MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmspropd Structured version   Visualization version   GIF version

Theorem tsmspropd 22740
Description: The group sum depends only on the base set, additive operation, and topology components. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd 17936 etc. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
tsmspropd.f (𝜑𝐹𝑉)
tsmspropd.g (𝜑𝐺𝑊)
tsmspropd.h (𝜑𝐻𝑋)
tsmspropd.b (𝜑 → (Base‘𝐺) = (Base‘𝐻))
tsmspropd.p (𝜑 → (+g𝐺) = (+g𝐻))
tsmspropd.j (𝜑 → (TopOpen‘𝐺) = (TopOpen‘𝐻))
Assertion
Ref Expression
tsmspropd (𝜑 → (𝐺 tsums 𝐹) = (𝐻 tsums 𝐹))

Proof of Theorem tsmspropd
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmspropd.j . . . 4 (𝜑 → (TopOpen‘𝐺) = (TopOpen‘𝐻))
21oveq1d 7171 . . 3 (𝜑 → ((TopOpen‘𝐺) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧𝑦}))) = ((TopOpen‘𝐻) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧𝑦}))))
3 tsmspropd.f . . . . . 6 (𝜑𝐹𝑉)
4 resexg 5898 . . . . . 6 (𝐹𝑉 → (𝐹𝑦) ∈ V)
53, 4syl 17 . . . . 5 (𝜑 → (𝐹𝑦) ∈ V)
6 tsmspropd.g . . . . 5 (𝜑𝐺𝑊)
7 tsmspropd.h . . . . 5 (𝜑𝐻𝑋)
8 tsmspropd.b . . . . 5 (𝜑 → (Base‘𝐺) = (Base‘𝐻))
9 tsmspropd.p . . . . 5 (𝜑 → (+g𝐺) = (+g𝐻))
105, 6, 7, 8, 9gsumpropd 17888 . . . 4 (𝜑 → (𝐺 Σg (𝐹𝑦)) = (𝐻 Σg (𝐹𝑦)))
1110mpteq2dv 5162 . . 3 (𝜑 → (𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑦))) = (𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐻 Σg (𝐹𝑦))))
122, 11fveq12d 6677 . 2 (𝜑 → (((TopOpen‘𝐺) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑦)))) = (((TopOpen‘𝐻) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐻 Σg (𝐹𝑦)))))
13 eqid 2821 . . 3 (Base‘𝐺) = (Base‘𝐺)
14 eqid 2821 . . 3 (TopOpen‘𝐺) = (TopOpen‘𝐺)
15 eqid 2821 . . 3 (𝒫 dom 𝐹 ∩ Fin) = (𝒫 dom 𝐹 ∩ Fin)
16 eqid 2821 . . 3 ran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧𝑦}) = ran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧𝑦})
17 eqidd 2822 . . 3 (𝜑 → dom 𝐹 = dom 𝐹)
1813, 14, 15, 16, 6, 3, 17tsmsval2 22738 . 2 (𝜑 → (𝐺 tsums 𝐹) = (((TopOpen‘𝐺) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑦)))))
19 eqid 2821 . . 3 (Base‘𝐻) = (Base‘𝐻)
20 eqid 2821 . . 3 (TopOpen‘𝐻) = (TopOpen‘𝐻)
2119, 20, 15, 16, 7, 3, 17tsmsval2 22738 . 2 (𝜑 → (𝐻 tsums 𝐹) = (((TopOpen‘𝐻) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐻 Σg (𝐹𝑦)))))
2212, 18, 213eqtr4d 2866 1 (𝜑 → (𝐺 tsums 𝐹) = (𝐻 tsums 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  {crab 3142  Vcvv 3494  cin 3935  wss 3936  𝒫 cpw 4539  cmpt 5146  dom cdm 5555  ran crn 5556  cres 5557  cfv 6355  (class class class)co 7156  Fincfn 8509  Basecbs 16483  +gcplusg 16565  TopOpenctopn 16695   Σg cgsu 16714  filGencfg 20534   fLimf cflf 22543   tsums ctsu 22734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-seq 13371  df-0g 16715  df-gsum 16716  df-tsms 22735
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator