![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupresre | Structured version Visualization version GIF version |
Description: The supremum limit of a function only depends on the real part of its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsupresre.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
Ref | Expression |
---|---|
limsupresre | ⊢ (𝜑 → (lim sup‘(𝐹 ↾ ℝ)) = (lim sup‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℝ → 𝑘 ∈ ℝ) | |
2 | pnfxr 11284 | . . . . . . . . . . 11 ⊢ +∞ ∈ ℝ* | |
3 | 2 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℝ → +∞ ∈ ℝ*) |
4 | icossre 13423 | . . . . . . . . . 10 ⊢ ((𝑘 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑘[,)+∞) ⊆ ℝ) | |
5 | 1, 3, 4 | syl2anc 583 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℝ → (𝑘[,)+∞) ⊆ ℝ) |
6 | resima2 6014 | . . . . . . . . 9 ⊢ ((𝑘[,)+∞) ⊆ ℝ → ((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) = (𝐹 “ (𝑘[,)+∞))) | |
7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ (𝑘 ∈ ℝ → ((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) = (𝐹 “ (𝑘[,)+∞))) |
8 | 7 | ineq1d 4207 | . . . . . . 7 ⊢ (𝑘 ∈ ℝ → (((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) |
9 | 8 | supeq1d 9455 | . . . . . 6 ⊢ (𝑘 ∈ ℝ → sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
10 | 9 | mpteq2ia 5245 | . . . . 5 ⊢ (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
12 | 11 | rneqd 5934 | . . 3 ⊢ (𝜑 → ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
13 | 12 | infeq1d 9486 | . 2 ⊢ (𝜑 → inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
14 | limsupresre.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
15 | 14 | resexd 6026 | . . 3 ⊢ (𝜑 → (𝐹 ↾ ℝ) ∈ V) |
16 | eqid 2727 | . . . 4 ⊢ (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
17 | 16 | limsupval 15436 | . . 3 ⊢ ((𝐹 ↾ ℝ) ∈ V → (lim sup‘(𝐹 ↾ ℝ)) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
18 | 15, 17 | syl 17 | . 2 ⊢ (𝜑 → (lim sup‘(𝐹 ↾ ℝ)) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
19 | eqid 2727 | . . . 4 ⊢ (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
20 | 19 | limsupval 15436 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
21 | 14, 20 | syl 17 | . 2 ⊢ (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
22 | 13, 18, 21 | 3eqtr4d 2777 | 1 ⊢ (𝜑 → (lim sup‘(𝐹 ↾ ℝ)) = (lim sup‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3469 ∩ cin 3943 ⊆ wss 3944 ↦ cmpt 5225 ran crn 5673 ↾ cres 5674 “ cima 5675 ‘cfv 6542 (class class class)co 7414 supcsup 9449 infcinf 9450 ℝcr 11123 +∞cpnf 11261 ℝ*cxr 11263 < clt 11264 [,)cico 13344 lim supclsp 15432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-pre-lttri 11198 ax-pre-lttrn 11199 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-sup 9451 df-inf 9452 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-ico 13348 df-limsup 15433 |
This theorem is referenced by: limsupresuz 45004 |
Copyright terms: Public domain | W3C validator |