| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lmimdim | Structured version Visualization version GIF version | ||
| Description: Module isomorphisms preserve vector space dimensions. (Contributed by Thierry Arnoux, 25-Feb-2025.) |
| Ref | Expression |
|---|---|
| lmimdim.1 | ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMIso 𝑇)) |
| lmimdim.2 | ⊢ (𝜑 → 𝑆 ∈ LVec) |
| Ref | Expression |
|---|---|
| lmimdim | ⊢ (𝜑 → (dim‘𝑆) = (dim‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmimdim.2 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ LVec) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (LBasis‘𝑆) = (LBasis‘𝑆) | |
| 3 | 2 | lbsex 21090 | . . . 4 ⊢ (𝑆 ∈ LVec → (LBasis‘𝑆) ≠ ∅) |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → (LBasis‘𝑆) ≠ ∅) |
| 5 | n0 4306 | . . 3 ⊢ ((LBasis‘𝑆) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (LBasis‘𝑆)) | |
| 6 | 4, 5 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑏 𝑏 ∈ (LBasis‘𝑆)) |
| 7 | lmimdim.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMIso 𝑇)) | |
| 8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → 𝐹 ∈ (𝑆 LMIso 𝑇)) |
| 9 | 8 | resexd 5983 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (𝐹 ↾ 𝑏) ∈ V) |
| 10 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 11 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 12 | 10, 11 | lmimf1o 20985 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) |
| 13 | f1of1 6767 | . . . . . . 7 ⊢ (𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇)) | |
| 14 | 8, 12, 13 | 3syl 18 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇)) |
| 15 | 10, 2 | lbsss 20999 | . . . . . . 7 ⊢ (𝑏 ∈ (LBasis‘𝑆) → 𝑏 ⊆ (Base‘𝑆)) |
| 16 | 15 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → 𝑏 ⊆ (Base‘𝑆)) |
| 17 | f1ssres 6731 | . . . . . 6 ⊢ ((𝐹:(Base‘𝑆)–1-1→(Base‘𝑇) ∧ 𝑏 ⊆ (Base‘𝑆)) → (𝐹 ↾ 𝑏):𝑏–1-1→(Base‘𝑇)) | |
| 18 | 14, 16, 17 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (𝐹 ↾ 𝑏):𝑏–1-1→(Base‘𝑇)) |
| 19 | hashf1dmrn 14368 | . . . . 5 ⊢ (((𝐹 ↾ 𝑏) ∈ V ∧ (𝐹 ↾ 𝑏):𝑏–1-1→(Base‘𝑇)) → (♯‘𝑏) = (♯‘ran (𝐹 ↾ 𝑏))) | |
| 20 | 9, 18, 19 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (♯‘𝑏) = (♯‘ran (𝐹 ↾ 𝑏))) |
| 21 | df-ima 5636 | . . . . 5 ⊢ (𝐹 “ 𝑏) = ran (𝐹 ↾ 𝑏) | |
| 22 | 21 | fveq2i 6829 | . . . 4 ⊢ (♯‘(𝐹 “ 𝑏)) = (♯‘ran (𝐹 ↾ 𝑏)) |
| 23 | 20, 22 | eqtr4di 2782 | . . 3 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (♯‘𝑏) = (♯‘(𝐹 “ 𝑏))) |
| 24 | 2 | dimval 33572 | . . . 4 ⊢ ((𝑆 ∈ LVec ∧ 𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑆) = (♯‘𝑏)) |
| 25 | 1, 24 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑆) = (♯‘𝑏)) |
| 26 | lmimlmhm 20986 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇)) | |
| 27 | 7, 26 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
| 28 | lmhmlvec 21032 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LVec ↔ 𝑇 ∈ LVec)) | |
| 29 | 28 | biimpa 476 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LVec) → 𝑇 ∈ LVec) |
| 30 | 27, 1, 29 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ LVec) |
| 31 | 30 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → 𝑇 ∈ LVec) |
| 32 | eqid 2729 | . . . . . 6 ⊢ (LBasis‘𝑇) = (LBasis‘𝑇) | |
| 33 | 2, 32 | lmimlbs 21761 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝑏 ∈ (LBasis‘𝑆)) → (𝐹 “ 𝑏) ∈ (LBasis‘𝑇)) |
| 34 | 7, 33 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (𝐹 “ 𝑏) ∈ (LBasis‘𝑇)) |
| 35 | 32 | dimval 33572 | . . . 4 ⊢ ((𝑇 ∈ LVec ∧ (𝐹 “ 𝑏) ∈ (LBasis‘𝑇)) → (dim‘𝑇) = (♯‘(𝐹 “ 𝑏))) |
| 36 | 31, 34, 35 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑇) = (♯‘(𝐹 “ 𝑏))) |
| 37 | 23, 25, 36 | 3eqtr4d 2774 | . 2 ⊢ ((𝜑 ∧ 𝑏 ∈ (LBasis‘𝑆)) → (dim‘𝑆) = (dim‘𝑇)) |
| 38 | 6, 37 | exlimddv 1935 | 1 ⊢ (𝜑 → (dim‘𝑆) = (dim‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 Vcvv 3438 ⊆ wss 3905 ∅c0 4286 ran crn 5624 ↾ cres 5625 “ cima 5626 –1-1→wf1 6483 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7353 ♯chash 14255 Basecbs 17138 LMHom clmhm 20941 LMIso clmim 20942 LBasisclbs 20996 LVecclvec 21024 dimcldim 33570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-reg 9503 ax-inf2 9556 ax-ac2 10376 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-rpss 7663 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-oi 9421 df-r1 9679 df-rank 9680 df-dju 9816 df-card 9854 df-acn 9857 df-ac 10029 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-xnn0 12476 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-hash 14256 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-tset 17198 df-ple 17199 df-ocomp 17200 df-0g 17363 df-mre 17506 df-mrc 17507 df-mri 17508 df-acs 17509 df-proset 18218 df-drs 18219 df-poset 18237 df-ipo 18452 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-subg 19020 df-ghm 19110 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-drng 20634 df-lmod 20783 df-lss 20853 df-lsp 20893 df-lmhm 20944 df-lmim 20945 df-lbs 20997 df-lvec 21025 df-lindf 21731 df-linds 21732 df-dim 33571 |
| This theorem is referenced by: lmicdim 33576 algextdeglem4 33686 |
| Copyright terms: Public domain | W3C validator |