Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psrbagres Structured version   Visualization version   GIF version

Theorem psrbagres 42579
Description: Restrict a bag of variables in 𝐼 to a bag of variables in 𝐽𝐼. (Contributed by SN, 10-Mar-2025.)
Hypotheses
Ref Expression
psrbagres.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
psrbagres.e 𝐸 = {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}
psrbagres.i (𝜑𝐼𝑉)
psrbagres.j (𝜑𝐽𝐼)
psrbagres.f (𝜑𝐹𝐷)
Assertion
Ref Expression
psrbagres (𝜑 → (𝐹𝐽) ∈ 𝐸)
Distinct variable groups:   ,𝐹   ,𝐼   𝑔,𝐹   𝑔,𝐽
Allowed substitution hints:   𝜑(𝑔,)   𝐷(𝑔,)   𝐸(𝑔,)   𝐼(𝑔)   𝐽()   𝑉(𝑔,)

Proof of Theorem psrbagres
StepHypRef Expression
1 psrbagres.f . . . 4 (𝜑𝐹𝐷)
2 psrbagres.d . . . . 5 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
32psrbagf 21850 . . . 4 (𝐹𝐷𝐹:𝐼⟶ℕ0)
41, 3syl 17 . . 3 (𝜑𝐹:𝐼⟶ℕ0)
5 psrbagres.j . . 3 (𝜑𝐽𝐼)
64, 5fssresd 6685 . 2 (𝜑 → (𝐹𝐽):𝐽⟶ℕ0)
72psrbagfsupp 21851 . . . . 5 (𝐹𝐷𝐹 finSupp 0)
81, 7syl 17 . . . 4 (𝜑𝐹 finSupp 0)
9 0zd 12475 . . . 4 (𝜑 → 0 ∈ ℤ)
108, 9fsuppres 9272 . . 3 (𝜑 → (𝐹𝐽) finSupp 0)
111resexd 5972 . . . 4 (𝜑 → (𝐹𝐽) ∈ V)
12 fcdmnn0fsuppg 12436 . . . 4 (((𝐹𝐽) ∈ V ∧ (𝐹𝐽):𝐽⟶ℕ0) → ((𝐹𝐽) finSupp 0 ↔ ((𝐹𝐽) “ ℕ) ∈ Fin))
1311, 6, 12syl2anc 584 . . 3 (𝜑 → ((𝐹𝐽) finSupp 0 ↔ ((𝐹𝐽) “ ℕ) ∈ Fin))
1410, 13mpbid 232 . 2 (𝜑 → ((𝐹𝐽) “ ℕ) ∈ Fin)
15 psrbagres.i . . . 4 (𝜑𝐼𝑉)
1615, 5ssexd 5257 . . 3 (𝜑𝐽 ∈ V)
17 psrbagres.e . . . 4 𝐸 = {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}
1817psrbag 21849 . . 3 (𝐽 ∈ V → ((𝐹𝐽) ∈ 𝐸 ↔ ((𝐹𝐽):𝐽⟶ℕ0 ∧ ((𝐹𝐽) “ ℕ) ∈ Fin)))
1916, 18syl 17 . 2 (𝜑 → ((𝐹𝐽) ∈ 𝐸 ↔ ((𝐹𝐽):𝐽⟶ℕ0 ∧ ((𝐹𝐽) “ ℕ) ∈ Fin)))
206, 14, 19mpbir2and 713 1 (𝜑 → (𝐹𝐽) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  wss 3897   class class class wbr 5086  ccnv 5610  cres 5613  cima 5614  wf 6472  (class class class)co 7341  m cmap 8745  Fincfn 8864   finSupp cfsupp 9240  0cc0 11001  cn 12120  0cn0 12376  cz 12463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-neg 11342  df-nn 12121  df-n0 12377  df-z 12464
This theorem is referenced by:  selvvvval  42618  evlselvlem  42619  evlselv  42620
  Copyright terms: Public domain W3C validator