| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resresdm | Structured version Visualization version GIF version | ||
| Description: A restriction by an arbitrary set is a restriction by its domain. (Contributed by AV, 16-Nov-2020.) |
| Ref | Expression |
|---|---|
| resresdm | ⊢ (𝐹 = (𝐸 ↾ 𝐴) → 𝐹 = (𝐸 ↾ dom 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐹 = (𝐸 ↾ 𝐴) → 𝐹 = (𝐸 ↾ 𝐴)) | |
| 2 | dmeq 5867 | . . . 4 ⊢ (𝐹 = (𝐸 ↾ 𝐴) → dom 𝐹 = dom (𝐸 ↾ 𝐴)) | |
| 3 | 2 | reseq2d 5950 | . . 3 ⊢ (𝐹 = (𝐸 ↾ 𝐴) → (𝐸 ↾ dom 𝐹) = (𝐸 ↾ dom (𝐸 ↾ 𝐴))) |
| 4 | resdmres 6205 | . . 3 ⊢ (𝐸 ↾ dom (𝐸 ↾ 𝐴)) = (𝐸 ↾ 𝐴) | |
| 5 | 3, 4 | eqtr2di 2781 | . 2 ⊢ (𝐹 = (𝐸 ↾ 𝐴) → (𝐸 ↾ 𝐴) = (𝐸 ↾ dom 𝐹)) |
| 6 | 1, 5 | eqtrd 2764 | 1 ⊢ (𝐹 = (𝐸 ↾ 𝐴) → 𝐹 = (𝐸 ↾ dom 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 dom cdm 5638 ↾ cres 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 |
| This theorem is referenced by: uhgrspan1 29230 |
| Copyright terms: Public domain | W3C validator |