![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupresuz | Structured version Visualization version GIF version |
Description: If the real part of the domain of a function is a subset of the integers, the superior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsupresuz.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
limsupresuz.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
limsupresuz.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
limsupresuz.d | ⊢ (𝜑 → dom (𝐹 ↾ ℝ) ⊆ ℤ) |
Ref | Expression |
---|---|
limsupresuz | ⊢ (𝜑 → (lim sup‘(𝐹 ↾ 𝑍)) = (lim sup‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rescom 6001 | . . . . 5 ⊢ ((𝐹 ↾ 𝑍) ↾ ℝ) = ((𝐹 ↾ ℝ) ↾ 𝑍) | |
2 | 1 | fveq2i 6888 | . . . 4 ⊢ (lim sup‘((𝐹 ↾ 𝑍) ↾ ℝ)) = (lim sup‘((𝐹 ↾ ℝ) ↾ 𝑍)) |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → (lim sup‘((𝐹 ↾ 𝑍) ↾ ℝ)) = (lim sup‘((𝐹 ↾ ℝ) ↾ 𝑍))) |
4 | relres 6004 | . . . . . . . . . 10 ⊢ Rel (𝐹 ↾ ℝ) | |
5 | 4 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → Rel (𝐹 ↾ ℝ)) |
6 | limsupresuz.d | . . . . . . . . 9 ⊢ (𝜑 → dom (𝐹 ↾ ℝ) ⊆ ℤ) | |
7 | relssres 6016 | . . . . . . . . 9 ⊢ ((Rel (𝐹 ↾ ℝ) ∧ dom (𝐹 ↾ ℝ) ⊆ ℤ) → ((𝐹 ↾ ℝ) ↾ ℤ) = (𝐹 ↾ ℝ)) | |
8 | 5, 6, 7 | syl2anc 583 | . . . . . . . 8 ⊢ (𝜑 → ((𝐹 ↾ ℝ) ↾ ℤ) = (𝐹 ↾ ℝ)) |
9 | 8 | eqcomd 2732 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ↾ ℝ) = ((𝐹 ↾ ℝ) ↾ ℤ)) |
10 | 9 | reseq1d 5974 | . . . . . 6 ⊢ (𝜑 → ((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞)) = (((𝐹 ↾ ℝ) ↾ ℤ) ↾ (𝑀[,)+∞))) |
11 | resres 5988 | . . . . . . 7 ⊢ (((𝐹 ↾ ℝ) ↾ ℤ) ↾ (𝑀[,)+∞)) = ((𝐹 ↾ ℝ) ↾ (ℤ ∩ (𝑀[,)+∞))) | |
12 | 11 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (((𝐹 ↾ ℝ) ↾ ℤ) ↾ (𝑀[,)+∞)) = ((𝐹 ↾ ℝ) ↾ (ℤ ∩ (𝑀[,)+∞)))) |
13 | limsupresuz.m | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
14 | limsupresuz.z | . . . . . . . . 9 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
15 | 13, 14 | uzinico 44850 | . . . . . . . 8 ⊢ (𝜑 → 𝑍 = (ℤ ∩ (𝑀[,)+∞))) |
16 | 15 | eqcomd 2732 | . . . . . . 7 ⊢ (𝜑 → (ℤ ∩ (𝑀[,)+∞)) = 𝑍) |
17 | 16 | reseq2d 5975 | . . . . . 6 ⊢ (𝜑 → ((𝐹 ↾ ℝ) ↾ (ℤ ∩ (𝑀[,)+∞))) = ((𝐹 ↾ ℝ) ↾ 𝑍)) |
18 | 10, 12, 17 | 3eqtrrd 2771 | . . . . 5 ⊢ (𝜑 → ((𝐹 ↾ ℝ) ↾ 𝑍) = ((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞))) |
19 | 18 | fveq2d 6889 | . . . 4 ⊢ (𝜑 → (lim sup‘((𝐹 ↾ ℝ) ↾ 𝑍)) = (lim sup‘((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞)))) |
20 | 13 | zred 12670 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
21 | eqid 2726 | . . . . 5 ⊢ (𝑀[,)+∞) = (𝑀[,)+∞) | |
22 | limsupresuz.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
23 | 22 | resexd 6022 | . . . . 5 ⊢ (𝜑 → (𝐹 ↾ ℝ) ∈ V) |
24 | 20, 21, 23 | limsupresico 44993 | . . . 4 ⊢ (𝜑 → (lim sup‘((𝐹 ↾ ℝ) ↾ (𝑀[,)+∞))) = (lim sup‘(𝐹 ↾ ℝ))) |
25 | 19, 24 | eqtrd 2766 | . . 3 ⊢ (𝜑 → (lim sup‘((𝐹 ↾ ℝ) ↾ 𝑍)) = (lim sup‘(𝐹 ↾ ℝ))) |
26 | 3, 25 | eqtrd 2766 | . 2 ⊢ (𝜑 → (lim sup‘((𝐹 ↾ 𝑍) ↾ ℝ)) = (lim sup‘(𝐹 ↾ ℝ))) |
27 | 22 | resexd 6022 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝑍) ∈ V) |
28 | 27 | limsupresre 44989 | . 2 ⊢ (𝜑 → (lim sup‘((𝐹 ↾ 𝑍) ↾ ℝ)) = (lim sup‘(𝐹 ↾ 𝑍))) |
29 | 22 | limsupresre 44989 | . 2 ⊢ (𝜑 → (lim sup‘(𝐹 ↾ ℝ)) = (lim sup‘𝐹)) |
30 | 26, 28, 29 | 3eqtr3d 2774 | 1 ⊢ (𝜑 → (lim sup‘(𝐹 ↾ 𝑍)) = (lim sup‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ∩ cin 3942 ⊆ wss 3943 dom cdm 5669 ↾ cres 5671 Rel wrel 5674 ‘cfv 6537 (class class class)co 7405 ℝcr 11111 +∞cpnf 11249 ℤcz 12562 ℤ≥cuz 12826 [,)cico 13332 lim supclsp 15420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-q 12937 df-ico 13336 df-limsup 15421 |
This theorem is referenced by: limsupresuz2 45002 |
Copyright terms: Public domain | W3C validator |