![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > psrbagres | Structured version Visualization version GIF version |
Description: Restrict a bag of variables in πΌ to a bag of variables in π½ β πΌ. (Contributed by SN, 10-Mar-2025.) |
Ref | Expression |
---|---|
psrbagres.d | β’ π· = {β β (β0 βm πΌ) β£ (β‘β β β) β Fin} |
psrbagres.e | β’ πΈ = {π β (β0 βm π½) β£ (β‘π β β) β Fin} |
psrbagres.i | β’ (π β πΌ β π) |
psrbagres.j | β’ (π β π½ β πΌ) |
psrbagres.f | β’ (π β πΉ β π·) |
Ref | Expression |
---|---|
psrbagres | β’ (π β (πΉ βΎ π½) β πΈ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrbagres.f | . . . 4 β’ (π β πΉ β π·) | |
2 | psrbagres.d | . . . . 5 β’ π· = {β β (β0 βm πΌ) β£ (β‘β β β) β Fin} | |
3 | 2 | psrbagf 21470 | . . . 4 β’ (πΉ β π· β πΉ:πΌβΆβ0) |
4 | 1, 3 | syl 17 | . . 3 β’ (π β πΉ:πΌβΆβ0) |
5 | psrbagres.j | . . 3 β’ (π β π½ β πΌ) | |
6 | 4, 5 | fssresd 6758 | . 2 β’ (π β (πΉ βΎ π½):π½βΆβ0) |
7 | 2 | psrbagfsupp 21472 | . . . . 5 β’ (πΉ β π· β πΉ finSupp 0) |
8 | 1, 7 | syl 17 | . . . 4 β’ (π β πΉ finSupp 0) |
9 | 0zd 12569 | . . . 4 β’ (π β 0 β β€) | |
10 | 8, 9 | fsuppres 9387 | . . 3 β’ (π β (πΉ βΎ π½) finSupp 0) |
11 | 1 | resexd 6028 | . . . 4 β’ (π β (πΉ βΎ π½) β V) |
12 | fcdmnn0fsuppg 12530 | . . . 4 β’ (((πΉ βΎ π½) β V β§ (πΉ βΎ π½):π½βΆβ0) β ((πΉ βΎ π½) finSupp 0 β (β‘(πΉ βΎ π½) β β) β Fin)) | |
13 | 11, 6, 12 | syl2anc 584 | . . 3 β’ (π β ((πΉ βΎ π½) finSupp 0 β (β‘(πΉ βΎ π½) β β) β Fin)) |
14 | 10, 13 | mpbid 231 | . 2 β’ (π β (β‘(πΉ βΎ π½) β β) β Fin) |
15 | psrbagres.i | . . . 4 β’ (π β πΌ β π) | |
16 | 15, 5 | ssexd 5324 | . . 3 β’ (π β π½ β V) |
17 | psrbagres.e | . . . 4 β’ πΈ = {π β (β0 βm π½) β£ (β‘π β β) β Fin} | |
18 | 17 | psrbag 21469 | . . 3 β’ (π½ β V β ((πΉ βΎ π½) β πΈ β ((πΉ βΎ π½):π½βΆβ0 β§ (β‘(πΉ βΎ π½) β β) β Fin))) |
19 | 16, 18 | syl 17 | . 2 β’ (π β ((πΉ βΎ π½) β πΈ β ((πΉ βΎ π½):π½βΆβ0 β§ (β‘(πΉ βΎ π½) β β) β Fin))) |
20 | 6, 14, 19 | mpbir2and 711 | 1 β’ (π β (πΉ βΎ π½) β πΈ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 {crab 3432 Vcvv 3474 β wss 3948 class class class wbr 5148 β‘ccnv 5675 βΎ cres 5678 β cima 5679 βΆwf 6539 (class class class)co 7408 βm cmap 8819 Fincfn 8938 finSupp cfsupp 9360 0cc0 11109 βcn 12211 β0cn0 12471 β€cz 12557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 |
This theorem is referenced by: selvvvval 41159 evlselvlem 41160 evlselv 41161 |
Copyright terms: Public domain | W3C validator |