MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmspropd Structured version   Visualization version   GIF version

Theorem tsmspropd 24163
Description: The group sum depends only on the base set, additive operation, and topology components. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd 18799 etc. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
tsmspropd.f (𝜑𝐹𝑉)
tsmspropd.g (𝜑𝐺𝑊)
tsmspropd.h (𝜑𝐻𝑋)
tsmspropd.b (𝜑 → (Base‘𝐺) = (Base‘𝐻))
tsmspropd.p (𝜑 → (+g𝐺) = (+g𝐻))
tsmspropd.j (𝜑 → (TopOpen‘𝐺) = (TopOpen‘𝐻))
Assertion
Ref Expression
tsmspropd (𝜑 → (𝐺 tsums 𝐹) = (𝐻 tsums 𝐹))

Proof of Theorem tsmspropd
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmspropd.j . . . 4 (𝜑 → (TopOpen‘𝐺) = (TopOpen‘𝐻))
21oveq1d 7465 . . 3 (𝜑 → ((TopOpen‘𝐺) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧𝑦}))) = ((TopOpen‘𝐻) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧𝑦}))))
3 tsmspropd.f . . . . . 6 (𝜑𝐹𝑉)
43resexd 6059 . . . . 5 (𝜑 → (𝐹𝑦) ∈ V)
5 tsmspropd.g . . . . 5 (𝜑𝐺𝑊)
6 tsmspropd.h . . . . 5 (𝜑𝐻𝑋)
7 tsmspropd.b . . . . 5 (𝜑 → (Base‘𝐺) = (Base‘𝐻))
8 tsmspropd.p . . . . 5 (𝜑 → (+g𝐺) = (+g𝐻))
94, 5, 6, 7, 8gsumpropd 18718 . . . 4 (𝜑 → (𝐺 Σg (𝐹𝑦)) = (𝐻 Σg (𝐹𝑦)))
109mpteq2dv 5268 . . 3 (𝜑 → (𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑦))) = (𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐻 Σg (𝐹𝑦))))
112, 10fveq12d 6929 . 2 (𝜑 → (((TopOpen‘𝐺) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑦)))) = (((TopOpen‘𝐻) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐻 Σg (𝐹𝑦)))))
12 eqid 2740 . . 3 (Base‘𝐺) = (Base‘𝐺)
13 eqid 2740 . . 3 (TopOpen‘𝐺) = (TopOpen‘𝐺)
14 eqid 2740 . . 3 (𝒫 dom 𝐹 ∩ Fin) = (𝒫 dom 𝐹 ∩ Fin)
15 eqid 2740 . . 3 ran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧𝑦}) = ran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧𝑦})
16 eqidd 2741 . . 3 (𝜑 → dom 𝐹 = dom 𝐹)
1712, 13, 14, 15, 5, 3, 16tsmsval2 24161 . 2 (𝜑 → (𝐺 tsums 𝐹) = (((TopOpen‘𝐺) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑦)))))
18 eqid 2740 . . 3 (Base‘𝐻) = (Base‘𝐻)
19 eqid 2740 . . 3 (TopOpen‘𝐻) = (TopOpen‘𝐻)
2018, 19, 14, 15, 6, 3, 16tsmsval2 24161 . 2 (𝜑 → (𝐻 tsums 𝐹) = (((TopOpen‘𝐻) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐻 Σg (𝐹𝑦)))))
2111, 17, 203eqtr4d 2790 1 (𝜑 → (𝐺 tsums 𝐹) = (𝐻 tsums 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  cin 3975  wss 3976  𝒫 cpw 4622  cmpt 5249  dom cdm 5700  ran crn 5701  cres 5702  cfv 6575  (class class class)co 7450  Fincfn 9005  Basecbs 17260  +gcplusg 17313  TopOpenctopn 17483   Σg cgsu 17502  filGencfg 21378   fLimf cflf 23966   tsums ctsu 24157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-seq 14055  df-0g 17503  df-gsum 17504  df-tsms 24158
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator