MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmss Structured version   Visualization version   GIF version

Theorem ulmss 24992
Description: A uniform limit of functions is still a uniform limit if restricted to a subset. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
ulmss.z 𝑍 = (ℤ𝑀)
ulmss.t (𝜑𝑇𝑆)
ulmss.a ((𝜑𝑥𝑍) → 𝐴𝑊)
ulmss.u (𝜑 → (𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺)
Assertion
Ref Expression
ulmss (𝜑 → (𝑥𝑍 ↦ (𝐴𝑇))(⇝𝑢𝑇)(𝐺𝑇))
Distinct variable groups:   𝑥,𝑇   𝜑,𝑥   𝑥,𝑆   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥)   𝐺(𝑥)   𝑀(𝑥)   𝑊(𝑥)

Proof of Theorem ulmss
Dummy variables 𝑗 𝑘 𝑚 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmss.u . 2 (𝜑 → (𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺)
2 ulmss.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
32uztrn2 12250 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
4 ulmss.t . . . . . . . . . . 11 (𝜑𝑇𝑆)
54adantr 484 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝑇𝑆)
6 ssralv 3981 . . . . . . . . . 10 (𝑇𝑆 → (∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑧𝑇 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
75, 6syl 17 . . . . . . . . 9 ((𝜑𝑘𝑍) → (∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑧𝑇 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
8 fvres 6664 . . . . . . . . . . . . . . 15 (𝑧𝑇 → ((𝐴𝑇)‘𝑧) = (𝐴𝑧))
98ad2antll 728 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → ((𝐴𝑇)‘𝑧) = (𝐴𝑧))
10 simprl 770 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → 𝑥𝑍)
11 ulmss.a . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑍) → 𝐴𝑊)
1211adantrr 716 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → 𝐴𝑊)
13 resexg 5864 . . . . . . . . . . . . . . . . 17 (𝐴𝑊 → (𝐴𝑇) ∈ V)
1412, 13syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → (𝐴𝑇) ∈ V)
15 eqid 2798 . . . . . . . . . . . . . . . . 17 (𝑥𝑍 ↦ (𝐴𝑇)) = (𝑥𝑍 ↦ (𝐴𝑇))
1615fvmpt2 6756 . . . . . . . . . . . . . . . 16 ((𝑥𝑍 ∧ (𝐴𝑇) ∈ V) → ((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥) = (𝐴𝑇))
1710, 14, 16syl2anc 587 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → ((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥) = (𝐴𝑇))
1817fveq1d 6647 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = ((𝐴𝑇)‘𝑧))
19 eqid 2798 . . . . . . . . . . . . . . . . 17 (𝑥𝑍𝐴) = (𝑥𝑍𝐴)
2019fvmpt2 6756 . . . . . . . . . . . . . . . 16 ((𝑥𝑍𝐴𝑊) → ((𝑥𝑍𝐴)‘𝑥) = 𝐴)
2110, 12, 20syl2anc 587 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → ((𝑥𝑍𝐴)‘𝑥) = 𝐴)
2221fveq1d 6647 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → (((𝑥𝑍𝐴)‘𝑥)‘𝑧) = (𝐴𝑧))
239, 18, 223eqtr4d 2843 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑥)‘𝑧))
2423ralrimivva 3156 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑍𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑥)‘𝑧))
25 nfv 1915 . . . . . . . . . . . . 13 𝑘𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑥)‘𝑧)
26 nfcv 2955 . . . . . . . . . . . . . 14 𝑥𝑇
27 nffvmpt1 6656 . . . . . . . . . . . . . . . 16 𝑥((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)
28 nfcv 2955 . . . . . . . . . . . . . . . 16 𝑥𝑧
2927, 28nffv 6655 . . . . . . . . . . . . . . 15 𝑥(((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧)
30 nffvmpt1 6656 . . . . . . . . . . . . . . . 16 𝑥((𝑥𝑍𝐴)‘𝑘)
3130, 28nffv 6655 . . . . . . . . . . . . . . 15 𝑥(((𝑥𝑍𝐴)‘𝑘)‘𝑧)
3229, 31nfeq 2968 . . . . . . . . . . . . . 14 𝑥(((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧)
3326, 32nfralw 3189 . . . . . . . . . . . . 13 𝑥𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧)
34 fveq2 6645 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → ((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥) = ((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘))
3534fveq1d 6647 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧))
36 fveq2 6645 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → ((𝑥𝑍𝐴)‘𝑥) = ((𝑥𝑍𝐴)‘𝑘))
3736fveq1d 6647 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → (((𝑥𝑍𝐴)‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧))
3835, 37eqeq12d 2814 . . . . . . . . . . . . . 14 (𝑥 = 𝑘 → ((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑥)‘𝑧) ↔ (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧)))
3938ralbidv 3162 . . . . . . . . . . . . 13 (𝑥 = 𝑘 → (∀𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑥)‘𝑧) ↔ ∀𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧)))
4025, 33, 39cbvralw 3387 . . . . . . . . . . . 12 (∀𝑥𝑍𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑥)‘𝑧) ↔ ∀𝑘𝑍𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧))
4124, 40sylib 221 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝑍𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧))
4241r19.21bi 3173 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ∀𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧))
43 fvoveq1 7158 . . . . . . . . . . . 12 ((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧) → (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) = (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))))
4443breq1d 5040 . . . . . . . . . . 11 ((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧) → ((abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
4544ralimi 3128 . . . . . . . . . 10 (∀𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧) → ∀𝑧𝑇 ((abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
46 ralbi 3135 . . . . . . . . . 10 (∀𝑧𝑇 ((abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟) → (∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∀𝑧𝑇 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
4742, 45, 463syl 18 . . . . . . . . 9 ((𝜑𝑘𝑍) → (∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∀𝑧𝑇 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
487, 47sylibrd 262 . . . . . . . 8 ((𝜑𝑘𝑍) → (∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
493, 48sylan2 595 . . . . . . 7 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
5049anassrs 471 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
5150ralimdva 3144 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
5251reximdva 3233 . . . 4 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
5352ralimdv 3145 . . 3 (𝜑 → (∀𝑟 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑟 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
54 ulmf 24977 . . . . . 6 ((𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺 → ∃𝑚 ∈ ℤ (𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆))
551, 54syl 17 . . . . 5 (𝜑 → ∃𝑚 ∈ ℤ (𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆))
56 fdm 6495 . . . . . . . 8 ((𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆) → dom (𝑥𝑍𝐴) = (ℤ𝑚))
5719dmmptss 6062 . . . . . . . 8 dom (𝑥𝑍𝐴) ⊆ 𝑍
5856, 57eqsstrrdi 3970 . . . . . . 7 ((𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆) → (ℤ𝑚) ⊆ 𝑍)
59 uzid 12246 . . . . . . . 8 (𝑚 ∈ ℤ → 𝑚 ∈ (ℤ𝑚))
6059adantl 485 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → 𝑚 ∈ (ℤ𝑚))
61 ssel 3908 . . . . . . . 8 ((ℤ𝑚) ⊆ 𝑍 → (𝑚 ∈ (ℤ𝑚) → 𝑚𝑍))
62 eluzel2 12236 . . . . . . . . 9 (𝑚 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
6362, 2eleq2s 2908 . . . . . . . 8 (𝑚𝑍𝑀 ∈ ℤ)
6461, 63syl6 35 . . . . . . 7 ((ℤ𝑚) ⊆ 𝑍 → (𝑚 ∈ (ℤ𝑚) → 𝑀 ∈ ℤ))
6558, 60, 64syl2imc 41 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → ((𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆) → 𝑀 ∈ ℤ))
6665rexlimdva 3243 . . . . 5 (𝜑 → (∃𝑚 ∈ ℤ (𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆) → 𝑀 ∈ ℤ))
6755, 66mpd 15 . . . 4 (𝜑𝑀 ∈ ℤ)
6811ralrimiva 3149 . . . . . 6 (𝜑 → ∀𝑥𝑍 𝐴𝑊)
6919fnmpt 6460 . . . . . 6 (∀𝑥𝑍 𝐴𝑊 → (𝑥𝑍𝐴) Fn 𝑍)
7068, 69syl 17 . . . . 5 (𝜑 → (𝑥𝑍𝐴) Fn 𝑍)
71 frn 6493 . . . . . . 7 ((𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆) → ran (𝑥𝑍𝐴) ⊆ (ℂ ↑m 𝑆))
7271rexlimivw 3241 . . . . . 6 (∃𝑚 ∈ ℤ (𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆) → ran (𝑥𝑍𝐴) ⊆ (ℂ ↑m 𝑆))
7355, 72syl 17 . . . . 5 (𝜑 → ran (𝑥𝑍𝐴) ⊆ (ℂ ↑m 𝑆))
74 df-f 6328 . . . . 5 ((𝑥𝑍𝐴):𝑍⟶(ℂ ↑m 𝑆) ↔ ((𝑥𝑍𝐴) Fn 𝑍 ∧ ran (𝑥𝑍𝐴) ⊆ (ℂ ↑m 𝑆)))
7570, 73, 74sylanbrc 586 . . . 4 (𝜑 → (𝑥𝑍𝐴):𝑍⟶(ℂ ↑m 𝑆))
76 eqidd 2799 . . . 4 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → (((𝑥𝑍𝐴)‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧))
77 eqidd 2799 . . . 4 ((𝜑𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
78 ulmcl 24976 . . . . 5 ((𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
791, 78syl 17 . . . 4 (𝜑𝐺:𝑆⟶ℂ)
80 ulmscl 24974 . . . . 5 ((𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺𝑆 ∈ V)
811, 80syl 17 . . . 4 (𝜑𝑆 ∈ V)
822, 67, 75, 76, 77, 79, 81ulm2 24980 . . 3 (𝜑 → ((𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺 ↔ ∀𝑟 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
8375fvmptelrn 6854 . . . . . . . 8 ((𝜑𝑥𝑍) → 𝐴 ∈ (ℂ ↑m 𝑆))
84 elmapi 8411 . . . . . . . 8 (𝐴 ∈ (ℂ ↑m 𝑆) → 𝐴:𝑆⟶ℂ)
8583, 84syl 17 . . . . . . 7 ((𝜑𝑥𝑍) → 𝐴:𝑆⟶ℂ)
864adantr 484 . . . . . . 7 ((𝜑𝑥𝑍) → 𝑇𝑆)
8785, 86fssresd 6519 . . . . . 6 ((𝜑𝑥𝑍) → (𝐴𝑇):𝑇⟶ℂ)
88 cnex 10607 . . . . . . 7 ℂ ∈ V
8981, 4ssexd 5192 . . . . . . . 8 (𝜑𝑇 ∈ V)
9089adantr 484 . . . . . . 7 ((𝜑𝑥𝑍) → 𝑇 ∈ V)
91 elmapg 8402 . . . . . . 7 ((ℂ ∈ V ∧ 𝑇 ∈ V) → ((𝐴𝑇) ∈ (ℂ ↑m 𝑇) ↔ (𝐴𝑇):𝑇⟶ℂ))
9288, 90, 91sylancr 590 . . . . . 6 ((𝜑𝑥𝑍) → ((𝐴𝑇) ∈ (ℂ ↑m 𝑇) ↔ (𝐴𝑇):𝑇⟶ℂ))
9387, 92mpbird 260 . . . . 5 ((𝜑𝑥𝑍) → (𝐴𝑇) ∈ (ℂ ↑m 𝑇))
9493fmpttd 6856 . . . 4 (𝜑 → (𝑥𝑍 ↦ (𝐴𝑇)):𝑍⟶(ℂ ↑m 𝑇))
95 eqidd 2799 . . . 4 ((𝜑 ∧ (𝑘𝑍𝑧𝑇)) → (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧))
96 fvres 6664 . . . . 5 (𝑧𝑇 → ((𝐺𝑇)‘𝑧) = (𝐺𝑧))
9796adantl 485 . . . 4 ((𝜑𝑧𝑇) → ((𝐺𝑇)‘𝑧) = (𝐺𝑧))
9879, 4fssresd 6519 . . . 4 (𝜑 → (𝐺𝑇):𝑇⟶ℂ)
992, 67, 94, 95, 97, 98, 89ulm2 24980 . . 3 (𝜑 → ((𝑥𝑍 ↦ (𝐴𝑇))(⇝𝑢𝑇)(𝐺𝑇) ↔ ∀𝑟 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
10053, 82, 993imtr4d 297 . 2 (𝜑 → ((𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺 → (𝑥𝑍 ↦ (𝐴𝑇))(⇝𝑢𝑇)(𝐺𝑇)))
1011, 100mpd 15 1 (𝜑 → (𝑥𝑍 ↦ (𝐴𝑇))(⇝𝑢𝑇)(𝐺𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  wrex 3107  Vcvv 3441  wss 3881   class class class wbr 5030  cmpt 5110  dom cdm 5519  ran crn 5520  cres 5521   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  m cmap 8389  cc 10524   < clt 10664  cmin 10859  cz 11969  cuz 12231  +crp 12377  abscabs 14585  𝑢culm 24971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-neg 10862  df-z 11970  df-uz 12232  df-ulm 24972
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator