Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupresre | Structured version Visualization version GIF version |
Description: The supremum limit of a function only depends on the real part of its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsupresre.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
Ref | Expression |
---|---|
limsupresre | ⊢ (𝜑 → (lim sup‘(𝐹 ↾ ℝ)) = (lim sup‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℝ → 𝑘 ∈ ℝ) | |
2 | pnfxr 10776 | . . . . . . . . . . 11 ⊢ +∞ ∈ ℝ* | |
3 | 2 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℝ → +∞ ∈ ℝ*) |
4 | icossre 12905 | . . . . . . . . . 10 ⊢ ((𝑘 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑘[,)+∞) ⊆ ℝ) | |
5 | 1, 3, 4 | syl2anc 587 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℝ → (𝑘[,)+∞) ⊆ ℝ) |
6 | resima2 5861 | . . . . . . . . 9 ⊢ ((𝑘[,)+∞) ⊆ ℝ → ((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) = (𝐹 “ (𝑘[,)+∞))) | |
7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ (𝑘 ∈ ℝ → ((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) = (𝐹 “ (𝑘[,)+∞))) |
8 | 7 | ineq1d 4103 | . . . . . . 7 ⊢ (𝑘 ∈ ℝ → (((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) |
9 | 8 | supeq1d 8986 | . . . . . 6 ⊢ (𝑘 ∈ ℝ → sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
10 | 9 | mpteq2ia 5122 | . . . . 5 ⊢ (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
12 | 11 | rneqd 5782 | . . 3 ⊢ (𝜑 → ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
13 | 12 | infeq1d 9017 | . 2 ⊢ (𝜑 → inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
14 | limsupresre.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
15 | 14 | resexd 5873 | . . 3 ⊢ (𝜑 → (𝐹 ↾ ℝ) ∈ V) |
16 | eqid 2739 | . . . 4 ⊢ (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
17 | 16 | limsupval 14924 | . . 3 ⊢ ((𝐹 ↾ ℝ) ∈ V → (lim sup‘(𝐹 ↾ ℝ)) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
18 | 15, 17 | syl 17 | . 2 ⊢ (𝜑 → (lim sup‘(𝐹 ↾ ℝ)) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝐹 ↾ ℝ) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
19 | eqid 2739 | . . . 4 ⊢ (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
20 | 19 | limsupval 14924 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
21 | 14, 20 | syl 17 | . 2 ⊢ (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
22 | 13, 18, 21 | 3eqtr4d 2784 | 1 ⊢ (𝜑 → (lim sup‘(𝐹 ↾ ℝ)) = (lim sup‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2114 Vcvv 3399 ∩ cin 3843 ⊆ wss 3844 ↦ cmpt 5111 ran crn 5527 ↾ cres 5528 “ cima 5529 ‘cfv 6340 (class class class)co 7173 supcsup 8980 infcinf 8981 ℝcr 10617 +∞cpnf 10753 ℝ*cxr 10755 < clt 10756 [,)cico 12826 lim supclsp 14920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7482 ax-cnex 10674 ax-resscn 10675 ax-pre-lttri 10692 ax-pre-lttrn 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-rmo 3062 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-po 5443 df-so 5444 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7176 df-oprab 7177 df-mpo 7178 df-er 8323 df-en 8559 df-dom 8560 df-sdom 8561 df-sup 8982 df-inf 8983 df-pnf 10758 df-mnf 10759 df-xr 10760 df-ltxr 10761 df-le 10762 df-ico 12830 df-limsup 14921 |
This theorem is referenced by: limsupresuz 42809 |
Copyright terms: Public domain | W3C validator |