![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmimdim | Structured version Visualization version GIF version |
Description: Module isomorphisms preserve vector space dimensions. (Contributed by Thierry Arnoux, 25-Feb-2025.) |
Ref | Expression |
---|---|
lmimdim.1 | β’ (π β πΉ β (π LMIso π)) |
lmimdim.2 | β’ (π β π β LVec) |
Ref | Expression |
---|---|
lmimdim | β’ (π β (dimβπ) = (dimβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmimdim.2 | . . . 4 β’ (π β π β LVec) | |
2 | eqid 2731 | . . . . 5 β’ (LBasisβπ) = (LBasisβπ) | |
3 | 2 | lbsex 20924 | . . . 4 β’ (π β LVec β (LBasisβπ) β β ) |
4 | 1, 3 | syl 17 | . . 3 β’ (π β (LBasisβπ) β β ) |
5 | n0 4346 | . . 3 β’ ((LBasisβπ) β β β βπ π β (LBasisβπ)) | |
6 | 4, 5 | sylib 217 | . 2 β’ (π β βπ π β (LBasisβπ)) |
7 | lmimdim.1 | . . . . . . 7 β’ (π β πΉ β (π LMIso π)) | |
8 | 7 | adantr 480 | . . . . . 6 β’ ((π β§ π β (LBasisβπ)) β πΉ β (π LMIso π)) |
9 | 8 | resexd 6028 | . . . . 5 β’ ((π β§ π β (LBasisβπ)) β (πΉ βΎ π) β V) |
10 | eqid 2731 | . . . . . . . 8 β’ (Baseβπ) = (Baseβπ) | |
11 | eqid 2731 | . . . . . . . 8 β’ (Baseβπ) = (Baseβπ) | |
12 | 10, 11 | lmimf1o 20819 | . . . . . . 7 β’ (πΉ β (π LMIso π) β πΉ:(Baseβπ)β1-1-ontoβ(Baseβπ)) |
13 | f1of1 6832 | . . . . . . 7 β’ (πΉ:(Baseβπ)β1-1-ontoβ(Baseβπ) β πΉ:(Baseβπ)β1-1β(Baseβπ)) | |
14 | 8, 12, 13 | 3syl 18 | . . . . . 6 β’ ((π β§ π β (LBasisβπ)) β πΉ:(Baseβπ)β1-1β(Baseβπ)) |
15 | 10, 2 | lbsss 20833 | . . . . . . 7 β’ (π β (LBasisβπ) β π β (Baseβπ)) |
16 | 15 | adantl 481 | . . . . . 6 β’ ((π β§ π β (LBasisβπ)) β π β (Baseβπ)) |
17 | f1ssres 6795 | . . . . . 6 β’ ((πΉ:(Baseβπ)β1-1β(Baseβπ) β§ π β (Baseβπ)) β (πΉ βΎ π):πβ1-1β(Baseβπ)) | |
18 | 14, 16, 17 | syl2anc 583 | . . . . 5 β’ ((π β§ π β (LBasisβπ)) β (πΉ βΎ π):πβ1-1β(Baseβπ)) |
19 | hashf1dmrn 14408 | . . . . 5 β’ (((πΉ βΎ π) β V β§ (πΉ βΎ π):πβ1-1β(Baseβπ)) β (β―βπ) = (β―βran (πΉ βΎ π))) | |
20 | 9, 18, 19 | syl2anc 583 | . . . 4 β’ ((π β§ π β (LBasisβπ)) β (β―βπ) = (β―βran (πΉ βΎ π))) |
21 | df-ima 5689 | . . . . 5 β’ (πΉ β π) = ran (πΉ βΎ π) | |
22 | 21 | fveq2i 6894 | . . . 4 β’ (β―β(πΉ β π)) = (β―βran (πΉ βΎ π)) |
23 | 20, 22 | eqtr4di 2789 | . . 3 β’ ((π β§ π β (LBasisβπ)) β (β―βπ) = (β―β(πΉ β π))) |
24 | 2 | dimval 32974 | . . . 4 β’ ((π β LVec β§ π β (LBasisβπ)) β (dimβπ) = (β―βπ)) |
25 | 1, 24 | sylan 579 | . . 3 β’ ((π β§ π β (LBasisβπ)) β (dimβπ) = (β―βπ)) |
26 | lmimlmhm 20820 | . . . . . . 7 β’ (πΉ β (π LMIso π) β πΉ β (π LMHom π)) | |
27 | 7, 26 | syl 17 | . . . . . 6 β’ (π β πΉ β (π LMHom π)) |
28 | lmhmlvec 20866 | . . . . . . 7 β’ (πΉ β (π LMHom π) β (π β LVec β π β LVec)) | |
29 | 28 | biimpa 476 | . . . . . 6 β’ ((πΉ β (π LMHom π) β§ π β LVec) β π β LVec) |
30 | 27, 1, 29 | syl2anc 583 | . . . . 5 β’ (π β π β LVec) |
31 | 30 | adantr 480 | . . . 4 β’ ((π β§ π β (LBasisβπ)) β π β LVec) |
32 | eqid 2731 | . . . . . 6 β’ (LBasisβπ) = (LBasisβπ) | |
33 | 2, 32 | lmimlbs 21611 | . . . . 5 β’ ((πΉ β (π LMIso π) β§ π β (LBasisβπ)) β (πΉ β π) β (LBasisβπ)) |
34 | 7, 33 | sylan 579 | . . . 4 β’ ((π β§ π β (LBasisβπ)) β (πΉ β π) β (LBasisβπ)) |
35 | 32 | dimval 32974 | . . . 4 β’ ((π β LVec β§ (πΉ β π) β (LBasisβπ)) β (dimβπ) = (β―β(πΉ β π))) |
36 | 31, 34, 35 | syl2anc 583 | . . 3 β’ ((π β§ π β (LBasisβπ)) β (dimβπ) = (β―β(πΉ β π))) |
37 | 23, 25, 36 | 3eqtr4d 2781 | . 2 β’ ((π β§ π β (LBasisβπ)) β (dimβπ) = (dimβπ)) |
38 | 6, 37 | exlimddv 1937 | 1 β’ (π β (dimβπ) = (dimβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 βwex 1780 β wcel 2105 β wne 2939 Vcvv 3473 β wss 3948 β c0 4322 ran crn 5677 βΎ cres 5678 β cima 5679 β1-1βwf1 6540 β1-1-ontoβwf1o 6542 βcfv 6543 (class class class)co 7412 β―chash 14295 Basecbs 17149 LMHom clmhm 20775 LMIso clmim 20776 LBasisclbs 20830 LVecclvec 20858 dimcldim 32972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-reg 9590 ax-inf2 9639 ax-ac2 10461 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-rpss 7716 df-om 7859 df-1st 7978 df-2nd 7979 df-tpos 8214 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-oadd 8473 df-er 8706 df-map 8825 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-oi 9508 df-r1 9762 df-rank 9763 df-dju 9899 df-card 9937 df-acn 9940 df-ac 10114 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-xnn0 12550 df-z 12564 df-dec 12683 df-uz 12828 df-fz 13490 df-hash 14296 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-tset 17221 df-ple 17222 df-ocomp 17223 df-0g 17392 df-mre 17535 df-mrc 17536 df-mri 17537 df-acs 17538 df-proset 18253 df-drs 18254 df-poset 18271 df-ipo 18486 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-submnd 18707 df-grp 18859 df-minusg 18860 df-sbg 18861 df-subg 19040 df-ghm 19129 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-invr 20280 df-drng 20503 df-lmod 20617 df-lss 20688 df-lsp 20728 df-lmhm 20778 df-lmim 20779 df-lbs 20831 df-lvec 20859 df-lindf 21581 df-linds 21582 df-dim 32973 |
This theorem is referenced by: lmicdim 32978 algextdeglem4 33066 |
Copyright terms: Public domain | W3C validator |