| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsmspropd | Structured version Visualization version GIF version | ||
| Description: The group sum depends only on the base set, additive operation, and topology components. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd 18692 etc. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| Ref | Expression |
|---|---|
| tsmspropd.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| tsmspropd.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| tsmspropd.h | ⊢ (𝜑 → 𝐻 ∈ 𝑋) |
| tsmspropd.b | ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) |
| tsmspropd.p | ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) |
| tsmspropd.j | ⊢ (𝜑 → (TopOpen‘𝐺) = (TopOpen‘𝐻)) |
| Ref | Expression |
|---|---|
| tsmspropd | ⊢ (𝜑 → (𝐺 tsums 𝐹) = (𝐻 tsums 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmspropd.j | . . . 4 ⊢ (𝜑 → (TopOpen‘𝐺) = (TopOpen‘𝐻)) | |
| 2 | 1 | oveq1d 7404 | . . 3 ⊢ (𝜑 → ((TopOpen‘𝐺) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦}))) = ((TopOpen‘𝐻) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦})))) |
| 3 | tsmspropd.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 4 | 3 | resexd 6001 | . . . . 5 ⊢ (𝜑 → (𝐹 ↾ 𝑦) ∈ V) |
| 5 | tsmspropd.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 6 | tsmspropd.h | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ 𝑋) | |
| 7 | tsmspropd.b | . . . . 5 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) | |
| 8 | tsmspropd.p | . . . . 5 ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) | |
| 9 | 4, 5, 6, 7, 8 | gsumpropd 18611 | . . . 4 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝑦)) = (𝐻 Σg (𝐹 ↾ 𝑦))) |
| 10 | 9 | mpteq2dv 5203 | . . 3 ⊢ (𝜑 → (𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) = (𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐻 Σg (𝐹 ↾ 𝑦)))) |
| 11 | 2, 10 | fveq12d 6867 | . 2 ⊢ (𝜑 → (((TopOpen‘𝐺) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑦)))) = (((TopOpen‘𝐻) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐻 Σg (𝐹 ↾ 𝑦))))) |
| 12 | eqid 2730 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 13 | eqid 2730 | . . 3 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
| 14 | eqid 2730 | . . 3 ⊢ (𝒫 dom 𝐹 ∩ Fin) = (𝒫 dom 𝐹 ∩ Fin) | |
| 15 | eqid 2730 | . . 3 ⊢ ran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦}) = ran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦}) | |
| 16 | eqidd 2731 | . . 3 ⊢ (𝜑 → dom 𝐹 = dom 𝐹) | |
| 17 | 12, 13, 14, 15, 5, 3, 16 | tsmsval2 24023 | . 2 ⊢ (𝜑 → (𝐺 tsums 𝐹) = (((TopOpen‘𝐺) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) |
| 18 | eqid 2730 | . . 3 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 19 | eqid 2730 | . . 3 ⊢ (TopOpen‘𝐻) = (TopOpen‘𝐻) | |
| 20 | 18, 19, 14, 15, 6, 3, 16 | tsmsval2 24023 | . 2 ⊢ (𝜑 → (𝐻 tsums 𝐹) = (((TopOpen‘𝐻) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐻 Σg (𝐹 ↾ 𝑦))))) |
| 21 | 11, 17, 20 | 3eqtr4d 2775 | 1 ⊢ (𝜑 → (𝐺 tsums 𝐹) = (𝐻 tsums 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 ∩ cin 3915 ⊆ wss 3916 𝒫 cpw 4565 ↦ cmpt 5190 dom cdm 5640 ran crn 5641 ↾ cres 5642 ‘cfv 6513 (class class class)co 7389 Fincfn 8920 Basecbs 17185 +gcplusg 17226 TopOpenctopn 17390 Σg cgsu 17409 filGencfg 21259 fLimf cflf 23828 tsums ctsu 24019 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-seq 13973 df-0g 17410 df-gsum 17411 df-tsms 24020 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |