![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupresre | Structured version Visualization version GIF version |
Description: The supremum limit of a function only depends on the real part of its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsupresre.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
Ref | Expression |
---|---|
limsupresre | ⊢ (𝜑 → (lim sup‘(𝐹 ↾ ℝ)) = (lim sup‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℝ → 𝑘 ∈ ℝ) | |
2 | pnfxr 11275 | . . . . . . . . . . 11 ⊢ +∞ ∈ ℝ* | |
3 | 2 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℝ → +∞ ∈ ℝ*) |
4 | icossre 13412 | . . . . . . . . . 10 ⊢ ((𝑘 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑘[,)+∞) ⊆ ℝ) | |
5 | 1, 3, 4 | syl2anc 583 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℝ → (𝑘[,)+∞) ⊆ ℝ) |
6 | resima2 6016 | . . . . . . . . 9 ⊢ ((𝑘[,)+∞) ⊆ ℝ → ((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) = (𝐹 “ (𝑘[,)+∞))) | |
7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ (𝑘 ∈ ℝ → ((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) = (𝐹 “ (𝑘[,)+∞))) |
8 | 7 | ineq1d 4211 | . . . . . . 7 ⊢ (𝑘 ∈ ℝ → (((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) |
9 | 8 | supeq1d 9447 | . . . . . 6 ⊢ (𝑘 ∈ ℝ → sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
10 | 9 | mpteq2ia 5251 | . . . . 5 ⊢ (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
12 | 11 | rneqd 5937 | . . 3 ⊢ (𝜑 → ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
13 | 12 | infeq1d 9478 | . 2 ⊢ (𝜑 → inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
14 | limsupresre.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
15 | 14 | resexd 6028 | . . 3 ⊢ (𝜑 → (𝐹 ↾ ℝ) ∈ V) |
16 | eqid 2731 | . . . 4 ⊢ (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
17 | 16 | limsupval 15425 | . . 3 ⊢ ((𝐹 ↾ ℝ) ∈ V → (lim sup‘(𝐹 ↾ ℝ)) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
18 | 15, 17 | syl 17 | . 2 ⊢ (𝜑 → (lim sup‘(𝐹 ↾ ℝ)) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
19 | eqid 2731 | . . . 4 ⊢ (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
20 | 19 | limsupval 15425 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
21 | 14, 20 | syl 17 | . 2 ⊢ (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
22 | 13, 18, 21 | 3eqtr4d 2781 | 1 ⊢ (𝜑 → (lim sup‘(𝐹 ↾ ℝ)) = (lim sup‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∩ cin 3947 ⊆ wss 3948 ↦ cmpt 5231 ran crn 5677 ↾ cres 5678 “ cima 5679 ‘cfv 6543 (class class class)co 7412 supcsup 9441 infcinf 9442 ℝcr 11115 +∞cpnf 11252 ℝ*cxr 11254 < clt 11255 [,)cico 13333 lim supclsp 15421 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-pre-lttri 11190 ax-pre-lttrn 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-ico 13337 df-limsup 15422 |
This theorem is referenced by: limsupresuz 44877 |
Copyright terms: Public domain | W3C validator |