| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsmspropd | Structured version Visualization version GIF version | ||
| Description: The group sum depends only on the base set, additive operation, and topology components. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd 18664 etc. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| Ref | Expression |
|---|---|
| tsmspropd.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| tsmspropd.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| tsmspropd.h | ⊢ (𝜑 → 𝐻 ∈ 𝑋) |
| tsmspropd.b | ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) |
| tsmspropd.p | ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) |
| tsmspropd.j | ⊢ (𝜑 → (TopOpen‘𝐺) = (TopOpen‘𝐻)) |
| Ref | Expression |
|---|---|
| tsmspropd | ⊢ (𝜑 → (𝐺 tsums 𝐹) = (𝐻 tsums 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmspropd.j | . . . 4 ⊢ (𝜑 → (TopOpen‘𝐺) = (TopOpen‘𝐻)) | |
| 2 | 1 | oveq1d 7361 | . . 3 ⊢ (𝜑 → ((TopOpen‘𝐺) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦}))) = ((TopOpen‘𝐻) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦})))) |
| 3 | tsmspropd.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 4 | 3 | resexd 5977 | . . . . 5 ⊢ (𝜑 → (𝐹 ↾ 𝑦) ∈ V) |
| 5 | tsmspropd.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 6 | tsmspropd.h | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ 𝑋) | |
| 7 | tsmspropd.b | . . . . 5 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) | |
| 8 | tsmspropd.p | . . . . 5 ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) | |
| 9 | 4, 5, 6, 7, 8 | gsumpropd 18583 | . . . 4 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝑦)) = (𝐻 Σg (𝐹 ↾ 𝑦))) |
| 10 | 9 | mpteq2dv 5185 | . . 3 ⊢ (𝜑 → (𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) = (𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐻 Σg (𝐹 ↾ 𝑦)))) |
| 11 | 2, 10 | fveq12d 6829 | . 2 ⊢ (𝜑 → (((TopOpen‘𝐺) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑦)))) = (((TopOpen‘𝐻) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐻 Σg (𝐹 ↾ 𝑦))))) |
| 12 | eqid 2731 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 13 | eqid 2731 | . . 3 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
| 14 | eqid 2731 | . . 3 ⊢ (𝒫 dom 𝐹 ∩ Fin) = (𝒫 dom 𝐹 ∩ Fin) | |
| 15 | eqid 2731 | . . 3 ⊢ ran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦}) = ran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦}) | |
| 16 | eqidd 2732 | . . 3 ⊢ (𝜑 → dom 𝐹 = dom 𝐹) | |
| 17 | 12, 13, 14, 15, 5, 3, 16 | tsmsval2 24043 | . 2 ⊢ (𝜑 → (𝐺 tsums 𝐹) = (((TopOpen‘𝐺) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) |
| 18 | eqid 2731 | . . 3 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 19 | eqid 2731 | . . 3 ⊢ (TopOpen‘𝐻) = (TopOpen‘𝐻) | |
| 20 | 18, 19, 14, 15, 6, 3, 16 | tsmsval2 24043 | . 2 ⊢ (𝜑 → (𝐻 tsums 𝐹) = (((TopOpen‘𝐻) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐻 Σg (𝐹 ↾ 𝑦))))) |
| 21 | 11, 17, 20 | 3eqtr4d 2776 | 1 ⊢ (𝜑 → (𝐺 tsums 𝐹) = (𝐻 tsums 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ∩ cin 3901 ⊆ wss 3902 𝒫 cpw 4550 ↦ cmpt 5172 dom cdm 5616 ran crn 5617 ↾ cres 5618 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 Basecbs 17117 +gcplusg 17158 TopOpenctopn 17322 Σg cgsu 17341 filGencfg 21278 fLimf cflf 23848 tsums ctsu 24039 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-seq 13906 df-0g 17342 df-gsum 17343 df-tsms 24040 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |