MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resresdm Structured version   Visualization version   GIF version

Theorem resresdm 6223
Description: A restriction by an arbitrary set is a restriction by its domain. (Contributed by AV, 16-Nov-2020.)
Assertion
Ref Expression
resresdm (𝐹 = (𝐸𝐴) → 𝐹 = (𝐸 ↾ dom 𝐹))

Proof of Theorem resresdm
StepHypRef Expression
1 id 22 . 2 (𝐹 = (𝐸𝐴) → 𝐹 = (𝐸𝐴))
2 dmeq 5894 . . . 4 (𝐹 = (𝐸𝐴) → dom 𝐹 = dom (𝐸𝐴))
32reseq2d 5972 . . 3 (𝐹 = (𝐸𝐴) → (𝐸 ↾ dom 𝐹) = (𝐸 ↾ dom (𝐸𝐴)))
4 resdmres 6222 . . 3 (𝐸 ↾ dom (𝐸𝐴)) = (𝐸𝐴)
53, 4eqtr2di 2781 . 2 (𝐹 = (𝐸𝐴) → (𝐸𝐴) = (𝐸 ↾ dom 𝐹))
61, 5eqtrd 2764 1 (𝐹 = (𝐸𝐴) → 𝐹 = (𝐸 ↾ dom 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  dom cdm 5667  cres 5669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-br 5140  df-opab 5202  df-xp 5673  df-rel 5674  df-cnv 5675  df-dm 5677  df-rn 5678  df-res 5679
This theorem is referenced by:  uhgrspan1  29053
  Copyright terms: Public domain W3C validator