| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > psrbagres | Structured version Visualization version GIF version | ||
| Description: Restrict a bag of variables in 𝐼 to a bag of variables in 𝐽 ⊆ 𝐼. (Contributed by SN, 10-Mar-2025.) |
| Ref | Expression |
|---|---|
| psrbagres.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| psrbagres.e | ⊢ 𝐸 = {𝑔 ∈ (ℕ0 ↑m 𝐽) ∣ (◡𝑔 “ ℕ) ∈ Fin} |
| psrbagres.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| psrbagres.j | ⊢ (𝜑 → 𝐽 ⊆ 𝐼) |
| psrbagres.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| psrbagres | ⊢ (𝜑 → (𝐹 ↾ 𝐽) ∈ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbagres.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 2 | psrbagres.d | . . . . 5 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 3 | 2 | psrbagf 21825 | . . . 4 ⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:𝐼⟶ℕ0) |
| 5 | psrbagres.j | . . 3 ⊢ (𝜑 → 𝐽 ⊆ 𝐼) | |
| 6 | 4, 5 | fssresd 6691 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐽):𝐽⟶ℕ0) |
| 7 | 2 | psrbagfsupp 21826 | . . . . 5 ⊢ (𝐹 ∈ 𝐷 → 𝐹 finSupp 0) |
| 8 | 1, 7 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 0) |
| 9 | 0zd 12483 | . . . 4 ⊢ (𝜑 → 0 ∈ ℤ) | |
| 10 | 8, 9 | fsuppres 9283 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐽) finSupp 0) |
| 11 | 1 | resexd 5979 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ 𝐽) ∈ V) |
| 12 | fcdmnn0fsuppg 12444 | . . . 4 ⊢ (((𝐹 ↾ 𝐽) ∈ V ∧ (𝐹 ↾ 𝐽):𝐽⟶ℕ0) → ((𝐹 ↾ 𝐽) finSupp 0 ↔ (◡(𝐹 ↾ 𝐽) “ ℕ) ∈ Fin)) | |
| 13 | 11, 6, 12 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝐽) finSupp 0 ↔ (◡(𝐹 ↾ 𝐽) “ ℕ) ∈ Fin)) |
| 14 | 10, 13 | mpbid 232 | . 2 ⊢ (𝜑 → (◡(𝐹 ↾ 𝐽) “ ℕ) ∈ Fin) |
| 15 | psrbagres.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 16 | 15, 5 | ssexd 5263 | . . 3 ⊢ (𝜑 → 𝐽 ∈ V) |
| 17 | psrbagres.e | . . . 4 ⊢ 𝐸 = {𝑔 ∈ (ℕ0 ↑m 𝐽) ∣ (◡𝑔 “ ℕ) ∈ Fin} | |
| 18 | 17 | psrbag 21824 | . . 3 ⊢ (𝐽 ∈ V → ((𝐹 ↾ 𝐽) ∈ 𝐸 ↔ ((𝐹 ↾ 𝐽):𝐽⟶ℕ0 ∧ (◡(𝐹 ↾ 𝐽) “ ℕ) ∈ Fin))) |
| 19 | 16, 18 | syl 17 | . 2 ⊢ (𝜑 → ((𝐹 ↾ 𝐽) ∈ 𝐸 ↔ ((𝐹 ↾ 𝐽):𝐽⟶ℕ0 ∧ (◡(𝐹 ↾ 𝐽) “ ℕ) ∈ Fin))) |
| 20 | 6, 14, 19 | mpbir2and 713 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐽) ∈ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3394 Vcvv 3436 ⊆ wss 3903 class class class wbr 5092 ◡ccnv 5618 ↾ cres 5621 “ cima 5622 ⟶wf 6478 (class class class)co 7349 ↑m cmap 8753 Fincfn 8872 finSupp cfsupp 9251 0cc0 11009 ℕcn 12128 ℕ0cn0 12384 ℤcz 12471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 |
| This theorem is referenced by: selvvvval 42558 evlselvlem 42559 evlselv 42560 |
| Copyright terms: Public domain | W3C validator |