![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tsmspropd | Structured version Visualization version GIF version |
Description: The group sum depends only on the base set, additive operation, and topology components. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd 18799 etc. (Contributed by Mario Carneiro, 18-Sep-2015.) |
Ref | Expression |
---|---|
tsmspropd.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
tsmspropd.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
tsmspropd.h | ⊢ (𝜑 → 𝐻 ∈ 𝑋) |
tsmspropd.b | ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) |
tsmspropd.p | ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) |
tsmspropd.j | ⊢ (𝜑 → (TopOpen‘𝐺) = (TopOpen‘𝐻)) |
Ref | Expression |
---|---|
tsmspropd | ⊢ (𝜑 → (𝐺 tsums 𝐹) = (𝐻 tsums 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsmspropd.j | . . . 4 ⊢ (𝜑 → (TopOpen‘𝐺) = (TopOpen‘𝐻)) | |
2 | 1 | oveq1d 7465 | . . 3 ⊢ (𝜑 → ((TopOpen‘𝐺) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦}))) = ((TopOpen‘𝐻) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦})))) |
3 | tsmspropd.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
4 | 3 | resexd 6059 | . . . . 5 ⊢ (𝜑 → (𝐹 ↾ 𝑦) ∈ V) |
5 | tsmspropd.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
6 | tsmspropd.h | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ 𝑋) | |
7 | tsmspropd.b | . . . . 5 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) | |
8 | tsmspropd.p | . . . . 5 ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) | |
9 | 4, 5, 6, 7, 8 | gsumpropd 18718 | . . . 4 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝑦)) = (𝐻 Σg (𝐹 ↾ 𝑦))) |
10 | 9 | mpteq2dv 5268 | . . 3 ⊢ (𝜑 → (𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) = (𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐻 Σg (𝐹 ↾ 𝑦)))) |
11 | 2, 10 | fveq12d 6929 | . 2 ⊢ (𝜑 → (((TopOpen‘𝐺) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑦)))) = (((TopOpen‘𝐻) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐻 Σg (𝐹 ↾ 𝑦))))) |
12 | eqid 2740 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
13 | eqid 2740 | . . 3 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
14 | eqid 2740 | . . 3 ⊢ (𝒫 dom 𝐹 ∩ Fin) = (𝒫 dom 𝐹 ∩ Fin) | |
15 | eqid 2740 | . . 3 ⊢ ran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦}) = ran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦}) | |
16 | eqidd 2741 | . . 3 ⊢ (𝜑 → dom 𝐹 = dom 𝐹) | |
17 | 12, 13, 14, 15, 5, 3, 16 | tsmsval2 24161 | . 2 ⊢ (𝜑 → (𝐺 tsums 𝐹) = (((TopOpen‘𝐺) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) |
18 | eqid 2740 | . . 3 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
19 | eqid 2740 | . . 3 ⊢ (TopOpen‘𝐻) = (TopOpen‘𝐻) | |
20 | 18, 19, 14, 15, 6, 3, 16 | tsmsval2 24161 | . 2 ⊢ (𝜑 → (𝐻 tsums 𝐹) = (((TopOpen‘𝐻) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐻 Σg (𝐹 ↾ 𝑦))))) |
21 | 11, 17, 20 | 3eqtr4d 2790 | 1 ⊢ (𝜑 → (𝐺 tsums 𝐹) = (𝐻 tsums 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 𝒫 cpw 4622 ↦ cmpt 5249 dom cdm 5700 ran crn 5701 ↾ cres 5702 ‘cfv 6575 (class class class)co 7450 Fincfn 9005 Basecbs 17260 +gcplusg 17313 TopOpenctopn 17483 Σg cgsu 17502 filGencfg 21378 fLimf cflf 23966 tsums ctsu 24157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-seq 14055 df-0g 17503 df-gsum 17504 df-tsms 24158 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |