MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmss Structured version   Visualization version   GIF version

Theorem ulmss 25461
Description: A uniform limit of functions is still a uniform limit if restricted to a subset. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
ulmss.z 𝑍 = (ℤ𝑀)
ulmss.t (𝜑𝑇𝑆)
ulmss.a ((𝜑𝑥𝑍) → 𝐴𝑊)
ulmss.u (𝜑 → (𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺)
Assertion
Ref Expression
ulmss (𝜑 → (𝑥𝑍 ↦ (𝐴𝑇))(⇝𝑢𝑇)(𝐺𝑇))
Distinct variable groups:   𝑥,𝑇   𝜑,𝑥   𝑥,𝑆   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥)   𝐺(𝑥)   𝑀(𝑥)   𝑊(𝑥)

Proof of Theorem ulmss
Dummy variables 𝑗 𝑘 𝑚 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmss.u . 2 (𝜑 → (𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺)
2 ulmss.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
32uztrn2 12530 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
4 ulmss.t . . . . . . . . . . 11 (𝜑𝑇𝑆)
54adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝑇𝑆)
6 ssralv 3983 . . . . . . . . . 10 (𝑇𝑆 → (∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑧𝑇 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
75, 6syl 17 . . . . . . . . 9 ((𝜑𝑘𝑍) → (∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑧𝑇 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
8 fvres 6775 . . . . . . . . . . . . . . 15 (𝑧𝑇 → ((𝐴𝑇)‘𝑧) = (𝐴𝑧))
98ad2antll 725 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → ((𝐴𝑇)‘𝑧) = (𝐴𝑧))
10 simprl 767 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → 𝑥𝑍)
11 ulmss.a . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑍) → 𝐴𝑊)
1211adantrr 713 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → 𝐴𝑊)
1312resexd 5927 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → (𝐴𝑇) ∈ V)
14 eqid 2738 . . . . . . . . . . . . . . . . 17 (𝑥𝑍 ↦ (𝐴𝑇)) = (𝑥𝑍 ↦ (𝐴𝑇))
1514fvmpt2 6868 . . . . . . . . . . . . . . . 16 ((𝑥𝑍 ∧ (𝐴𝑇) ∈ V) → ((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥) = (𝐴𝑇))
1610, 13, 15syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → ((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥) = (𝐴𝑇))
1716fveq1d 6758 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = ((𝐴𝑇)‘𝑧))
18 eqid 2738 . . . . . . . . . . . . . . . . 17 (𝑥𝑍𝐴) = (𝑥𝑍𝐴)
1918fvmpt2 6868 . . . . . . . . . . . . . . . 16 ((𝑥𝑍𝐴𝑊) → ((𝑥𝑍𝐴)‘𝑥) = 𝐴)
2010, 12, 19syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → ((𝑥𝑍𝐴)‘𝑥) = 𝐴)
2120fveq1d 6758 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → (((𝑥𝑍𝐴)‘𝑥)‘𝑧) = (𝐴𝑧))
229, 17, 213eqtr4d 2788 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑍𝑧𝑇)) → (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑥)‘𝑧))
2322ralrimivva 3114 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑍𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑥)‘𝑧))
24 nfv 1918 . . . . . . . . . . . . 13 𝑘𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑥)‘𝑧)
25 nfcv 2906 . . . . . . . . . . . . . 14 𝑥𝑇
26 nffvmpt1 6767 . . . . . . . . . . . . . . . 16 𝑥((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)
27 nfcv 2906 . . . . . . . . . . . . . . . 16 𝑥𝑧
2826, 27nffv 6766 . . . . . . . . . . . . . . 15 𝑥(((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧)
29 nffvmpt1 6767 . . . . . . . . . . . . . . . 16 𝑥((𝑥𝑍𝐴)‘𝑘)
3029, 27nffv 6766 . . . . . . . . . . . . . . 15 𝑥(((𝑥𝑍𝐴)‘𝑘)‘𝑧)
3128, 30nfeq 2919 . . . . . . . . . . . . . 14 𝑥(((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧)
3225, 31nfralw 3149 . . . . . . . . . . . . 13 𝑥𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧)
33 fveq2 6756 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → ((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥) = ((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘))
3433fveq1d 6758 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧))
35 fveq2 6756 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → ((𝑥𝑍𝐴)‘𝑥) = ((𝑥𝑍𝐴)‘𝑘))
3635fveq1d 6758 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → (((𝑥𝑍𝐴)‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧))
3734, 36eqeq12d 2754 . . . . . . . . . . . . . 14 (𝑥 = 𝑘 → ((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑥)‘𝑧) ↔ (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧)))
3837ralbidv 3120 . . . . . . . . . . . . 13 (𝑥 = 𝑘 → (∀𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑥)‘𝑧) ↔ ∀𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧)))
3924, 32, 38cbvralw 3363 . . . . . . . . . . . 12 (∀𝑥𝑍𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑥)‘𝑧) = (((𝑥𝑍𝐴)‘𝑥)‘𝑧) ↔ ∀𝑘𝑍𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧))
4023, 39sylib 217 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝑍𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧))
4140r19.21bi 3132 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ∀𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧))
42 fvoveq1 7278 . . . . . . . . . . . 12 ((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧) → (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) = (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))))
4342breq1d 5080 . . . . . . . . . . 11 ((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧) → ((abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
4443ralimi 3086 . . . . . . . . . 10 (∀𝑧𝑇 (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧) → ∀𝑧𝑇 ((abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
45 ralbi 3092 . . . . . . . . . 10 (∀𝑧𝑇 ((abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟) → (∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∀𝑧𝑇 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
4641, 44, 453syl 18 . . . . . . . . 9 ((𝜑𝑘𝑍) → (∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∀𝑧𝑇 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
477, 46sylibrd 258 . . . . . . . 8 ((𝜑𝑘𝑍) → (∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
483, 47sylan2 592 . . . . . . 7 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
4948anassrs 467 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
5049ralimdva 3102 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
5150reximdva 3202 . . . 4 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
5251ralimdv 3103 . . 3 (𝜑 → (∀𝑟 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 → ∀𝑟 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
53 ulmf 25446 . . . . . 6 ((𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺 → ∃𝑚 ∈ ℤ (𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆))
541, 53syl 17 . . . . 5 (𝜑 → ∃𝑚 ∈ ℤ (𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆))
55 fdm 6593 . . . . . . . 8 ((𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆) → dom (𝑥𝑍𝐴) = (ℤ𝑚))
5618dmmptss 6133 . . . . . . . 8 dom (𝑥𝑍𝐴) ⊆ 𝑍
5755, 56eqsstrrdi 3972 . . . . . . 7 ((𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆) → (ℤ𝑚) ⊆ 𝑍)
58 uzid 12526 . . . . . . . 8 (𝑚 ∈ ℤ → 𝑚 ∈ (ℤ𝑚))
5958adantl 481 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → 𝑚 ∈ (ℤ𝑚))
60 ssel 3910 . . . . . . . 8 ((ℤ𝑚) ⊆ 𝑍 → (𝑚 ∈ (ℤ𝑚) → 𝑚𝑍))
61 eluzel2 12516 . . . . . . . . 9 (𝑚 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
6261, 2eleq2s 2857 . . . . . . . 8 (𝑚𝑍𝑀 ∈ ℤ)
6360, 62syl6 35 . . . . . . 7 ((ℤ𝑚) ⊆ 𝑍 → (𝑚 ∈ (ℤ𝑚) → 𝑀 ∈ ℤ))
6457, 59, 63syl2imc 41 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → ((𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆) → 𝑀 ∈ ℤ))
6564rexlimdva 3212 . . . . 5 (𝜑 → (∃𝑚 ∈ ℤ (𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆) → 𝑀 ∈ ℤ))
6654, 65mpd 15 . . . 4 (𝜑𝑀 ∈ ℤ)
6711ralrimiva 3107 . . . . . 6 (𝜑 → ∀𝑥𝑍 𝐴𝑊)
6818fnmpt 6557 . . . . . 6 (∀𝑥𝑍 𝐴𝑊 → (𝑥𝑍𝐴) Fn 𝑍)
6967, 68syl 17 . . . . 5 (𝜑 → (𝑥𝑍𝐴) Fn 𝑍)
70 frn 6591 . . . . . . 7 ((𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆) → ran (𝑥𝑍𝐴) ⊆ (ℂ ↑m 𝑆))
7170rexlimivw 3210 . . . . . 6 (∃𝑚 ∈ ℤ (𝑥𝑍𝐴):(ℤ𝑚)⟶(ℂ ↑m 𝑆) → ran (𝑥𝑍𝐴) ⊆ (ℂ ↑m 𝑆))
7254, 71syl 17 . . . . 5 (𝜑 → ran (𝑥𝑍𝐴) ⊆ (ℂ ↑m 𝑆))
73 df-f 6422 . . . . 5 ((𝑥𝑍𝐴):𝑍⟶(ℂ ↑m 𝑆) ↔ ((𝑥𝑍𝐴) Fn 𝑍 ∧ ran (𝑥𝑍𝐴) ⊆ (ℂ ↑m 𝑆)))
7469, 72, 73sylanbrc 582 . . . 4 (𝜑 → (𝑥𝑍𝐴):𝑍⟶(ℂ ↑m 𝑆))
75 eqidd 2739 . . . 4 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → (((𝑥𝑍𝐴)‘𝑘)‘𝑧) = (((𝑥𝑍𝐴)‘𝑘)‘𝑧))
76 eqidd 2739 . . . 4 ((𝜑𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
77 ulmcl 25445 . . . . 5 ((𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
781, 77syl 17 . . . 4 (𝜑𝐺:𝑆⟶ℂ)
79 ulmscl 25443 . . . . 5 ((𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺𝑆 ∈ V)
801, 79syl 17 . . . 4 (𝜑𝑆 ∈ V)
812, 66, 74, 75, 76, 78, 80ulm2 25449 . . 3 (𝜑 → ((𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺 ↔ ∀𝑟 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘((((𝑥𝑍𝐴)‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
8274fvmptelrn 6969 . . . . . . . 8 ((𝜑𝑥𝑍) → 𝐴 ∈ (ℂ ↑m 𝑆))
83 elmapi 8595 . . . . . . . 8 (𝐴 ∈ (ℂ ↑m 𝑆) → 𝐴:𝑆⟶ℂ)
8482, 83syl 17 . . . . . . 7 ((𝜑𝑥𝑍) → 𝐴:𝑆⟶ℂ)
854adantr 480 . . . . . . 7 ((𝜑𝑥𝑍) → 𝑇𝑆)
8684, 85fssresd 6625 . . . . . 6 ((𝜑𝑥𝑍) → (𝐴𝑇):𝑇⟶ℂ)
87 cnex 10883 . . . . . . 7 ℂ ∈ V
8880, 4ssexd 5243 . . . . . . . 8 (𝜑𝑇 ∈ V)
8988adantr 480 . . . . . . 7 ((𝜑𝑥𝑍) → 𝑇 ∈ V)
90 elmapg 8586 . . . . . . 7 ((ℂ ∈ V ∧ 𝑇 ∈ V) → ((𝐴𝑇) ∈ (ℂ ↑m 𝑇) ↔ (𝐴𝑇):𝑇⟶ℂ))
9187, 89, 90sylancr 586 . . . . . 6 ((𝜑𝑥𝑍) → ((𝐴𝑇) ∈ (ℂ ↑m 𝑇) ↔ (𝐴𝑇):𝑇⟶ℂ))
9286, 91mpbird 256 . . . . 5 ((𝜑𝑥𝑍) → (𝐴𝑇) ∈ (ℂ ↑m 𝑇))
9392fmpttd 6971 . . . 4 (𝜑 → (𝑥𝑍 ↦ (𝐴𝑇)):𝑍⟶(ℂ ↑m 𝑇))
94 eqidd 2739 . . . 4 ((𝜑 ∧ (𝑘𝑍𝑧𝑇)) → (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) = (((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧))
95 fvres 6775 . . . . 5 (𝑧𝑇 → ((𝐺𝑇)‘𝑧) = (𝐺𝑧))
9695adantl 481 . . . 4 ((𝜑𝑧𝑇) → ((𝐺𝑇)‘𝑧) = (𝐺𝑧))
9778, 4fssresd 6625 . . . 4 (𝜑 → (𝐺𝑇):𝑇⟶ℂ)
982, 66, 93, 94, 96, 97, 88ulm2 25449 . . 3 (𝜑 → ((𝑥𝑍 ↦ (𝐴𝑇))(⇝𝑢𝑇)(𝐺𝑇) ↔ ∀𝑟 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑇 (abs‘((((𝑥𝑍 ↦ (𝐴𝑇))‘𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
9952, 81, 983imtr4d 293 . 2 (𝜑 → ((𝑥𝑍𝐴)(⇝𝑢𝑆)𝐺 → (𝑥𝑍 ↦ (𝐴𝑇))(⇝𝑢𝑇)(𝐺𝑇)))
1001, 99mpd 15 1 (𝜑 → (𝑥𝑍 ↦ (𝐴𝑇))(⇝𝑢𝑇)(𝐺𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  wss 3883   class class class wbr 5070  cmpt 5153  dom cdm 5580  ran crn 5581  cres 5582   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  cc 10800   < clt 10940  cmin 11135  cz 12249  cuz 12511  +crp 12659  abscabs 14873  𝑢culm 25440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-neg 11138  df-z 12250  df-uz 12512  df-ulm 25441
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator