Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmimdim Structured version   Visualization version   GIF version

Theorem lmimdim 33623
Description: Module isomorphisms preserve vector space dimensions. (Contributed by Thierry Arnoux, 25-Feb-2025.)
Hypotheses
Ref Expression
lmimdim.1 (𝜑𝐹 ∈ (𝑆 LMIso 𝑇))
lmimdim.2 (𝜑𝑆 ∈ LVec)
Assertion
Ref Expression
lmimdim (𝜑 → (dim‘𝑆) = (dim‘𝑇))

Proof of Theorem lmimdim
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 lmimdim.2 . . . 4 (𝜑𝑆 ∈ LVec)
2 eqid 2731 . . . . 5 (LBasis‘𝑆) = (LBasis‘𝑆)
32lbsex 21108 . . . 4 (𝑆 ∈ LVec → (LBasis‘𝑆) ≠ ∅)
41, 3syl 17 . . 3 (𝜑 → (LBasis‘𝑆) ≠ ∅)
5 n0 4302 . . 3 ((LBasis‘𝑆) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (LBasis‘𝑆))
64, 5sylib 218 . 2 (𝜑 → ∃𝑏 𝑏 ∈ (LBasis‘𝑆))
7 lmimdim.1 . . . . . . 7 (𝜑𝐹 ∈ (𝑆 LMIso 𝑇))
87adantr 480 . . . . . 6 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → 𝐹 ∈ (𝑆 LMIso 𝑇))
98resexd 5982 . . . . 5 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (𝐹𝑏) ∈ V)
10 eqid 2731 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
11 eqid 2731 . . . . . . . 8 (Base‘𝑇) = (Base‘𝑇)
1210, 11lmimf1o 21003 . . . . . . 7 (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇))
13 f1of1 6768 . . . . . . 7 (𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇))
148, 12, 133syl 18 . . . . . 6 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇))
1510, 2lbsss 21017 . . . . . . 7 (𝑏 ∈ (LBasis‘𝑆) → 𝑏 ⊆ (Base‘𝑆))
1615adantl 481 . . . . . 6 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → 𝑏 ⊆ (Base‘𝑆))
17 f1ssres 6732 . . . . . 6 ((𝐹:(Base‘𝑆)–1-1→(Base‘𝑇) ∧ 𝑏 ⊆ (Base‘𝑆)) → (𝐹𝑏):𝑏1-1→(Base‘𝑇))
1814, 16, 17syl2anc 584 . . . . 5 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (𝐹𝑏):𝑏1-1→(Base‘𝑇))
19 hashf1dmrn 14356 . . . . 5 (((𝐹𝑏) ∈ V ∧ (𝐹𝑏):𝑏1-1→(Base‘𝑇)) → (♯‘𝑏) = (♯‘ran (𝐹𝑏)))
209, 18, 19syl2anc 584 . . . 4 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (♯‘𝑏) = (♯‘ran (𝐹𝑏)))
21 df-ima 5632 . . . . 5 (𝐹𝑏) = ran (𝐹𝑏)
2221fveq2i 6831 . . . 4 (♯‘(𝐹𝑏)) = (♯‘ran (𝐹𝑏))
2320, 22eqtr4di 2784 . . 3 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (♯‘𝑏) = (♯‘(𝐹𝑏)))
242dimval 33620 . . . 4 ((𝑆 ∈ LVec ∧ 𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑆) = (♯‘𝑏))
251, 24sylan 580 . . 3 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑆) = (♯‘𝑏))
26 lmimlmhm 21004 . . . . . . 7 (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇))
277, 26syl 17 . . . . . 6 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
28 lmhmlvec 21050 . . . . . . 7 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LVec ↔ 𝑇 ∈ LVec))
2928biimpa 476 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LVec) → 𝑇 ∈ LVec)
3027, 1, 29syl2anc 584 . . . . 5 (𝜑𝑇 ∈ LVec)
3130adantr 480 . . . 4 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → 𝑇 ∈ LVec)
32 eqid 2731 . . . . . 6 (LBasis‘𝑇) = (LBasis‘𝑇)
332, 32lmimlbs 21779 . . . . 5 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝑏 ∈ (LBasis‘𝑆)) → (𝐹𝑏) ∈ (LBasis‘𝑇))
347, 33sylan 580 . . . 4 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (𝐹𝑏) ∈ (LBasis‘𝑇))
3532dimval 33620 . . . 4 ((𝑇 ∈ LVec ∧ (𝐹𝑏) ∈ (LBasis‘𝑇)) → (dim‘𝑇) = (♯‘(𝐹𝑏)))
3631, 34, 35syl2anc 584 . . 3 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑇) = (♯‘(𝐹𝑏)))
3723, 25, 363eqtr4d 2776 . 2 ((𝜑𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑆) = (dim‘𝑇))
386, 37exlimddv 1936 1 (𝜑 → (dim‘𝑆) = (dim‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  wne 2928  Vcvv 3436  wss 3897  c0 4282  ran crn 5620  cres 5621  cima 5622  1-1wf1 6484  1-1-ontowf1o 6486  cfv 6487  (class class class)co 7352  chash 14243  Basecbs 17126   LMHom clmhm 20959   LMIso clmim 20960  LBasisclbs 21014  LVecclvec 21042  dimcldim 33618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-reg 9484  ax-inf2 9537  ax-ac2 10360  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-isom 6496  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-rpss 7662  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-oi 9402  df-r1 9663  df-rank 9664  df-dju 9800  df-card 9838  df-acn 9841  df-ac 10013  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-5 12197  df-6 12198  df-7 12199  df-8 12200  df-9 12201  df-n0 12388  df-xnn0 12461  df-z 12475  df-dec 12595  df-uz 12739  df-fz 13414  df-hash 14244  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-ress 17148  df-plusg 17180  df-mulr 17181  df-tset 17186  df-ple 17187  df-ocomp 17188  df-0g 17351  df-mre 17494  df-mrc 17495  df-mri 17496  df-acs 17497  df-proset 18206  df-drs 18207  df-poset 18225  df-ipo 18440  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-submnd 18698  df-grp 18855  df-minusg 18856  df-sbg 18857  df-subg 19042  df-ghm 19131  df-cmn 19700  df-abl 19701  df-mgp 20065  df-rng 20077  df-ur 20106  df-ring 20159  df-oppr 20261  df-dvdsr 20281  df-unit 20282  df-invr 20312  df-drng 20652  df-lmod 20801  df-lss 20871  df-lsp 20911  df-lmhm 20962  df-lmim 20963  df-lbs 21015  df-lvec 21043  df-lindf 21749  df-linds 21750  df-dim 33619
This theorem is referenced by:  lmicdim  33624  algextdeglem4  33740
  Copyright terms: Public domain W3C validator