Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupresuz Structured version   Visualization version   GIF version

Theorem limsupresuz 45708
Description: If the real part of the domain of a function is a subset of the integers, the superior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupresuz.m (𝜑𝑀 ∈ ℤ)
limsupresuz.z 𝑍 = (ℤ𝑀)
limsupresuz.f (𝜑𝐹𝑉)
limsupresuz.d (𝜑 → dom (𝐹 ↾ ℝ) ⊆ ℤ)
Assertion
Ref Expression
limsupresuz (𝜑 → (lim sup‘(𝐹𝑍)) = (lim sup‘𝐹))

Proof of Theorem limsupresuz
StepHypRef Expression
1 rescom 5976 . . . . 5 ((𝐹𝑍) ↾ ℝ) = ((𝐹 ↾ ℝ) ↾ 𝑍)
21fveq2i 6864 . . . 4 (lim sup‘((𝐹𝑍) ↾ ℝ)) = (lim sup‘((𝐹 ↾ ℝ) ↾ 𝑍))
32a1i 11 . . 3 (𝜑 → (lim sup‘((𝐹𝑍) ↾ ℝ)) = (lim sup‘((𝐹 ↾ ℝ) ↾ 𝑍)))
4 relres 5979 . . . . . . . . . 10 Rel (𝐹 ↾ ℝ)
54a1i 11 . . . . . . . . 9 (𝜑 → Rel (𝐹 ↾ ℝ))
6 limsupresuz.d . . . . . . . . 9 (𝜑 → dom (𝐹 ↾ ℝ) ⊆ ℤ)
7 relssres 5996 . . . . . . . . 9 ((Rel (𝐹 ↾ ℝ) ∧ dom (𝐹 ↾ ℝ) ⊆ ℤ) → ((𝐹 ↾ ℝ) ↾ ℤ) = (𝐹 ↾ ℝ))
85, 6, 7syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐹 ↾ ℝ) ↾ ℤ) = (𝐹 ↾ ℝ))
98eqcomd 2736 . . . . . . 7 (𝜑 → (𝐹 ↾ ℝ) = ((𝐹 ↾ ℝ) ↾ ℤ))
109reseq1d 5952 . . . . . 6 (𝜑 → ((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞)) = (((𝐹 ↾ ℝ) ↾ ℤ) ↾ (𝑀[,)+∞)))
11 resres 5966 . . . . . . 7 (((𝐹 ↾ ℝ) ↾ ℤ) ↾ (𝑀[,)+∞)) = ((𝐹 ↾ ℝ) ↾ (ℤ ∩ (𝑀[,)+∞)))
1211a1i 11 . . . . . 6 (𝜑 → (((𝐹 ↾ ℝ) ↾ ℤ) ↾ (𝑀[,)+∞)) = ((𝐹 ↾ ℝ) ↾ (ℤ ∩ (𝑀[,)+∞))))
13 limsupresuz.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
14 limsupresuz.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
1513, 14uzinico 45564 . . . . . . . 8 (𝜑𝑍 = (ℤ ∩ (𝑀[,)+∞)))
1615eqcomd 2736 . . . . . . 7 (𝜑 → (ℤ ∩ (𝑀[,)+∞)) = 𝑍)
1716reseq2d 5953 . . . . . 6 (𝜑 → ((𝐹 ↾ ℝ) ↾ (ℤ ∩ (𝑀[,)+∞))) = ((𝐹 ↾ ℝ) ↾ 𝑍))
1810, 12, 173eqtrrd 2770 . . . . 5 (𝜑 → ((𝐹 ↾ ℝ) ↾ 𝑍) = ((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞)))
1918fveq2d 6865 . . . 4 (𝜑 → (lim sup‘((𝐹 ↾ ℝ) ↾ 𝑍)) = (lim sup‘((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞))))
2013zred 12645 . . . . 5 (𝜑𝑀 ∈ ℝ)
21 eqid 2730 . . . . 5 (𝑀[,)+∞) = (𝑀[,)+∞)
22 limsupresuz.f . . . . . 6 (𝜑𝐹𝑉)
2322resexd 6002 . . . . 5 (𝜑 → (𝐹 ↾ ℝ) ∈ V)
2420, 21, 23limsupresico 45705 . . . 4 (𝜑 → (lim sup‘((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞))) = (lim sup‘(𝐹 ↾ ℝ)))
2519, 24eqtrd 2765 . . 3 (𝜑 → (lim sup‘((𝐹 ↾ ℝ) ↾ 𝑍)) = (lim sup‘(𝐹 ↾ ℝ)))
263, 25eqtrd 2765 . 2 (𝜑 → (lim sup‘((𝐹𝑍) ↾ ℝ)) = (lim sup‘(𝐹 ↾ ℝ)))
2722resexd 6002 . . 3 (𝜑 → (𝐹𝑍) ∈ V)
2827limsupresre 45701 . 2 (𝜑 → (lim sup‘((𝐹𝑍) ↾ ℝ)) = (lim sup‘(𝐹𝑍)))
2922limsupresre 45701 . 2 (𝜑 → (lim sup‘(𝐹 ↾ ℝ)) = (lim sup‘𝐹))
3026, 28, 293eqtr3d 2773 1 (𝜑 → (lim sup‘(𝐹𝑍)) = (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  cin 3916  wss 3917  dom cdm 5641  cres 5643  Rel wrel 5646  cfv 6514  (class class class)co 7390  cr 11074  +∞cpnf 11212  cz 12536  cuz 12800  [,)cico 13315  lim supclsp 15443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-ico 13319  df-limsup 15444
This theorem is referenced by:  limsupresuz2  45714
  Copyright terms: Public domain W3C validator