MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmss Structured version   Visualization version   GIF version

Theorem ulmss 26458
Description: A uniform limit of functions is still a uniform limit if restricted to a subset. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
ulmss.z 𝑍 = (ℤ𝑀)
ulmss.t (𝜑𝑇𝑆)
ulmss.a ((𝜑𝑥𝑍) → 𝐴𝑊)
ulmss.u (𝜑 → (𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺)
Assertion
Ref Expression
ulmss (𝜑 → (𝑥𝑍 ↦ (𝐴𝑇))(⇝𝑢𝑇)(𝐺𝑇))
Distinct variable groups:   𝑥,𝑇   𝜑,𝑥   𝑥,𝑆   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥)   𝐺(𝑥)   𝑀(𝑥)   𝑊(𝑥)

Proof of Theorem ulmss
Dummy variables 𝑗 𝑘 𝑚 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmss.u . 2 (𝜑 → (𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺)
2 ulmss.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
32uztrn2 12922 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
4 ulmss.t . . . . . . . . . . 11 (𝜑𝑇𝑆)
54adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝑇𝑆)
6 ssralv 4077 . . . . . . . . . 10 (𝑇𝑆 → (∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑧𝑇 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
75, 6syl 17 . . . . . . . . 9 ((𝜑𝑘𝑍) → (∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑧𝑇 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
8 fvres 6939 . . . . . . . . . . . . . . 15 (𝑧𝑇 → ((𝐴𝑇)‘𝑧) = (𝐴𝑧))
98ad2antll 728 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → ((𝐴𝑇)‘𝑧) = (𝐴𝑧))
10 simprl 770 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → 𝑥𝑍)
11 ulmss.a . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑍) → 𝐴𝑊)
1211adantrr 716 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → 𝐴𝑊)
1312resexd 6057 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → (𝐴𝑇) ∈ V)
14 eqid 2740 . . . . . . . . . . . . . . . . 17 (𝑥𝑍 ↦ (𝐴𝑇)) = (𝑥𝑍 ↦ (𝐴𝑇))
1514fvmpt2 7040 . . . . . . . . . . . . . . . 16 ((𝑥𝑍 ∧ (𝐴𝑇) ∈ V) → ((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥) = (𝐴𝑇))
1610, 13, 15syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → ((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥) = (𝐴𝑇))
1716fveq1d 6922 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = ((𝐴𝑇)‘𝑧))
18 eqid 2740 . . . . . . . . . . . . . . . . 17 (𝑥𝑍𝐴) = (𝑥𝑍𝐴)
1918fvmpt2 7040 . . . . . . . . . . . . . . . 16 ((𝑥𝑍𝐴𝑊) → ((𝑥𝑍𝐴)‘𝑥) = 𝐴)
2010, 12, 19syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → ((𝑥𝑍𝐴)‘𝑥) = 𝐴)
2120fveq1d 6922 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → (((𝑥𝑍𝐴)‘𝑥)‘𝑧) = (𝐴𝑧))
229, 17, 213eqtr4d 2790 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑥)‘𝑧))
2322ralrimivva 3208 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑍𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑥)‘𝑧))
24 nfv 1913 . . . . . . . . . . . . 13 𝑘𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑥)‘𝑧)
25 nfcv 2908 . . . . . . . . . . . . . 14 𝑥𝑇
26 nffvmpt1 6931 . . . . . . . . . . . . . . . 16 𝑥((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)
27 nfcv 2908 . . . . . . . . . . . . . . . 16 𝑥𝑧
2826, 27nffv 6930 . . . . . . . . . . . . . . 15 𝑥(((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧)
29 nffvmpt1 6931 . . . . . . . . . . . . . . . 16 𝑥((𝑥𝑍𝐴)‘𝑘)
3029, 27nffv 6930 . . . . . . . . . . . . . . 15 𝑥(((𝑥𝑍𝐴)‘𝑘)‘𝑧)
3128, 30nfeq 2922 . . . . . . . . . . . . . 14 𝑥(((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧)
3225, 31nfralw 3317 . . . . . . . . . . . . 13 𝑥𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧)
33 fveq2 6920 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → ((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥) = ((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘))
3433fveq1d 6922 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧))
35 fveq2 6920 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → ((𝑥𝑍𝐴)‘𝑥) = ((𝑥𝑍𝐴)‘𝑘))
3635fveq1d 6922 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → (((𝑥𝑍𝐴)‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧))
3734, 36eqeq12d 2756 . . . . . . . . . . . . . 14 (𝑥 = 𝑘 → ((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑥)‘𝑧) ↔ (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧)))
3837ralbidv 3184 . . . . . . . . . . . . 13 (𝑥 = 𝑘 → (∀𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑥)‘𝑧) ↔ ∀𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧)))
3924, 32, 38cbvralw 3312 . . . . . . . . . . . 12 (∀𝑥𝑍𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑥)‘𝑧) ↔ ∀𝑘𝑍𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧))
4023, 39sylib 218 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝑍𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧))
4140r19.21bi 3257 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ∀𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧))
42 fvoveq1 7471 . . . . . . . . . . . 12 ((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧) → (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) = (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))))
4342breq1d 5176 . . . . . . . . . . 11 ((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧) → ((abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
4443ralimi 3089 . . . . . . . . . 10 (∀𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧) → ∀𝑧𝑇 ((abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
45 ralbi 3109 . . . . . . . . . 10 (∀𝑧𝑇 ((abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟) → (∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∀𝑧𝑇 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
4641, 44, 453syl 18 . . . . . . . . 9 ((𝜑𝑘𝑍) → (∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∀𝑧𝑇 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
477, 46sylibrd 259 . . . . . . . 8 ((𝜑𝑘𝑍) → (∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
483, 47sylan2 592 . . . . . . 7 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
4948anassrs 467 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
5049ralimdva 3173 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
5150reximdva 3174 . . . 4 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
5251ralimdv 3175 . . 3 (𝜑 → (∀𝑟 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑟 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
53 ulmf 26443 . . . . . 6 ((𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺 → ∃𝑚 ∈ ℤ (𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆))
541, 53syl 17 . . . . 5 (𝜑 → ∃𝑚 ∈ ℤ (𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆))
55 fdm 6756 . . . . . . . 8 ((𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆) → dom (𝑥𝑍𝐴) = (ℤ𝑚))
5618dmmptss 6272 . . . . . . . 8 dom (𝑥𝑍𝐴) ⊆ 𝑍
5755, 56eqsstrrdi 4064 . . . . . . 7 ((𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆) → (ℤ𝑚) ⊆ 𝑍)
58 uzid 12918 . . . . . . . 8 (𝑚 ∈ ℤ → 𝑚 ∈ (ℤ𝑚))
5958adantl 481 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → 𝑚 ∈ (ℤ𝑚))
60 ssel 4002 . . . . . . . 8 ((ℤ𝑚) ⊆ 𝑍 → (𝑚 ∈ (ℤ𝑚) → 𝑚𝑍))
61 eluzel2 12908 . . . . . . . . 9 (𝑚 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
6261, 2eleq2s 2862 . . . . . . . 8 (𝑚𝑍𝑀 ∈ ℤ)
6360, 62syl6 35 . . . . . . 7 ((ℤ𝑚) ⊆ 𝑍 → (𝑚 ∈ (ℤ𝑚) → 𝑀 ∈ ℤ))
6457, 59, 63syl2imc 41 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → ((𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆) → 𝑀 ∈ ℤ))
6564rexlimdva 3161 . . . . 5 (𝜑 → (∃𝑚 ∈ ℤ (𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆) → 𝑀 ∈ ℤ))
6654, 65mpd 15 . . . 4 (𝜑𝑀 ∈ ℤ)
6711ralrimiva 3152 . . . . . 6 (𝜑 → ∀𝑥𝑍 𝐴𝑊)
6818fnmpt 6720 . . . . . 6 (∀𝑥𝑍 𝐴𝑊 → (𝑥𝑍𝐴) Fn 𝑍)
6967, 68syl 17 . . . . 5 (𝜑 → (𝑥𝑍𝐴) Fn 𝑍)
70 frn 6754 . . . . . . 7 ((𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆) → ran (𝑥𝑍𝐴) ⊆ (ℂ ↑m 𝑆))
7170rexlimivw 3157 . . . . . 6 (∃𝑚 ∈ ℤ (𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆) → ran (𝑥𝑍𝐴) ⊆ (ℂ ↑m 𝑆))
7254, 71syl 17 . . . . 5 (𝜑 → ran (𝑥𝑍𝐴) ⊆ (ℂ ↑m 𝑆))
73 df-f 6577 . . . . 5 ((𝑥𝑍𝐴):𝑍⟶(ℂ ↑m 𝑆) ↔ ((𝑥𝑍𝐴) Fn 𝑍 ∧ ran (𝑥𝑍𝐴) ⊆ (ℂ ↑m 𝑆)))
7469, 72, 73sylanbrc 582 . . . 4 (𝜑 → (𝑥𝑍𝐴):𝑍⟶(ℂ ↑m 𝑆))
75 eqidd 2741 . . . 4 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → (((𝑥𝑍𝐴)‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧))
76 eqidd 2741 . . . 4 ((𝜑𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
77 ulmcl 26442 . . . . 5 ((𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
781, 77syl 17 . . . 4 (𝜑𝐺:𝑆⟶ℂ)
79 ulmscl 26440 . . . . 5 ((𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺𝑆 ∈ V)
801, 79syl 17 . . . 4 (𝜑𝑆 ∈ V)
812, 66, 74, 75, 76, 78, 80ulm2 26446 . . 3 (𝜑 → ((𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺 ↔ ∀𝑟 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
8274fvmptelcdm 7147 . . . . . . . 8 ((𝜑𝑥𝑍) → 𝐴 ∈ (ℂ ↑m 𝑆))
83 elmapi 8907 . . . . . . . 8 (𝐴 ∈ (ℂ ↑m 𝑆) → 𝐴:𝑆⟶ℂ)
8482, 83syl 17 . . . . . . 7 ((𝜑𝑥𝑍) → 𝐴:𝑆⟶ℂ)
854adantr 480 . . . . . . 7 ((𝜑𝑥𝑍) → 𝑇𝑆)
8684, 85fssresd 6788 . . . . . 6 ((𝜑𝑥𝑍) → (𝐴𝑇):𝑇⟶ℂ)
87 cnex 11265 . . . . . . 7 ℂ ∈ V
8880, 4ssexd 5342 . . . . . . . 8 (𝜑𝑇 ∈ V)
8988adantr 480 . . . . . . 7 ((𝜑𝑥𝑍) → 𝑇 ∈ V)
90 elmapg 8897 . . . . . . 7 ((ℂ ∈ V ∧ 𝑇 ∈ V) → ((𝐴𝑇) ∈ (ℂ ↑m 𝑇) ↔ (𝐴𝑇):𝑇⟶ℂ))
9187, 89, 90sylancr 586 . . . . . 6 ((𝜑𝑥𝑍) → ((𝐴𝑇) ∈ (ℂ ↑m 𝑇) ↔ (𝐴𝑇):𝑇⟶ℂ))
9286, 91mpbird 257 . . . . 5 ((𝜑𝑥𝑍) → (𝐴𝑇) ∈ (ℂ ↑m 𝑇))
9392fmpttd 7149 . . . 4 (𝜑 → (𝑥𝑍 ↦ (𝐴𝑇)):𝑍⟶(ℂ ↑m 𝑇))
94 eqidd 2741 . . . 4 ((𝜑 ∧ (𝑘𝑍𝑧𝑇)) → (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧))
95 fvres 6939 . . . . 5 (𝑧𝑇 → ((𝐺𝑇)‘𝑧) = (𝐺𝑧))
9695adantl 481 . . . 4 ((𝜑𝑧𝑇) → ((𝐺𝑇)‘𝑧) = (𝐺𝑧))
9778, 4fssresd 6788 . . . 4 (𝜑 → (𝐺𝑇):𝑇⟶ℂ)
982, 66, 93, 94, 96, 97, 88ulm2 26446 . . 3 (𝜑 → ((𝑥𝑍 ↦ (𝐴𝑇))(⇝𝑢𝑇)(𝐺𝑇) ↔ ∀𝑟 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
9952, 81, 983imtr4d 294 . 2 (𝜑 → ((𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺 → (𝑥𝑍 ↦ (𝐴𝑇))(⇝𝑢𝑇)(𝐺𝑇)))
1001, 99mpd 15 1 (𝜑 → (𝑥𝑍 ↦ (𝐴𝑇))(⇝𝑢𝑇)(𝐺𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  wss 3976   class class class wbr 5166  cmpt 5249  dom cdm 5700  ran crn 5701  cres 5702   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  cc 11182   < clt 11324  cmin 11520  cz 12639  cuz 12903  +crp 13057  abscabs 15283  𝑢culm 26437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-neg 11523  df-z 12640  df-uz 12904  df-ulm 26438
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator