| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > psrbagres | Structured version Visualization version GIF version | ||
| Description: Restrict a bag of variables in 𝐼 to a bag of variables in 𝐽 ⊆ 𝐼. (Contributed by SN, 10-Mar-2025.) |
| Ref | Expression |
|---|---|
| psrbagres.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| psrbagres.e | ⊢ 𝐸 = {𝑔 ∈ (ℕ0 ↑m 𝐽) ∣ (◡𝑔 “ ℕ) ∈ Fin} |
| psrbagres.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| psrbagres.j | ⊢ (𝜑 → 𝐽 ⊆ 𝐼) |
| psrbagres.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| psrbagres | ⊢ (𝜑 → (𝐹 ↾ 𝐽) ∈ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbagres.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 2 | psrbagres.d | . . . . 5 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 3 | 2 | psrbagf 21827 | . . . 4 ⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:𝐼⟶ℕ0) |
| 5 | psrbagres.j | . . 3 ⊢ (𝜑 → 𝐽 ⊆ 𝐼) | |
| 6 | 4, 5 | fssresd 6727 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐽):𝐽⟶ℕ0) |
| 7 | 2 | psrbagfsupp 21828 | . . . . 5 ⊢ (𝐹 ∈ 𝐷 → 𝐹 finSupp 0) |
| 8 | 1, 7 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 0) |
| 9 | 0zd 12541 | . . . 4 ⊢ (𝜑 → 0 ∈ ℤ) | |
| 10 | 8, 9 | fsuppres 9344 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐽) finSupp 0) |
| 11 | 1 | resexd 5999 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ 𝐽) ∈ V) |
| 12 | fcdmnn0fsuppg 12502 | . . . 4 ⊢ (((𝐹 ↾ 𝐽) ∈ V ∧ (𝐹 ↾ 𝐽):𝐽⟶ℕ0) → ((𝐹 ↾ 𝐽) finSupp 0 ↔ (◡(𝐹 ↾ 𝐽) “ ℕ) ∈ Fin)) | |
| 13 | 11, 6, 12 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝐽) finSupp 0 ↔ (◡(𝐹 ↾ 𝐽) “ ℕ) ∈ Fin)) |
| 14 | 10, 13 | mpbid 232 | . 2 ⊢ (𝜑 → (◡(𝐹 ↾ 𝐽) “ ℕ) ∈ Fin) |
| 15 | psrbagres.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 16 | 15, 5 | ssexd 5279 | . . 3 ⊢ (𝜑 → 𝐽 ∈ V) |
| 17 | psrbagres.e | . . . 4 ⊢ 𝐸 = {𝑔 ∈ (ℕ0 ↑m 𝐽) ∣ (◡𝑔 “ ℕ) ∈ Fin} | |
| 18 | 17 | psrbag 21826 | . . 3 ⊢ (𝐽 ∈ V → ((𝐹 ↾ 𝐽) ∈ 𝐸 ↔ ((𝐹 ↾ 𝐽):𝐽⟶ℕ0 ∧ (◡(𝐹 ↾ 𝐽) “ ℕ) ∈ Fin))) |
| 19 | 16, 18 | syl 17 | . 2 ⊢ (𝜑 → ((𝐹 ↾ 𝐽) ∈ 𝐸 ↔ ((𝐹 ↾ 𝐽):𝐽⟶ℕ0 ∧ (◡(𝐹 ↾ 𝐽) “ ℕ) ∈ Fin))) |
| 20 | 6, 14, 19 | mpbir2and 713 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐽) ∈ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 ⊆ wss 3914 class class class wbr 5107 ◡ccnv 5637 ↾ cres 5640 “ cima 5641 ⟶wf 6507 (class class class)co 7387 ↑m cmap 8799 Fincfn 8918 finSupp cfsupp 9312 0cc0 11068 ℕcn 12186 ℕ0cn0 12442 ℤcz 12529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 |
| This theorem is referenced by: selvvvval 42573 evlselvlem 42574 evlselv 42575 |
| Copyright terms: Public domain | W3C validator |