Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psrbagres Structured version   Visualization version   GIF version

Theorem psrbagres 42561
Description: Restrict a bag of variables in 𝐼 to a bag of variables in 𝐽𝐼. (Contributed by SN, 10-Mar-2025.)
Hypotheses
Ref Expression
psrbagres.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
psrbagres.e 𝐸 = {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}
psrbagres.i (𝜑𝐼𝑉)
psrbagres.j (𝜑𝐽𝐼)
psrbagres.f (𝜑𝐹𝐷)
Assertion
Ref Expression
psrbagres (𝜑 → (𝐹𝐽) ∈ 𝐸)
Distinct variable groups:   ,𝐹   ,𝐼   𝑔,𝐹   𝑔,𝐽
Allowed substitution hints:   𝜑(𝑔,)   𝐷(𝑔,)   𝐸(𝑔,)   𝐼(𝑔)   𝐽()   𝑉(𝑔,)

Proof of Theorem psrbagres
StepHypRef Expression
1 psrbagres.f . . . 4 (𝜑𝐹𝐷)
2 psrbagres.d . . . . 5 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
32psrbagf 21939 . . . 4 (𝐹𝐷𝐹:𝐼⟶ℕ0)
41, 3syl 17 . . 3 (𝜑𝐹:𝐼⟶ℕ0)
5 psrbagres.j . . 3 (𝜑𝐽𝐼)
64, 5fssresd 6774 . 2 (𝜑 → (𝐹𝐽):𝐽⟶ℕ0)
72psrbagfsupp 21940 . . . . 5 (𝐹𝐷𝐹 finSupp 0)
81, 7syl 17 . . . 4 (𝜑𝐹 finSupp 0)
9 0zd 12627 . . . 4 (𝜑 → 0 ∈ ℤ)
108, 9fsuppres 9434 . . 3 (𝜑 → (𝐹𝐽) finSupp 0)
111resexd 6045 . . . 4 (𝜑 → (𝐹𝐽) ∈ V)
12 fcdmnn0fsuppg 12588 . . . 4 (((𝐹𝐽) ∈ V ∧ (𝐹𝐽):𝐽⟶ℕ0) → ((𝐹𝐽) finSupp 0 ↔ ((𝐹𝐽) “ ℕ) ∈ Fin))
1311, 6, 12syl2anc 584 . . 3 (𝜑 → ((𝐹𝐽) finSupp 0 ↔ ((𝐹𝐽) “ ℕ) ∈ Fin))
1410, 13mpbid 232 . 2 (𝜑 → ((𝐹𝐽) “ ℕ) ∈ Fin)
15 psrbagres.i . . . 4 (𝜑𝐼𝑉)
1615, 5ssexd 5323 . . 3 (𝜑𝐽 ∈ V)
17 psrbagres.e . . . 4 𝐸 = {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}
1817psrbag 21938 . . 3 (𝐽 ∈ V → ((𝐹𝐽) ∈ 𝐸 ↔ ((𝐹𝐽):𝐽⟶ℕ0 ∧ ((𝐹𝐽) “ ℕ) ∈ Fin)))
1916, 18syl 17 . 2 (𝜑 → ((𝐹𝐽) ∈ 𝐸 ↔ ((𝐹𝐽):𝐽⟶ℕ0 ∧ ((𝐹𝐽) “ ℕ) ∈ Fin)))
206, 14, 19mpbir2and 713 1 (𝜑 → (𝐹𝐽) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  {crab 3435  Vcvv 3479  wss 3950   class class class wbr 5142  ccnv 5683  cres 5686  cima 5687  wf 6556  (class class class)co 7432  m cmap 8867  Fincfn 8986   finSupp cfsupp 9402  0cc0 11156  cn 12267  0cn0 12528  cz 12615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-neg 11496  df-nn 12268  df-n0 12529  df-z 12616
This theorem is referenced by:  selvvvval  42600  evlselvlem  42601  evlselv  42602
  Copyright terms: Public domain W3C validator