![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupresre | Structured version Visualization version GIF version |
Description: The supremum limit of a function only depends on the real part of its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsupresre.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
Ref | Expression |
---|---|
limsupresre | ⊢ (𝜑 → (lim sup‘(𝐹 ↾ ℝ)) = (lim sup‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℝ → 𝑘 ∈ ℝ) | |
2 | pnfxr 11313 | . . . . . . . . . . 11 ⊢ +∞ ∈ ℝ* | |
3 | 2 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℝ → +∞ ∈ ℝ*) |
4 | icossre 13465 | . . . . . . . . . 10 ⊢ ((𝑘 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑘[,)+∞) ⊆ ℝ) | |
5 | 1, 3, 4 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℝ → (𝑘[,)+∞) ⊆ ℝ) |
6 | resima2 6036 | . . . . . . . . 9 ⊢ ((𝑘[,)+∞) ⊆ ℝ → ((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) = (𝐹 “ (𝑘[,)+∞))) | |
7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ (𝑘 ∈ ℝ → ((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) = (𝐹 “ (𝑘[,)+∞))) |
8 | 7 | ineq1d 4227 | . . . . . . 7 ⊢ (𝑘 ∈ ℝ → (((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) |
9 | 8 | supeq1d 9484 | . . . . . 6 ⊢ (𝑘 ∈ ℝ → sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
10 | 9 | mpteq2ia 5251 | . . . . 5 ⊢ (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
12 | 11 | rneqd 5952 | . . 3 ⊢ (𝜑 → ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
13 | 12 | infeq1d 9515 | . 2 ⊢ (𝜑 → inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
14 | limsupresre.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
15 | 14 | resexd 6048 | . . 3 ⊢ (𝜑 → (𝐹 ↾ ℝ) ∈ V) |
16 | eqid 2735 | . . . 4 ⊢ (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
17 | 16 | limsupval 15507 | . . 3 ⊢ ((𝐹 ↾ ℝ) ∈ V → (lim sup‘(𝐹 ↾ ℝ)) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
18 | 15, 17 | syl 17 | . 2 ⊢ (𝜑 → (lim sup‘(𝐹 ↾ ℝ)) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
19 | eqid 2735 | . . . 4 ⊢ (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
20 | 19 | limsupval 15507 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
21 | 14, 20 | syl 17 | . 2 ⊢ (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
22 | 13, 18, 21 | 3eqtr4d 2785 | 1 ⊢ (𝜑 → (lim sup‘(𝐹 ↾ ℝ)) = (lim sup‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∩ cin 3962 ⊆ wss 3963 ↦ cmpt 5231 ran crn 5690 ↾ cres 5691 “ cima 5692 ‘cfv 6563 (class class class)co 7431 supcsup 9478 infcinf 9479 ℝcr 11152 +∞cpnf 11290 ℝ*cxr 11292 < clt 11293 [,)cico 13386 lim supclsp 15503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-ico 13390 df-limsup 15504 |
This theorem is referenced by: limsupresuz 45659 |
Copyright terms: Public domain | W3C validator |