Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfresico Structured version   Visualization version   GIF version

Theorem liminfresico 45786
Description: The inferior limit doesn't change when a function is restricted to an upperset of reals. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfresico.1 (𝜑𝑀 ∈ ℝ)
liminfresico.2 𝑍 = (𝑀[,)+∞)
liminfresico.3 (𝜑𝐹𝑉)
Assertion
Ref Expression
liminfresico (𝜑 → (lim inf‘(𝐹𝑍)) = (lim inf‘𝐹))

Proof of Theorem liminfresico
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 liminfresico.1 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℝ)
21rexrd 11311 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℝ*)
32ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑀 ∈ ℝ*)
4 pnfxr 11315 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
54a1i 11 . . . . . . . . . . . 12 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → +∞ ∈ ℝ*)
6 ressxr 11305 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
74a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → +∞ ∈ ℝ*)
8 icossre 13468 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑀[,)+∞) ⊆ ℝ)
91, 7, 8syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀[,)+∞) ⊆ ℝ)
109adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → (𝑀[,)+∞) ⊆ ℝ)
11 liminfresico.2 . . . . . . . . . . . . . . . . . . 19 𝑍 = (𝑀[,)+∞)
1211eleq2i 2833 . . . . . . . . . . . . . . . . . 18 (𝑘𝑍𝑘 ∈ (𝑀[,)+∞))
1312biimpi 216 . . . . . . . . . . . . . . . . 17 (𝑘𝑍𝑘 ∈ (𝑀[,)+∞))
1413adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → 𝑘 ∈ (𝑀[,)+∞))
1510, 14sseldd 3984 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → 𝑘 ∈ ℝ)
1615adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑘 ∈ ℝ)
17 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦 ∈ (𝑘[,)+∞))
18 elicore 13439 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℝ ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦 ∈ ℝ)
1916, 17, 18syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦 ∈ ℝ)
206, 19sselid 3981 . . . . . . . . . . . 12 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦 ∈ ℝ*)
211ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑀 ∈ ℝ)
222adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → 𝑀 ∈ ℝ*)
234a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → +∞ ∈ ℝ*)
2422, 23, 14icogelbd 45571 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑍) → 𝑀𝑘)
2524adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑀𝑘)
266, 16sselid 3981 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑘 ∈ ℝ*)
2726, 5, 17icogelbd 45571 . . . . . . . . . . . . 13 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑘𝑦)
2821, 16, 19, 25, 27letrd 11418 . . . . . . . . . . . 12 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑀𝑦)
2919ltpnfd 13163 . . . . . . . . . . . 12 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦 < +∞)
303, 5, 20, 28, 29elicod 13437 . . . . . . . . . . 11 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦 ∈ (𝑀[,)+∞))
3130, 11eleqtrrdi 2852 . . . . . . . . . 10 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑘[,)+∞)) → 𝑦𝑍)
3231ssd 45085 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝑘[,)+∞) ⊆ 𝑍)
33 resima2 6034 . . . . . . . . 9 ((𝑘[,)+∞) ⊆ 𝑍 → ((𝐹𝑍) “ (𝑘[,)+∞)) = (𝐹 “ (𝑘[,)+∞)))
3432, 33syl 17 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝐹𝑍) “ (𝑘[,)+∞)) = (𝐹 “ (𝑘[,)+∞)))
3534ineq1d 4219 . . . . . . 7 ((𝜑𝑘𝑍) → (((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
3635infeq1d 9517 . . . . . 6 ((𝜑𝑘𝑍) → inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
3736mpteq2dva 5242 . . . . 5 (𝜑 → (𝑘𝑍 ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘𝑍 ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
3837rneqd 5949 . . . 4 (𝜑 → ran (𝑘𝑍 ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran (𝑘𝑍 ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
3911, 9eqsstrid 4022 . . . . 5 (𝜑𝑍 ⊆ ℝ)
4039mptimass 6091 . . . 4 (𝜑 → ((𝑘 ∈ ℝ ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍) = ran (𝑘𝑍 ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
4139mptimass 6091 . . . 4 (𝜑 → ((𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍) = ran (𝑘𝑍 ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
4238, 40, 413eqtr4d 2787 . . 3 (𝜑 → ((𝑘 ∈ ℝ ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍) = ((𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍))
4342supeq1d 9486 . 2 (𝜑 → sup(((𝑘 ∈ ℝ ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍), ℝ*, < ) = sup(((𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍), ℝ*, < ))
44 eqid 2737 . . 3 (𝑘 ∈ ℝ ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
45 liminfresico.3 . . . 4 (𝜑𝐹𝑉)
4645resexd 6046 . . 3 (𝜑 → (𝐹𝑍) ∈ V)
4711supeq1i 9487 . . . . 5 sup(𝑍, ℝ*, < ) = sup((𝑀[,)+∞), ℝ*, < )
4847a1i 11 . . . 4 (𝜑 → sup(𝑍, ℝ*, < ) = sup((𝑀[,)+∞), ℝ*, < ))
491renepnfd 11312 . . . . 5 (𝜑𝑀 ≠ +∞)
50 icopnfsup 13905 . . . . 5 ((𝑀 ∈ ℝ*𝑀 ≠ +∞) → sup((𝑀[,)+∞), ℝ*, < ) = +∞)
512, 49, 50syl2anc 584 . . . 4 (𝜑 → sup((𝑀[,)+∞), ℝ*, < ) = +∞)
5248, 51eqtrd 2777 . . 3 (𝜑 → sup(𝑍, ℝ*, < ) = +∞)
5344, 46, 39, 52liminfval2 45783 . 2 (𝜑 → (lim inf‘(𝐹𝑍)) = sup(((𝑘 ∈ ℝ ↦ inf((((𝐹𝑍) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍), ℝ*, < ))
54 eqid 2737 . . 3 (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
5554, 45, 39, 52liminfval2 45783 . 2 (𝜑 → (lim inf‘𝐹) = sup(((𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍), ℝ*, < ))
5643, 53, 553eqtr4d 2787 1 (𝜑 → (lim inf‘(𝐹𝑍)) = (lim inf‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  Vcvv 3480  cin 3950  wss 3951   class class class wbr 5143  cmpt 5225  ran crn 5686  cres 5687  cima 5688  cfv 6561  (class class class)co 7431  supcsup 9480  infcinf 9481  cr 11154  +∞cpnf 11292  *cxr 11294   < clt 11295  cle 11296  [,)cico 13389  lim infclsi 45766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-ico 13393  df-liminf 45767
This theorem is referenced by:  liminfresre  45794  liminfresicompt  45795  liminfresuz  45799
  Copyright terms: Public domain W3C validator