MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmss Structured version   Visualization version   GIF version

Theorem ulmss 26313
Description: A uniform limit of functions is still a uniform limit if restricted to a subset. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
ulmss.z 𝑍 = (ℤ𝑀)
ulmss.t (𝜑𝑇𝑆)
ulmss.a ((𝜑𝑥𝑍) → 𝐴𝑊)
ulmss.u (𝜑 → (𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺)
Assertion
Ref Expression
ulmss (𝜑 → (𝑥𝑍 ↦ (𝐴𝑇))(⇝𝑢𝑇)(𝐺𝑇))
Distinct variable groups:   𝑥,𝑇   𝜑,𝑥   𝑥,𝑆   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥)   𝐺(𝑥)   𝑀(𝑥)   𝑊(𝑥)

Proof of Theorem ulmss
Dummy variables 𝑗 𝑘 𝑚 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmss.u . 2 (𝜑 → (𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺)
2 ulmss.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
32uztrn2 12819 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
4 ulmss.t . . . . . . . . . . 11 (𝜑𝑇𝑆)
54adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝑇𝑆)
6 ssralv 4018 . . . . . . . . . 10 (𝑇𝑆 → (∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑧𝑇 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
75, 6syl 17 . . . . . . . . 9 ((𝜑𝑘𝑍) → (∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑧𝑇 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
8 fvres 6880 . . . . . . . . . . . . . . 15 (𝑧𝑇 → ((𝐴𝑇)‘𝑧) = (𝐴𝑧))
98ad2antll 729 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → ((𝐴𝑇)‘𝑧) = (𝐴𝑧))
10 simprl 770 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → 𝑥𝑍)
11 ulmss.a . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑍) → 𝐴𝑊)
1211adantrr 717 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → 𝐴𝑊)
1312resexd 6002 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → (𝐴𝑇) ∈ V)
14 eqid 2730 . . . . . . . . . . . . . . . . 17 (𝑥𝑍 ↦ (𝐴𝑇)) = (𝑥𝑍 ↦ (𝐴𝑇))
1514fvmpt2 6982 . . . . . . . . . . . . . . . 16 ((𝑥𝑍 ∧ (𝐴𝑇) ∈ V) → ((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥) = (𝐴𝑇))
1610, 13, 15syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → ((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥) = (𝐴𝑇))
1716fveq1d 6863 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = ((𝐴𝑇)‘𝑧))
18 eqid 2730 . . . . . . . . . . . . . . . . 17 (𝑥𝑍𝐴) = (𝑥𝑍𝐴)
1918fvmpt2 6982 . . . . . . . . . . . . . . . 16 ((𝑥𝑍𝐴𝑊) → ((𝑥𝑍𝐴)‘𝑥) = 𝐴)
2010, 12, 19syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → ((𝑥𝑍𝐴)‘𝑥) = 𝐴)
2120fveq1d 6863 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → (((𝑥𝑍𝐴)‘𝑥)‘𝑧) = (𝐴𝑧))
229, 17, 213eqtr4d 2775 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑥)‘𝑧))
2322ralrimivva 3181 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑍𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑥)‘𝑧))
24 nfv 1914 . . . . . . . . . . . . 13 𝑘𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑥)‘𝑧)
25 nfcv 2892 . . . . . . . . . . . . . 14 𝑥𝑇
26 nffvmpt1 6872 . . . . . . . . . . . . . . . 16 𝑥((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)
27 nfcv 2892 . . . . . . . . . . . . . . . 16 𝑥𝑧
2826, 27nffv 6871 . . . . . . . . . . . . . . 15 𝑥(((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧)
29 nffvmpt1 6872 . . . . . . . . . . . . . . . 16 𝑥((𝑥𝑍𝐴)‘𝑘)
3029, 27nffv 6871 . . . . . . . . . . . . . . 15 𝑥(((𝑥𝑍𝐴)‘𝑘)‘𝑧)
3128, 30nfeq 2906 . . . . . . . . . . . . . 14 𝑥(((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧)
3225, 31nfralw 3287 . . . . . . . . . . . . 13 𝑥𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧)
33 fveq2 6861 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → ((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥) = ((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘))
3433fveq1d 6863 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧))
35 fveq2 6861 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → ((𝑥𝑍𝐴)‘𝑥) = ((𝑥𝑍𝐴)‘𝑘))
3635fveq1d 6863 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → (((𝑥𝑍𝐴)‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧))
3734, 36eqeq12d 2746 . . . . . . . . . . . . . 14 (𝑥 = 𝑘 → ((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑥)‘𝑧) ↔ (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧)))
3837ralbidv 3157 . . . . . . . . . . . . 13 (𝑥 = 𝑘 → (∀𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑥)‘𝑧) ↔ ∀𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧)))
3924, 32, 38cbvralw 3282 . . . . . . . . . . . 12 (∀𝑥𝑍𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑥)‘𝑧) ↔ ∀𝑘𝑍𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧))
4023, 39sylib 218 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝑍𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧))
4140r19.21bi 3230 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ∀𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧))
42 fvoveq1 7413 . . . . . . . . . . . 12 ((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧) → (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) = (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))))
4342breq1d 5120 . . . . . . . . . . 11 ((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧) → ((abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
4443ralimi 3067 . . . . . . . . . 10 (∀𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧) → ∀𝑧𝑇 ((abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
45 ralbi 3086 . . . . . . . . . 10 (∀𝑧𝑇 ((abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟) → (∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∀𝑧𝑇 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
4641, 44, 453syl 18 . . . . . . . . 9 ((𝜑𝑘𝑍) → (∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∀𝑧𝑇 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
477, 46sylibrd 259 . . . . . . . 8 ((𝜑𝑘𝑍) → (∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
483, 47sylan2 593 . . . . . . 7 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
4948anassrs 467 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
5049ralimdva 3146 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
5150reximdva 3147 . . . 4 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
5251ralimdv 3148 . . 3 (𝜑 → (∀𝑟 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑟 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
53 ulmf 26298 . . . . . 6 ((𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺 → ∃𝑚 ∈ ℤ (𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆))
541, 53syl 17 . . . . 5 (𝜑 → ∃𝑚 ∈ ℤ (𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆))
55 fdm 6700 . . . . . . . 8 ((𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆) → dom (𝑥𝑍𝐴) = (ℤ𝑚))
5618dmmptss 6217 . . . . . . . 8 dom (𝑥𝑍𝐴) ⊆ 𝑍
5755, 56eqsstrrdi 3995 . . . . . . 7 ((𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆) → (ℤ𝑚) ⊆ 𝑍)
58 uzid 12815 . . . . . . . 8 (𝑚 ∈ ℤ → 𝑚 ∈ (ℤ𝑚))
5958adantl 481 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → 𝑚 ∈ (ℤ𝑚))
60 ssel 3943 . . . . . . . 8 ((ℤ𝑚) ⊆ 𝑍 → (𝑚 ∈ (ℤ𝑚) → 𝑚𝑍))
61 eluzel2 12805 . . . . . . . . 9 (𝑚 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
6261, 2eleq2s 2847 . . . . . . . 8 (𝑚𝑍𝑀 ∈ ℤ)
6360, 62syl6 35 . . . . . . 7 ((ℤ𝑚) ⊆ 𝑍 → (𝑚 ∈ (ℤ𝑚) → 𝑀 ∈ ℤ))
6457, 59, 63syl2imc 41 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → ((𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆) → 𝑀 ∈ ℤ))
6564rexlimdva 3135 . . . . 5 (𝜑 → (∃𝑚 ∈ ℤ (𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆) → 𝑀 ∈ ℤ))
6654, 65mpd 15 . . . 4 (𝜑𝑀 ∈ ℤ)
6711ralrimiva 3126 . . . . . 6 (𝜑 → ∀𝑥𝑍 𝐴𝑊)
6818fnmpt 6661 . . . . . 6 (∀𝑥𝑍 𝐴𝑊 → (𝑥𝑍𝐴) Fn 𝑍)
6967, 68syl 17 . . . . 5 (𝜑 → (𝑥𝑍𝐴) Fn 𝑍)
70 frn 6698 . . . . . . 7 ((𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆) → ran (𝑥𝑍𝐴) ⊆ (ℂ ↑m 𝑆))
7170rexlimivw 3131 . . . . . 6 (∃𝑚 ∈ ℤ (𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆) → ran (𝑥𝑍𝐴) ⊆ (ℂ ↑m 𝑆))
7254, 71syl 17 . . . . 5 (𝜑 → ran (𝑥𝑍𝐴) ⊆ (ℂ ↑m 𝑆))
73 df-f 6518 . . . . 5 ((𝑥𝑍𝐴):𝑍⟶(ℂ ↑m 𝑆) ↔ ((𝑥𝑍𝐴) Fn 𝑍 ∧ ran (𝑥𝑍𝐴) ⊆ (ℂ ↑m 𝑆)))
7469, 72, 73sylanbrc 583 . . . 4 (𝜑 → (𝑥𝑍𝐴):𝑍⟶(ℂ ↑m 𝑆))
75 eqidd 2731 . . . 4 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → (((𝑥𝑍𝐴)‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧))
76 eqidd 2731 . . . 4 ((𝜑𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
77 ulmcl 26297 . . . . 5 ((𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
781, 77syl 17 . . . 4 (𝜑𝐺:𝑆⟶ℂ)
79 ulmscl 26295 . . . . 5 ((𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺𝑆 ∈ V)
801, 79syl 17 . . . 4 (𝜑𝑆 ∈ V)
812, 66, 74, 75, 76, 78, 80ulm2 26301 . . 3 (𝜑 → ((𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺 ↔ ∀𝑟 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
8274fvmptelcdm 7088 . . . . . . . 8 ((𝜑𝑥𝑍) → 𝐴 ∈ (ℂ ↑m 𝑆))
83 elmapi 8825 . . . . . . . 8 (𝐴 ∈ (ℂ ↑m 𝑆) → 𝐴:𝑆⟶ℂ)
8482, 83syl 17 . . . . . . 7 ((𝜑𝑥𝑍) → 𝐴:𝑆⟶ℂ)
854adantr 480 . . . . . . 7 ((𝜑𝑥𝑍) → 𝑇𝑆)
8684, 85fssresd 6730 . . . . . 6 ((𝜑𝑥𝑍) → (𝐴𝑇):𝑇⟶ℂ)
87 cnex 11156 . . . . . . 7 ℂ ∈ V
8880, 4ssexd 5282 . . . . . . . 8 (𝜑𝑇 ∈ V)
8988adantr 480 . . . . . . 7 ((𝜑𝑥𝑍) → 𝑇 ∈ V)
90 elmapg 8815 . . . . . . 7 ((ℂ ∈ V ∧ 𝑇 ∈ V) → ((𝐴𝑇) ∈ (ℂ ↑m 𝑇) ↔ (𝐴𝑇):𝑇⟶ℂ))
9187, 89, 90sylancr 587 . . . . . 6 ((𝜑𝑥𝑍) → ((𝐴𝑇) ∈ (ℂ ↑m 𝑇) ↔ (𝐴𝑇):𝑇⟶ℂ))
9286, 91mpbird 257 . . . . 5 ((𝜑𝑥𝑍) → (𝐴𝑇) ∈ (ℂ ↑m 𝑇))
9392fmpttd 7090 . . . 4 (𝜑 → (𝑥𝑍 ↦ (𝐴𝑇)):𝑍⟶(ℂ ↑m 𝑇))
94 eqidd 2731 . . . 4 ((𝜑 ∧ (𝑘𝑍𝑧𝑇)) → (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧))
95 fvres 6880 . . . . 5 (𝑧𝑇 → ((𝐺𝑇)‘𝑧) = (𝐺𝑧))
9695adantl 481 . . . 4 ((𝜑𝑧𝑇) → ((𝐺𝑇)‘𝑧) = (𝐺𝑧))
9778, 4fssresd 6730 . . . 4 (𝜑 → (𝐺𝑇):𝑇⟶ℂ)
982, 66, 93, 94, 96, 97, 88ulm2 26301 . . 3 (𝜑 → ((𝑥𝑍 ↦ (𝐴𝑇))(⇝𝑢𝑇)(𝐺𝑇) ↔ ∀𝑟 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
9952, 81, 983imtr4d 294 . 2 (𝜑 → ((𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺 → (𝑥𝑍 ↦ (𝐴𝑇))(⇝𝑢𝑇)(𝐺𝑇)))
1001, 99mpd 15 1 (𝜑 → (𝑥𝑍 ↦ (𝐴𝑇))(⇝𝑢𝑇)(𝐺𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  wss 3917   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642  cres 5643   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  cc 11073   < clt 11215  cmin 11412  cz 12536  cuz 12800  +crp 12958  abscabs 15207  𝑢culm 26292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-neg 11415  df-z 12537  df-uz 12801  df-ulm 26293
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator