Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfresico Structured version   Visualization version   GIF version

Theorem liminfresico 45769
Description: The inferior limit doesn't change when a function is restricted to an upperset of reals. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfresico.1 (𝜑𝑀 ∈ ℝ)
liminfresico.2 𝑍 = (𝑀[,)+∞)
liminfresico.3 (𝜑𝐹𝑉)
Assertion
Ref Expression
liminfresico (𝜑 → (lim inf‘(𝐹𝑍)) = (lim inf‘𝐹))

Proof of Theorem liminfresico
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 liminfresico.1 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℝ)
21rexrd 11224 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℝ*)
32ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑀 ∈ ℝ*)
4 pnfxr 11228 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
54a1i 11 . . . . . . . . . . . 12 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → +∞ ∈ ℝ*)
6 ressxr 11218 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
74a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → +∞ ∈ ℝ*)
8 icossre 13389 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑀[,)+∞) ⊆ ℝ)
91, 7, 8syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀[,)+∞) ⊆ ℝ)
109adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → (𝑀[,)+∞) ⊆ ℝ)
11 liminfresico.2 . . . . . . . . . . . . . . . . . . 19 𝑍 = (𝑀[,)+∞)
1211eleq2i 2820 . . . . . . . . . . . . . . . . . 18 (𝑘𝑍𝑘 ∈ (𝑀[,)+∞))
1312biimpi 216 . . . . . . . . . . . . . . . . 17 (𝑘𝑍𝑘 ∈ (𝑀[,)+∞))
1413adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → 𝑘 ∈ (𝑀[,)+∞))
1510, 14sseldd 3947 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → 𝑘 ∈ ℝ)
1615adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑘 ∈ ℝ)
17 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦 ∈ (𝑘[,)+∞))
18 elicore 13359 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℝ ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦 ∈ ℝ)
1916, 17, 18syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦 ∈ ℝ)
206, 19sselid 3944 . . . . . . . . . . . 12 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦 ∈ ℝ*)
211ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑀 ∈ ℝ)
222adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → 𝑀 ∈ ℝ*)
234a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → +∞ ∈ ℝ*)
2422, 23, 14icogelbd 13358 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑍) → 𝑀𝑘)
2524adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑀𝑘)
266, 16sselid 3944 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑘 ∈ ℝ*)
2726, 5, 17icogelbd 13358 . . . . . . . . . . . . 13 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑘𝑦)
2821, 16, 19, 25, 27letrd 11331 . . . . . . . . . . . 12 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑀𝑦)
2919ltpnfd 13081 . . . . . . . . . . . 12 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦 < +∞)
303, 5, 20, 28, 29elicod 13356 . . . . . . . . . . 11 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦 ∈ (𝑀[,)+∞))
3130, 11eleqtrrdi 2839 . . . . . . . . . 10 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦𝑍)
3231ssd 45074 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝑘[,)+∞) ⊆ 𝑍)
33 resima2 5987 . . . . . . . . 9 ((𝑘[,)+∞) ⊆ 𝑍 → ((𝐹𝑍) “ (𝑘[,)+∞)) = (𝐹 “ (𝑘[,)+∞)))
3432, 33syl 17 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝐹𝑍) “ (𝑘[,)+∞)) = (𝐹 “ (𝑘[,)+∞)))
3534ineq1d 4182 . . . . . . 7 ((𝜑𝑘𝑍) → (((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
3635infeq1d 9429 . . . . . 6 ((𝜑𝑘𝑍) → inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
3736mpteq2dva 5200 . . . . 5 (𝜑 → (𝑘𝑍 ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘𝑍 ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
3837rneqd 5902 . . . 4 (𝜑 → ran (𝑘𝑍 ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran (𝑘𝑍 ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
3911, 9eqsstrid 3985 . . . . 5 (𝜑𝑍 ⊆ ℝ)
4039mptimass 6044 . . . 4 (𝜑 → ((𝑘 ∈ ℝ ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍) = ran (𝑘𝑍 ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
4139mptimass 6044 . . . 4 (𝜑 → ((𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍) = ran (𝑘𝑍 ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
4238, 40, 413eqtr4d 2774 . . 3 (𝜑 → ((𝑘 ∈ ℝ ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍) = ((𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍))
4342supeq1d 9397 . 2 (𝜑 → sup(((𝑘 ∈ ℝ ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍), ℝ*, < ) = sup(((𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍), ℝ*, < ))
44 eqid 2729 . . 3 (𝑘 ∈ ℝ ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
45 liminfresico.3 . . . 4 (𝜑𝐹𝑉)
4645resexd 5999 . . 3 (𝜑 → (𝐹𝑍) ∈ V)
4711supeq1i 9398 . . . . 5 sup(𝑍, ℝ*, < ) = sup((𝑀[,)+∞), ℝ*, < )
4847a1i 11 . . . 4 (𝜑 → sup(𝑍, ℝ*, < ) = sup((𝑀[,)+∞), ℝ*, < ))
491renepnfd 11225 . . . . 5 (𝜑𝑀 ≠ +∞)
50 icopnfsup 13827 . . . . 5 ((𝑀 ∈ ℝ*𝑀 ≠ +∞) → sup((𝑀[,)+∞), ℝ*, < ) = +∞)
512, 49, 50syl2anc 584 . . . 4 (𝜑 → sup((𝑀[,)+∞), ℝ*, < ) = +∞)
5248, 51eqtrd 2764 . . 3 (𝜑 → sup(𝑍, ℝ*, < ) = +∞)
5344, 46, 39, 52liminfval2 45766 . 2 (𝜑 → (lim inf‘(𝐹𝑍)) = sup(((𝑘 ∈ ℝ ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍), ℝ*, < ))
54 eqid 2729 . . 3 (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
5554, 45, 39, 52liminfval2 45766 . 2 (𝜑 → (lim inf‘𝐹) = sup(((𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍), ℝ*, < ))
5643, 53, 553eqtr4d 2774 1 (𝜑 → (lim inf‘(𝐹𝑍)) = (lim inf‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447  cin 3913  wss 3914   class class class wbr 5107  cmpt 5188  ran crn 5639  cres 5640  cima 5641  cfv 6511  (class class class)co 7387  supcsup 9391  infcinf 9392  cr 11067  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  [,)cico 13308  lim infclsi 45749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-ico 13312  df-liminf 45750
This theorem is referenced by:  liminfresre  45777  liminfresicompt  45778  liminfresuz  45782
  Copyright terms: Public domain W3C validator