![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resresdm | Structured version Visualization version GIF version |
Description: A restriction by an arbitrary set is a restriction by its domain. (Contributed by AV, 16-Nov-2020.) |
Ref | Expression |
---|---|
resresdm | ⊢ (𝐹 = (𝐸 ↾ 𝐴) → 𝐹 = (𝐸 ↾ dom 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐹 = (𝐸 ↾ 𝐴) → 𝐹 = (𝐸 ↾ 𝐴)) | |
2 | dmeq 5903 | . . . 4 ⊢ (𝐹 = (𝐸 ↾ 𝐴) → dom 𝐹 = dom (𝐸 ↾ 𝐴)) | |
3 | 2 | reseq2d 5981 | . . 3 ⊢ (𝐹 = (𝐸 ↾ 𝐴) → (𝐸 ↾ dom 𝐹) = (𝐸 ↾ dom (𝐸 ↾ 𝐴))) |
4 | resdmres 6231 | . . 3 ⊢ (𝐸 ↾ dom (𝐸 ↾ 𝐴)) = (𝐸 ↾ 𝐴) | |
5 | 3, 4 | eqtr2di 2789 | . 2 ⊢ (𝐹 = (𝐸 ↾ 𝐴) → (𝐸 ↾ 𝐴) = (𝐸 ↾ dom 𝐹)) |
6 | 1, 5 | eqtrd 2772 | 1 ⊢ (𝐹 = (𝐸 ↾ 𝐴) → 𝐹 = (𝐸 ↾ dom 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 dom cdm 5676 ↾ cres 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 |
This theorem is referenced by: uhgrspan1 28557 |
Copyright terms: Public domain | W3C validator |