Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupresre Structured version   Visualization version   GIF version

Theorem limsupresre 44870
Description: The supremum limit of a function only depends on the real part of its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
limsupresre.1 (𝜑𝐹𝑉)
Assertion
Ref Expression
limsupresre (𝜑 → (lim sup‘(𝐹 ↾ ℝ)) = (lim sup‘𝐹))

Proof of Theorem limsupresre
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . . . 10 (𝑘 ∈ ℝ → 𝑘 ∈ ℝ)
2 pnfxr 11275 . . . . . . . . . . 11 +∞ ∈ ℝ*
32a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℝ → +∞ ∈ ℝ*)
4 icossre 13412 . . . . . . . . . 10 ((𝑘 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑘[,)+∞) ⊆ ℝ)
51, 3, 4syl2anc 583 . . . . . . . . 9 (𝑘 ∈ ℝ → (𝑘[,)+∞) ⊆ ℝ)
6 resima2 6016 . . . . . . . . 9 ((𝑘[,)+∞) ⊆ ℝ → ((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) = (𝐹 “ (𝑘[,)+∞)))
75, 6syl 17 . . . . . . . 8 (𝑘 ∈ ℝ → ((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) = (𝐹 “ (𝑘[,)+∞)))
87ineq1d 4211 . . . . . . 7 (𝑘 ∈ ℝ → (((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
98supeq1d 9447 . . . . . 6 (𝑘 ∈ ℝ → sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
109mpteq2ia 5251 . . . . 5 (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
1110a1i 11 . . . 4 (𝜑 → (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
1211rneqd 5937 . . 3 (𝜑 → ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
1312infeq1d 9478 . 2 (𝜑 → inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
14 limsupresre.1 . . . 4 (𝜑𝐹𝑉)
1514resexd 6028 . . 3 (𝜑 → (𝐹 ↾ ℝ) ∈ V)
16 eqid 2731 . . . 4 (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
1716limsupval 15425 . . 3 ((𝐹 ↾ ℝ) ∈ V → (lim sup‘(𝐹 ↾ ℝ)) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
1815, 17syl 17 . 2 (𝜑 → (lim sup‘(𝐹 ↾ ℝ)) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
19 eqid 2731 . . . 4 (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
2019limsupval 15425 . . 3 (𝐹𝑉 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
2114, 20syl 17 . 2 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
2213, 18, 213eqtr4d 2781 1 (𝜑 → (lim sup‘(𝐹 ↾ ℝ)) = (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  Vcvv 3473  cin 3947  wss 3948  cmpt 5231  ran crn 5677  cres 5678  cima 5679  cfv 6543  (class class class)co 7412  supcsup 9441  infcinf 9442  cr 11115  +∞cpnf 11252  *cxr 11254   < clt 11255  [,)cico 13333  lim supclsp 15421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-pre-lttri 11190  ax-pre-lttrn 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-sup 9443  df-inf 9444  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-ico 13337  df-limsup 15422
This theorem is referenced by:  limsupresuz  44877
  Copyright terms: Public domain W3C validator