Step | Hyp | Ref
| Expression |
1 | | ulmss.u |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ 𝐴)(⇝𝑢‘𝑆)𝐺) |
2 | | ulmss.z |
. . . . . . . . 9
⊢ 𝑍 =
(ℤ≥‘𝑀) |
3 | 2 | uztrn2 12530 |
. . . . . . . 8
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
4 | | ulmss.t |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇 ⊆ 𝑆) |
5 | 4 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑇 ⊆ 𝑆) |
6 | | ssralv 3983 |
. . . . . . . . . 10
⊢ (𝑇 ⊆ 𝑆 → (∀𝑧 ∈ 𝑆 (abs‘((((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑟 → ∀𝑧 ∈ 𝑇 (abs‘((((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑟)) |
7 | 5, 6 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (∀𝑧 ∈ 𝑆 (abs‘((((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑟 → ∀𝑧 ∈ 𝑇 (abs‘((((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑟)) |
8 | | fvres 6775 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝑇 → ((𝐴 ↾ 𝑇)‘𝑧) = (𝐴‘𝑧)) |
9 | 8 | ad2antll 725 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑍 ∧ 𝑧 ∈ 𝑇)) → ((𝐴 ↾ 𝑇)‘𝑧) = (𝐴‘𝑧)) |
10 | | simprl 767 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑍 ∧ 𝑧 ∈ 𝑇)) → 𝑥 ∈ 𝑍) |
11 | | ulmss.a |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐴 ∈ 𝑊) |
12 | 11 | adantrr 713 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑍 ∧ 𝑧 ∈ 𝑇)) → 𝐴 ∈ 𝑊) |
13 | 12 | resexd 5927 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑍 ∧ 𝑧 ∈ 𝑇)) → (𝐴 ↾ 𝑇) ∈ V) |
14 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇)) = (𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇)) |
15 | 14 | fvmpt2 6868 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝑍 ∧ (𝐴 ↾ 𝑇) ∈ V) → ((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑥) = (𝐴 ↾ 𝑇)) |
16 | 10, 13, 15 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑍 ∧ 𝑧 ∈ 𝑇)) → ((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑥) = (𝐴 ↾ 𝑇)) |
17 | 16 | fveq1d 6758 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑍 ∧ 𝑧 ∈ 𝑇)) → (((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑥)‘𝑧) = ((𝐴 ↾ 𝑇)‘𝑧)) |
18 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝑍 ↦ 𝐴) = (𝑥 ∈ 𝑍 ↦ 𝐴) |
19 | 18 | fvmpt2 6868 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝑍 ∧ 𝐴 ∈ 𝑊) → ((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥) = 𝐴) |
20 | 10, 12, 19 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑍 ∧ 𝑧 ∈ 𝑇)) → ((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥) = 𝐴) |
21 | 20 | fveq1d 6758 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑍 ∧ 𝑧 ∈ 𝑇)) → (((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥)‘𝑧) = (𝐴‘𝑧)) |
22 | 9, 17, 21 | 3eqtr4d 2788 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑍 ∧ 𝑧 ∈ 𝑇)) → (((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑥)‘𝑧) = (((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥)‘𝑧)) |
23 | 22 | ralrimivva 3114 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑥 ∈ 𝑍 ∀𝑧 ∈ 𝑇 (((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑥)‘𝑧) = (((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥)‘𝑧)) |
24 | | nfv 1918 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘∀𝑧 ∈ 𝑇 (((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑥)‘𝑧) = (((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥)‘𝑧) |
25 | | nfcv 2906 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥𝑇 |
26 | | nffvmpt1 6767 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑘) |
27 | | nfcv 2906 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥𝑧 |
28 | 26, 27 | nffv 6766 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥(((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑘)‘𝑧) |
29 | | nffvmpt1 6767 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘) |
30 | 29, 27 | nffv 6766 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥(((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧) |
31 | 28, 30 | nfeq 2919 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥(((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑘)‘𝑧) = (((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧) |
32 | 25, 31 | nfralw 3149 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥∀𝑧 ∈ 𝑇 (((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑘)‘𝑧) = (((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧) |
33 | | fveq2 6756 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑘 → ((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑥) = ((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑘)) |
34 | 33 | fveq1d 6758 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑘 → (((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑥)‘𝑧) = (((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑘)‘𝑧)) |
35 | | fveq2 6756 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑘 → ((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥) = ((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)) |
36 | 35 | fveq1d 6758 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑘 → (((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥)‘𝑧) = (((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧)) |
37 | 34, 36 | eqeq12d 2754 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑘 → ((((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑥)‘𝑧) = (((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥)‘𝑧) ↔ (((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑘)‘𝑧) = (((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧))) |
38 | 37 | ralbidv 3120 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑘 → (∀𝑧 ∈ 𝑇 (((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑥)‘𝑧) = (((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥)‘𝑧) ↔ ∀𝑧 ∈ 𝑇 (((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑘)‘𝑧) = (((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧))) |
39 | 24, 32, 38 | cbvralw 3363 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
𝑍 ∀𝑧 ∈ 𝑇 (((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑥)‘𝑧) = (((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥)‘𝑧) ↔ ∀𝑘 ∈ 𝑍 ∀𝑧 ∈ 𝑇 (((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑘)‘𝑧) = (((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧)) |
40 | 23, 39 | sylib 217 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 ∀𝑧 ∈ 𝑇 (((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑘)‘𝑧) = (((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧)) |
41 | 40 | r19.21bi 3132 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ∀𝑧 ∈ 𝑇 (((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑘)‘𝑧) = (((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧)) |
42 | | fvoveq1 7278 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑘)‘𝑧) = (((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧) → (abs‘((((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑘)‘𝑧) − (𝐺‘𝑧))) = (abs‘((((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧) − (𝐺‘𝑧)))) |
43 | 42 | breq1d 5080 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑘)‘𝑧) = (((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧) → ((abs‘((((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑟 ↔ (abs‘((((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑟)) |
44 | 43 | ralimi 3086 |
. . . . . . . . . 10
⊢
(∀𝑧 ∈
𝑇 (((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑘)‘𝑧) = (((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧) → ∀𝑧 ∈ 𝑇 ((abs‘((((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑟 ↔ (abs‘((((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑟)) |
45 | | ralbi 3092 |
. . . . . . . . . 10
⊢
(∀𝑧 ∈
𝑇 ((abs‘((((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑟 ↔ (abs‘((((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑟) → (∀𝑧 ∈ 𝑇 (abs‘((((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑟 ↔ ∀𝑧 ∈ 𝑇 (abs‘((((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑟)) |
46 | 41, 44, 45 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (∀𝑧 ∈ 𝑇 (abs‘((((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑟 ↔ ∀𝑧 ∈ 𝑇 (abs‘((((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑟)) |
47 | 7, 46 | sylibrd 258 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (∀𝑧 ∈ 𝑆 (abs‘((((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑟 → ∀𝑧 ∈ 𝑇 (abs‘((((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑟)) |
48 | 3, 47 | sylan2 592 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (∀𝑧 ∈ 𝑆 (abs‘((((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑟 → ∀𝑧 ∈ 𝑇 (abs‘((((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑟)) |
49 | 48 | anassrs 467 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (∀𝑧 ∈ 𝑆 (abs‘((((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑟 → ∀𝑧 ∈ 𝑇 (abs‘((((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑟)) |
50 | 49 | ralimdva 3102 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘((((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑟 → ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑇 (abs‘((((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑟)) |
51 | 50 | reximdva 3202 |
. . . 4
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘((((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑟 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑇 (abs‘((((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑟)) |
52 | 51 | ralimdv 3103 |
. . 3
⊢ (𝜑 → (∀𝑟 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘((((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑟 → ∀𝑟 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑇 (abs‘((((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑟)) |
53 | | ulmf 25446 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑍 ↦ 𝐴)(⇝𝑢‘𝑆)𝐺 → ∃𝑚 ∈ ℤ (𝑥 ∈ 𝑍 ↦ 𝐴):(ℤ≥‘𝑚)⟶(ℂ
↑m 𝑆)) |
54 | 1, 53 | syl 17 |
. . . . 5
⊢ (𝜑 → ∃𝑚 ∈ ℤ (𝑥 ∈ 𝑍 ↦ 𝐴):(ℤ≥‘𝑚)⟶(ℂ
↑m 𝑆)) |
55 | | fdm 6593 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑍 ↦ 𝐴):(ℤ≥‘𝑚)⟶(ℂ
↑m 𝑆)
→ dom (𝑥 ∈ 𝑍 ↦ 𝐴) = (ℤ≥‘𝑚)) |
56 | 18 | dmmptss 6133 |
. . . . . . . 8
⊢ dom
(𝑥 ∈ 𝑍 ↦ 𝐴) ⊆ 𝑍 |
57 | 55, 56 | eqsstrrdi 3972 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑍 ↦ 𝐴):(ℤ≥‘𝑚)⟶(ℂ
↑m 𝑆)
→ (ℤ≥‘𝑚) ⊆ 𝑍) |
58 | | uzid 12526 |
. . . . . . . 8
⊢ (𝑚 ∈ ℤ → 𝑚 ∈
(ℤ≥‘𝑚)) |
59 | 58 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ (ℤ≥‘𝑚)) |
60 | | ssel 3910 |
. . . . . . . 8
⊢
((ℤ≥‘𝑚) ⊆ 𝑍 → (𝑚 ∈ (ℤ≥‘𝑚) → 𝑚 ∈ 𝑍)) |
61 | | eluzel2 12516 |
. . . . . . . . 9
⊢ (𝑚 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
62 | 61, 2 | eleq2s 2857 |
. . . . . . . 8
⊢ (𝑚 ∈ 𝑍 → 𝑀 ∈ ℤ) |
63 | 60, 62 | syl6 35 |
. . . . . . 7
⊢
((ℤ≥‘𝑚) ⊆ 𝑍 → (𝑚 ∈ (ℤ≥‘𝑚) → 𝑀 ∈ ℤ)) |
64 | 57, 59, 63 | syl2imc 41 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → ((𝑥 ∈ 𝑍 ↦ 𝐴):(ℤ≥‘𝑚)⟶(ℂ
↑m 𝑆)
→ 𝑀 ∈
ℤ)) |
65 | 64 | rexlimdva 3212 |
. . . . 5
⊢ (𝜑 → (∃𝑚 ∈ ℤ (𝑥 ∈ 𝑍 ↦ 𝐴):(ℤ≥‘𝑚)⟶(ℂ
↑m 𝑆)
→ 𝑀 ∈
ℤ)) |
66 | 54, 65 | mpd 15 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℤ) |
67 | 11 | ralrimiva 3107 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝑍 𝐴 ∈ 𝑊) |
68 | 18 | fnmpt 6557 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑍 𝐴 ∈ 𝑊 → (𝑥 ∈ 𝑍 ↦ 𝐴) Fn 𝑍) |
69 | 67, 68 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ 𝐴) Fn 𝑍) |
70 | | frn 6591 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑍 ↦ 𝐴):(ℤ≥‘𝑚)⟶(ℂ
↑m 𝑆)
→ ran (𝑥 ∈ 𝑍 ↦ 𝐴) ⊆ (ℂ ↑m 𝑆)) |
71 | 70 | rexlimivw 3210 |
. . . . . 6
⊢
(∃𝑚 ∈
ℤ (𝑥 ∈ 𝑍 ↦ 𝐴):(ℤ≥‘𝑚)⟶(ℂ
↑m 𝑆)
→ ran (𝑥 ∈ 𝑍 ↦ 𝐴) ⊆ (ℂ ↑m 𝑆)) |
72 | 54, 71 | syl 17 |
. . . . 5
⊢ (𝜑 → ran (𝑥 ∈ 𝑍 ↦ 𝐴) ⊆ (ℂ ↑m 𝑆)) |
73 | | df-f 6422 |
. . . . 5
⊢ ((𝑥 ∈ 𝑍 ↦ 𝐴):𝑍⟶(ℂ ↑m 𝑆) ↔ ((𝑥 ∈ 𝑍 ↦ 𝐴) Fn 𝑍 ∧ ran (𝑥 ∈ 𝑍 ↦ 𝐴) ⊆ (ℂ ↑m 𝑆))) |
74 | 69, 72, 73 | sylanbrc 582 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ 𝐴):𝑍⟶(ℂ ↑m 𝑆)) |
75 | | eqidd 2739 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → (((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧) = (((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧)) |
76 | | eqidd 2739 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝐺‘𝑧) = (𝐺‘𝑧)) |
77 | | ulmcl 25445 |
. . . . 5
⊢ ((𝑥 ∈ 𝑍 ↦ 𝐴)(⇝𝑢‘𝑆)𝐺 → 𝐺:𝑆⟶ℂ) |
78 | 1, 77 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐺:𝑆⟶ℂ) |
79 | | ulmscl 25443 |
. . . . 5
⊢ ((𝑥 ∈ 𝑍 ↦ 𝐴)(⇝𝑢‘𝑆)𝐺 → 𝑆 ∈ V) |
80 | 1, 79 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑆 ∈ V) |
81 | 2, 66, 74, 75, 76, 78, 80 | ulm2 25449 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝑍 ↦ 𝐴)(⇝𝑢‘𝑆)𝐺 ↔ ∀𝑟 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘((((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑟)) |
82 | 74 | fvmptelrn 6969 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐴 ∈ (ℂ ↑m 𝑆)) |
83 | | elmapi 8595 |
. . . . . . . 8
⊢ (𝐴 ∈ (ℂ
↑m 𝑆)
→ 𝐴:𝑆⟶ℂ) |
84 | 82, 83 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐴:𝑆⟶ℂ) |
85 | 4 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝑇 ⊆ 𝑆) |
86 | 84, 85 | fssresd 6625 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → (𝐴 ↾ 𝑇):𝑇⟶ℂ) |
87 | | cnex 10883 |
. . . . . . 7
⊢ ℂ
∈ V |
88 | 80, 4 | ssexd 5243 |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ∈ V) |
89 | 88 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝑇 ∈ V) |
90 | | elmapg 8586 |
. . . . . . 7
⊢ ((ℂ
∈ V ∧ 𝑇 ∈ V)
→ ((𝐴 ↾ 𝑇) ∈ (ℂ
↑m 𝑇)
↔ (𝐴 ↾ 𝑇):𝑇⟶ℂ)) |
91 | 87, 89, 90 | sylancr 586 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → ((𝐴 ↾ 𝑇) ∈ (ℂ ↑m 𝑇) ↔ (𝐴 ↾ 𝑇):𝑇⟶ℂ)) |
92 | 86, 91 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → (𝐴 ↾ 𝑇) ∈ (ℂ ↑m 𝑇)) |
93 | 92 | fmpttd 6971 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇)):𝑍⟶(ℂ ↑m 𝑇)) |
94 | | eqidd 2739 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑇)) → (((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑘)‘𝑧) = (((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑘)‘𝑧)) |
95 | | fvres 6775 |
. . . . 5
⊢ (𝑧 ∈ 𝑇 → ((𝐺 ↾ 𝑇)‘𝑧) = (𝐺‘𝑧)) |
96 | 95 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑇) → ((𝐺 ↾ 𝑇)‘𝑧) = (𝐺‘𝑧)) |
97 | 78, 4 | fssresd 6625 |
. . . 4
⊢ (𝜑 → (𝐺 ↾ 𝑇):𝑇⟶ℂ) |
98 | 2, 66, 93, 94, 96, 97, 88 | ulm2 25449 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))(⇝𝑢‘𝑇)(𝐺 ↾ 𝑇) ↔ ∀𝑟 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑇 (abs‘((((𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑟)) |
99 | 52, 81, 98 | 3imtr4d 293 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝑍 ↦ 𝐴)(⇝𝑢‘𝑆)𝐺 → (𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))(⇝𝑢‘𝑇)(𝐺 ↾ 𝑇))) |
100 | 1, 99 | mpd 15 |
1
⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))(⇝𝑢‘𝑇)(𝐺 ↾ 𝑇)) |