Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupresuz Structured version   Visualization version   GIF version

Theorem limsupresuz 44996
Description: If the real part of the domain of a function is a subset of the integers, the superior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupresuz.m (𝜑𝑀 ∈ ℤ)
limsupresuz.z 𝑍 = (ℤ𝑀)
limsupresuz.f (𝜑𝐹𝑉)
limsupresuz.d (𝜑 → dom (𝐹 ↾ ℝ) ⊆ ℤ)
Assertion
Ref Expression
limsupresuz (𝜑 → (lim sup‘(𝐹𝑍)) = (lim sup‘𝐹))

Proof of Theorem limsupresuz
StepHypRef Expression
1 rescom 6001 . . . . 5 ((𝐹𝑍) ↾ ℝ) = ((𝐹 ↾ ℝ) ↾ 𝑍)
21fveq2i 6888 . . . 4 (lim sup‘((𝐹𝑍) ↾ ℝ)) = (lim sup‘((𝐹 ↾ ℝ) ↾ 𝑍))
32a1i 11 . . 3 (𝜑 → (lim sup‘((𝐹𝑍) ↾ ℝ)) = (lim sup‘((𝐹 ↾ ℝ) ↾ 𝑍)))
4 relres 6004 . . . . . . . . . 10 Rel (𝐹 ↾ ℝ)
54a1i 11 . . . . . . . . 9 (𝜑 → Rel (𝐹 ↾ ℝ))
6 limsupresuz.d . . . . . . . . 9 (𝜑 → dom (𝐹 ↾ ℝ) ⊆ ℤ)
7 relssres 6016 . . . . . . . . 9 ((Rel (𝐹 ↾ ℝ) ∧ dom (𝐹 ↾ ℝ) ⊆ ℤ) → ((𝐹 ↾ ℝ) ↾ ℤ) = (𝐹 ↾ ℝ))
85, 6, 7syl2anc 583 . . . . . . . 8 (𝜑 → ((𝐹 ↾ ℝ) ↾ ℤ) = (𝐹 ↾ ℝ))
98eqcomd 2732 . . . . . . 7 (𝜑 → (𝐹 ↾ ℝ) = ((𝐹 ↾ ℝ) ↾ ℤ))
109reseq1d 5974 . . . . . 6 (𝜑 → ((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞)) = (((𝐹 ↾ ℝ) ↾ ℤ) ↾ (𝑀[,)+∞)))
11 resres 5988 . . . . . . 7 (((𝐹 ↾ ℝ) ↾ ℤ) ↾ (𝑀[,)+∞)) = ((𝐹 ↾ ℝ) ↾ (ℤ ∩ (𝑀[,)+∞)))
1211a1i 11 . . . . . 6 (𝜑 → (((𝐹 ↾ ℝ) ↾ ℤ) ↾ (𝑀[,)+∞)) = ((𝐹 ↾ ℝ) ↾ (ℤ ∩ (𝑀[,)+∞))))
13 limsupresuz.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
14 limsupresuz.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
1513, 14uzinico 44850 . . . . . . . 8 (𝜑𝑍 = (ℤ ∩ (𝑀[,)+∞)))
1615eqcomd 2732 . . . . . . 7 (𝜑 → (ℤ ∩ (𝑀[,)+∞)) = 𝑍)
1716reseq2d 5975 . . . . . 6 (𝜑 → ((𝐹 ↾ ℝ) ↾ (ℤ ∩ (𝑀[,)+∞))) = ((𝐹 ↾ ℝ) ↾ 𝑍))
1810, 12, 173eqtrrd 2771 . . . . 5 (𝜑 → ((𝐹 ↾ ℝ) ↾ 𝑍) = ((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞)))
1918fveq2d 6889 . . . 4 (𝜑 → (lim sup‘((𝐹 ↾ ℝ) ↾ 𝑍)) = (lim sup‘((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞))))
2013zred 12670 . . . . 5 (𝜑𝑀 ∈ ℝ)
21 eqid 2726 . . . . 5 (𝑀[,)+∞) = (𝑀[,)+∞)
22 limsupresuz.f . . . . . 6 (𝜑𝐹𝑉)
2322resexd 6022 . . . . 5 (𝜑 → (𝐹 ↾ ℝ) ∈ V)
2420, 21, 23limsupresico 44993 . . . 4 (𝜑 → (lim sup‘((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞))) = (lim sup‘(𝐹 ↾ ℝ)))
2519, 24eqtrd 2766 . . 3 (𝜑 → (lim sup‘((𝐹 ↾ ℝ) ↾ 𝑍)) = (lim sup‘(𝐹 ↾ ℝ)))
263, 25eqtrd 2766 . 2 (𝜑 → (lim sup‘((𝐹𝑍) ↾ ℝ)) = (lim sup‘(𝐹 ↾ ℝ)))
2722resexd 6022 . . 3 (𝜑 → (𝐹𝑍) ∈ V)
2827limsupresre 44989 . 2 (𝜑 → (lim sup‘((𝐹𝑍) ↾ ℝ)) = (lim sup‘(𝐹𝑍)))
2922limsupresre 44989 . 2 (𝜑 → (lim sup‘(𝐹 ↾ ℝ)) = (lim sup‘𝐹))
3026, 28, 293eqtr3d 2774 1 (𝜑 → (lim sup‘(𝐹𝑍)) = (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  Vcvv 3468  cin 3942  wss 3943  dom cdm 5669  cres 5671  Rel wrel 5674  cfv 6537  (class class class)co 7405  cr 11111  +∞cpnf 11249  cz 12562  cuz 12826  [,)cico 13332  lim supclsp 15420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-inf 9440  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-q 12937  df-ico 13336  df-limsup 15421
This theorem is referenced by:  limsupresuz2  45002
  Copyright terms: Public domain W3C validator