| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsmspropd | Structured version Visualization version GIF version | ||
| Description: The group sum depends only on the base set, additive operation, and topology components. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd 18686 etc. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| Ref | Expression |
|---|---|
| tsmspropd.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| tsmspropd.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| tsmspropd.h | ⊢ (𝜑 → 𝐻 ∈ 𝑋) |
| tsmspropd.b | ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) |
| tsmspropd.p | ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) |
| tsmspropd.j | ⊢ (𝜑 → (TopOpen‘𝐺) = (TopOpen‘𝐻)) |
| Ref | Expression |
|---|---|
| tsmspropd | ⊢ (𝜑 → (𝐺 tsums 𝐹) = (𝐻 tsums 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmspropd.j | . . . 4 ⊢ (𝜑 → (TopOpen‘𝐺) = (TopOpen‘𝐻)) | |
| 2 | 1 | oveq1d 7402 | . . 3 ⊢ (𝜑 → ((TopOpen‘𝐺) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦}))) = ((TopOpen‘𝐻) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦})))) |
| 3 | tsmspropd.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 4 | 3 | resexd 5999 | . . . . 5 ⊢ (𝜑 → (𝐹 ↾ 𝑦) ∈ V) |
| 5 | tsmspropd.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 6 | tsmspropd.h | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ 𝑋) | |
| 7 | tsmspropd.b | . . . . 5 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) | |
| 8 | tsmspropd.p | . . . . 5 ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) | |
| 9 | 4, 5, 6, 7, 8 | gsumpropd 18605 | . . . 4 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝑦)) = (𝐻 Σg (𝐹 ↾ 𝑦))) |
| 10 | 9 | mpteq2dv 5201 | . . 3 ⊢ (𝜑 → (𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) = (𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐻 Σg (𝐹 ↾ 𝑦)))) |
| 11 | 2, 10 | fveq12d 6865 | . 2 ⊢ (𝜑 → (((TopOpen‘𝐺) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑦)))) = (((TopOpen‘𝐻) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐻 Σg (𝐹 ↾ 𝑦))))) |
| 12 | eqid 2729 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 13 | eqid 2729 | . . 3 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
| 14 | eqid 2729 | . . 3 ⊢ (𝒫 dom 𝐹 ∩ Fin) = (𝒫 dom 𝐹 ∩ Fin) | |
| 15 | eqid 2729 | . . 3 ⊢ ran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦}) = ran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦}) | |
| 16 | eqidd 2730 | . . 3 ⊢ (𝜑 → dom 𝐹 = dom 𝐹) | |
| 17 | 12, 13, 14, 15, 5, 3, 16 | tsmsval2 24017 | . 2 ⊢ (𝜑 → (𝐺 tsums 𝐹) = (((TopOpen‘𝐺) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) |
| 18 | eqid 2729 | . . 3 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 19 | eqid 2729 | . . 3 ⊢ (TopOpen‘𝐻) = (TopOpen‘𝐻) | |
| 20 | 18, 19, 14, 15, 6, 3, 16 | tsmsval2 24017 | . 2 ⊢ (𝜑 → (𝐻 tsums 𝐹) = (((TopOpen‘𝐻) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐻 Σg (𝐹 ↾ 𝑦))))) |
| 21 | 11, 17, 20 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → (𝐺 tsums 𝐹) = (𝐻 tsums 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 ∩ cin 3913 ⊆ wss 3914 𝒫 cpw 4563 ↦ cmpt 5188 dom cdm 5638 ran crn 5639 ↾ cres 5640 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 Basecbs 17179 +gcplusg 17220 TopOpenctopn 17384 Σg cgsu 17403 filGencfg 21253 fLimf cflf 23822 tsums ctsu 24013 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-seq 13967 df-0g 17404 df-gsum 17405 df-tsms 24014 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |