|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > resresdm | Structured version Visualization version GIF version | ||
| Description: A restriction by an arbitrary set is a restriction by its domain. (Contributed by AV, 16-Nov-2020.) | 
| Ref | Expression | 
|---|---|
| resresdm | ⊢ (𝐹 = (𝐸 ↾ 𝐴) → 𝐹 = (𝐸 ↾ dom 𝐹)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐹 = (𝐸 ↾ 𝐴) → 𝐹 = (𝐸 ↾ 𝐴)) | |
| 2 | dmeq 5913 | . . . 4 ⊢ (𝐹 = (𝐸 ↾ 𝐴) → dom 𝐹 = dom (𝐸 ↾ 𝐴)) | |
| 3 | 2 | reseq2d 5996 | . . 3 ⊢ (𝐹 = (𝐸 ↾ 𝐴) → (𝐸 ↾ dom 𝐹) = (𝐸 ↾ dom (𝐸 ↾ 𝐴))) | 
| 4 | resdmres 6251 | . . 3 ⊢ (𝐸 ↾ dom (𝐸 ↾ 𝐴)) = (𝐸 ↾ 𝐴) | |
| 5 | 3, 4 | eqtr2di 2793 | . 2 ⊢ (𝐹 = (𝐸 ↾ 𝐴) → (𝐸 ↾ 𝐴) = (𝐸 ↾ dom 𝐹)) | 
| 6 | 1, 5 | eqtrd 2776 | 1 ⊢ (𝐹 = (𝐸 ↾ 𝐴) → 𝐹 = (𝐸 ↾ dom 𝐹)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 dom cdm 5684 ↾ cres 5686 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-xp 5690 df-rel 5691 df-cnv 5692 df-dm 5694 df-rn 5695 df-res 5696 | 
| This theorem is referenced by: uhgrspan1 29321 | 
| Copyright terms: Public domain | W3C validator |