| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > psrbagres | Structured version Visualization version GIF version | ||
| Description: Restrict a bag of variables in 𝐼 to a bag of variables in 𝐽 ⊆ 𝐼. (Contributed by SN, 10-Mar-2025.) |
| Ref | Expression |
|---|---|
| psrbagres.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| psrbagres.e | ⊢ 𝐸 = {𝑔 ∈ (ℕ0 ↑m 𝐽) ∣ (◡𝑔 “ ℕ) ∈ Fin} |
| psrbagres.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| psrbagres.j | ⊢ (𝜑 → 𝐽 ⊆ 𝐼) |
| psrbagres.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| psrbagres | ⊢ (𝜑 → (𝐹 ↾ 𝐽) ∈ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbagres.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 2 | psrbagres.d | . . . . 5 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 3 | 2 | psrbagf 21803 | . . . 4 ⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:𝐼⟶ℕ0) |
| 5 | psrbagres.j | . . 3 ⊢ (𝜑 → 𝐽 ⊆ 𝐼) | |
| 6 | 4, 5 | fssresd 6709 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐽):𝐽⟶ℕ0) |
| 7 | 2 | psrbagfsupp 21804 | . . . . 5 ⊢ (𝐹 ∈ 𝐷 → 𝐹 finSupp 0) |
| 8 | 1, 7 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 0) |
| 9 | 0zd 12517 | . . . 4 ⊢ (𝜑 → 0 ∈ ℤ) | |
| 10 | 8, 9 | fsuppres 9320 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐽) finSupp 0) |
| 11 | 1 | resexd 5988 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ 𝐽) ∈ V) |
| 12 | fcdmnn0fsuppg 12478 | . . . 4 ⊢ (((𝐹 ↾ 𝐽) ∈ V ∧ (𝐹 ↾ 𝐽):𝐽⟶ℕ0) → ((𝐹 ↾ 𝐽) finSupp 0 ↔ (◡(𝐹 ↾ 𝐽) “ ℕ) ∈ Fin)) | |
| 13 | 11, 6, 12 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝐽) finSupp 0 ↔ (◡(𝐹 ↾ 𝐽) “ ℕ) ∈ Fin)) |
| 14 | 10, 13 | mpbid 232 | . 2 ⊢ (𝜑 → (◡(𝐹 ↾ 𝐽) “ ℕ) ∈ Fin) |
| 15 | psrbagres.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 16 | 15, 5 | ssexd 5274 | . . 3 ⊢ (𝜑 → 𝐽 ∈ V) |
| 17 | psrbagres.e | . . . 4 ⊢ 𝐸 = {𝑔 ∈ (ℕ0 ↑m 𝐽) ∣ (◡𝑔 “ ℕ) ∈ Fin} | |
| 18 | 17 | psrbag 21802 | . . 3 ⊢ (𝐽 ∈ V → ((𝐹 ↾ 𝐽) ∈ 𝐸 ↔ ((𝐹 ↾ 𝐽):𝐽⟶ℕ0 ∧ (◡(𝐹 ↾ 𝐽) “ ℕ) ∈ Fin))) |
| 19 | 16, 18 | syl 17 | . 2 ⊢ (𝜑 → ((𝐹 ↾ 𝐽) ∈ 𝐸 ↔ ((𝐹 ↾ 𝐽):𝐽⟶ℕ0 ∧ (◡(𝐹 ↾ 𝐽) “ ℕ) ∈ Fin))) |
| 20 | 6, 14, 19 | mpbir2and 713 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐽) ∈ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3402 Vcvv 3444 ⊆ wss 3911 class class class wbr 5102 ◡ccnv 5630 ↾ cres 5633 “ cima 5634 ⟶wf 6495 (class class class)co 7369 ↑m cmap 8776 Fincfn 8895 finSupp cfsupp 9288 0cc0 11044 ℕcn 12162 ℕ0cn0 12418 ℤcz 12505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 |
| This theorem is referenced by: selvvvval 42546 evlselvlem 42547 evlselv 42548 |
| Copyright terms: Public domain | W3C validator |