MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmspropd Structured version   Visualization version   GIF version

Theorem tsmspropd 23636
Description: The group sum depends only on the base set, additive operation, and topology components. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd 18650 etc. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
tsmspropd.f (πœ‘ β†’ 𝐹 ∈ 𝑉)
tsmspropd.g (πœ‘ β†’ 𝐺 ∈ π‘Š)
tsmspropd.h (πœ‘ β†’ 𝐻 ∈ 𝑋)
tsmspropd.b (πœ‘ β†’ (Baseβ€˜πΊ) = (Baseβ€˜π»))
tsmspropd.p (πœ‘ β†’ (+gβ€˜πΊ) = (+gβ€˜π»))
tsmspropd.j (πœ‘ β†’ (TopOpenβ€˜πΊ) = (TopOpenβ€˜π»))
Assertion
Ref Expression
tsmspropd (πœ‘ β†’ (𝐺 tsums 𝐹) = (𝐻 tsums 𝐹))

Proof of Theorem tsmspropd
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmspropd.j . . . 4 (πœ‘ β†’ (TopOpenβ€˜πΊ) = (TopOpenβ€˜π»))
21oveq1d 7424 . . 3 (πœ‘ β†’ ((TopOpenβ€˜πΊ) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 βŠ† 𝑦}))) = ((TopOpenβ€˜π») fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 βŠ† 𝑦}))))
3 tsmspropd.f . . . . . 6 (πœ‘ β†’ 𝐹 ∈ 𝑉)
43resexd 6029 . . . . 5 (πœ‘ β†’ (𝐹 β†Ύ 𝑦) ∈ V)
5 tsmspropd.g . . . . 5 (πœ‘ β†’ 𝐺 ∈ π‘Š)
6 tsmspropd.h . . . . 5 (πœ‘ β†’ 𝐻 ∈ 𝑋)
7 tsmspropd.b . . . . 5 (πœ‘ β†’ (Baseβ€˜πΊ) = (Baseβ€˜π»))
8 tsmspropd.p . . . . 5 (πœ‘ β†’ (+gβ€˜πΊ) = (+gβ€˜π»))
94, 5, 6, 7, 8gsumpropd 18597 . . . 4 (πœ‘ β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) = (𝐻 Ξ£g (𝐹 β†Ύ 𝑦)))
109mpteq2dv 5251 . . 3 (πœ‘ β†’ (𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦))) = (𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐻 Ξ£g (𝐹 β†Ύ 𝑦))))
112, 10fveq12d 6899 . 2 (πœ‘ β†’ (((TopOpenβ€˜πΊ) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 βŠ† 𝑦})))β€˜(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)))) = (((TopOpenβ€˜π») fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 βŠ† 𝑦})))β€˜(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐻 Ξ£g (𝐹 β†Ύ 𝑦)))))
12 eqid 2733 . . 3 (Baseβ€˜πΊ) = (Baseβ€˜πΊ)
13 eqid 2733 . . 3 (TopOpenβ€˜πΊ) = (TopOpenβ€˜πΊ)
14 eqid 2733 . . 3 (𝒫 dom 𝐹 ∩ Fin) = (𝒫 dom 𝐹 ∩ Fin)
15 eqid 2733 . . 3 ran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 βŠ† 𝑦}) = ran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 βŠ† 𝑦})
16 eqidd 2734 . . 3 (πœ‘ β†’ dom 𝐹 = dom 𝐹)
1712, 13, 14, 15, 5, 3, 16tsmsval2 23634 . 2 (πœ‘ β†’ (𝐺 tsums 𝐹) = (((TopOpenβ€˜πΊ) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 βŠ† 𝑦})))β€˜(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)))))
18 eqid 2733 . . 3 (Baseβ€˜π») = (Baseβ€˜π»)
19 eqid 2733 . . 3 (TopOpenβ€˜π») = (TopOpenβ€˜π»)
2018, 19, 14, 15, 6, 3, 16tsmsval2 23634 . 2 (πœ‘ β†’ (𝐻 tsums 𝐹) = (((TopOpenβ€˜π») fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 βŠ† 𝑦})))β€˜(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐻 Ξ£g (𝐹 β†Ύ 𝑦)))))
2111, 17, 203eqtr4d 2783 1 (πœ‘ β†’ (𝐺 tsums 𝐹) = (𝐻 tsums 𝐹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107  {crab 3433  Vcvv 3475   ∩ cin 3948   βŠ† wss 3949  π’« cpw 4603   ↦ cmpt 5232  dom cdm 5677  ran crn 5678   β†Ύ cres 5679  β€˜cfv 6544  (class class class)co 7409  Fincfn 8939  Basecbs 17144  +gcplusg 17197  TopOpenctopn 17367   Ξ£g cgsu 17386  filGencfg 20933   fLimf cflf 23439   tsums ctsu 23630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-seq 13967  df-0g 17387  df-gsum 17388  df-tsms 23631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator