Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psrbagres Structured version   Visualization version   GIF version

Theorem psrbagres 41570
Description: Restrict a bag of variables in 𝐼 to a bag of variables in 𝐽𝐼. (Contributed by SN, 10-Mar-2025.)
Hypotheses
Ref Expression
psrbagres.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
psrbagres.e 𝐸 = {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}
psrbagres.i (𝜑𝐼𝑉)
psrbagres.j (𝜑𝐽𝐼)
psrbagres.f (𝜑𝐹𝐷)
Assertion
Ref Expression
psrbagres (𝜑 → (𝐹𝐽) ∈ 𝐸)
Distinct variable groups:   ,𝐹   ,𝐼   𝑔,𝐹   𝑔,𝐽
Allowed substitution hints:   𝜑(𝑔,)   𝐷(𝑔,)   𝐸(𝑔,)   𝐼(𝑔)   𝐽()   𝑉(𝑔,)

Proof of Theorem psrbagres
StepHypRef Expression
1 psrbagres.f . . . 4 (𝜑𝐹𝐷)
2 psrbagres.d . . . . 5 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
32psrbagf 21771 . . . 4 (𝐹𝐷𝐹:𝐼⟶ℕ0)
41, 3syl 17 . . 3 (𝜑𝐹:𝐼⟶ℕ0)
5 psrbagres.j . . 3 (𝜑𝐽𝐼)
64, 5fssresd 6748 . 2 (𝜑 → (𝐹𝐽):𝐽⟶ℕ0)
72psrbagfsupp 21773 . . . . 5 (𝐹𝐷𝐹 finSupp 0)
81, 7syl 17 . . . 4 (𝜑𝐹 finSupp 0)
9 0zd 12566 . . . 4 (𝜑 → 0 ∈ ℤ)
108, 9fsuppres 9383 . . 3 (𝜑 → (𝐹𝐽) finSupp 0)
111resexd 6018 . . . 4 (𝜑 → (𝐹𝐽) ∈ V)
12 fcdmnn0fsuppg 12527 . . . 4 (((𝐹𝐽) ∈ V ∧ (𝐹𝐽):𝐽⟶ℕ0) → ((𝐹𝐽) finSupp 0 ↔ ((𝐹𝐽) “ ℕ) ∈ Fin))
1311, 6, 12syl2anc 583 . . 3 (𝜑 → ((𝐹𝐽) finSupp 0 ↔ ((𝐹𝐽) “ ℕ) ∈ Fin))
1410, 13mpbid 231 . 2 (𝜑 → ((𝐹𝐽) “ ℕ) ∈ Fin)
15 psrbagres.i . . . 4 (𝜑𝐼𝑉)
1615, 5ssexd 5314 . . 3 (𝜑𝐽 ∈ V)
17 psrbagres.e . . . 4 𝐸 = {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}
1817psrbag 21770 . . 3 (𝐽 ∈ V → ((𝐹𝐽) ∈ 𝐸 ↔ ((𝐹𝐽):𝐽⟶ℕ0 ∧ ((𝐹𝐽) “ ℕ) ∈ Fin)))
1916, 18syl 17 . 2 (𝜑 → ((𝐹𝐽) ∈ 𝐸 ↔ ((𝐹𝐽):𝐽⟶ℕ0 ∧ ((𝐹𝐽) “ ℕ) ∈ Fin)))
206, 14, 19mpbir2and 710 1 (𝜑 → (𝐹𝐽) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  {crab 3424  Vcvv 3466  wss 3940   class class class wbr 5138  ccnv 5665  cres 5668  cima 5669  wf 6529  (class class class)co 7401  m cmap 8815  Fincfn 8934   finSupp cfsupp 9356  0cc0 11105  cn 12208  0cn0 12468  cz 12554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8698  df-map 8817  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-fsupp 9357  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555
This theorem is referenced by:  selvvvval  41612  evlselvlem  41613  evlselv  41614
  Copyright terms: Public domain W3C validator