏)) |
26 | lmimlmhm 20931 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇)) | |
27 | 7, 26 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
28 | lmhmlvec 20977 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LVec ↔ 𝑇 ∈ LVec)) | |
29 | 28 | biimpa 476 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LVec) → 𝑇 ∈ LVec) |
30 | 27, 1, 29 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ LVec) |
31 | 30 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → 𝑇 ∈ LVec) |
32 | eqid 2727 | . . . . . 6 ⊢ (LBasis‘𝑇) = (LBasis‘𝑇) | |
33 | 2, 32 | lmimlbs 21750 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝑏 ∈ (LBasis‘𝑆)) → (𝐹 “ 𝑏) ∈ (LBasis‘𝑇)) |
34 | 7, 33 | sylan 579 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (𝐹 “ 𝑏) ∈ (LBasis‘𝑇)) |
35 | 32 | dimval 33217 | . . . 4 ⊢ ((𝑇 ∈ LVec ∧ (𝐹 “ 𝑏) ∈ (LBasis‘𝑇)) → (dim‘𝑇) = (♯‘(𝐹 “ 𝑏))) |
36 | 31, 34, 35 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑇) = (♯‘(𝐹 “ 𝑏))) |
37 | 23, 25, 36 | 3eqtr4d 2777 | . 2 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑆) = (dim‘𝑇)) |
38 | 6, 37 | exlimddv 1931 | 1 ⊢ (𝜑 → (dim‘𝑆) = (dim‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ≠ wne 2935 Vcvv 3469 ⊆ wss 3944 ∅c0 4318 ran crn 5673 ↾ cres 5674 “ cima 5675 –1-1→wf1 6539 –1-1-onto→wf1o 6541 ‘cfv 6542 (class class class)co 7414 ♯chash 14307 Basecbs 17165 LMHom clmhm 20886 LMIso clmim 20887 LBasisclbs 20941 LVecclvec 20969 dimcldim 33215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-reg 9601 ax-inf2 9650 ax-ac2 10472 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-rpss 7720 df-om 7863 df-1st 7985 df-2nd 7986 df-tpos 8223 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-oadd 8482 df-er 8716 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-oi 9519 df-r1 9773 df-rank 9774 df-dju 9910 df-card 9948 df-acn 9951 df-ac 10125 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-2 12291 df-3 12292 df-4 12293 df-5 12294 df-6 12295 df-7 12296 df-8 12297 df-9 12298 df-n0 12489 df-xnn0 12561 df-z 12575 df-dec 12694 df-uz 12839 df-fz 13503 df-hash 14308 df-struct 17101 df-sets 17118 df-slot 17136 df-ndx 17148 df-base 17166 df-ress 17195 df-plusg 17231 df-mulr 17232 df-tset 17237 df-ple 17238 df-ocomp 17239 df-0g 17408 df-mre 17551 df-mrc 17552 df-mri 17553 df-acs 17554 df-proset 18272 df-drs 18273 df-poset 18290 df-ipo 18505 df-mgm 18585 df-sgrp 18664 df-mnd 18680 df-submnd 18726 df-grp 18878 df-minusg 18879 df-sbg 18880 df-subg 19062 df-ghm 19152 df-cmn 19721 df-abl 19722 df-mgp 20059 df-rng 20077 df-ur 20106 df-ring 20159 df-oppr 20255 df-dvdsr 20278 df-unit 20279 df-invr 20309 df-drng 20608 df-lmod 20727 df-lss 20798 df-lsp 20838 df-lmhm 20889 df-lmim 20890 df-lbs 20942 df-lvec 20970 df-lindf 21720 df-linds 21721 df-dim 33216 |
This theorem is referenced by: lmicdim 33221 algextdeglem4 33311 |
Copyright terms: Public domain | W3C validator |