![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resresdm | Structured version Visualization version GIF version |
Description: A restriction by an arbitrary set is a restriction by its domain. (Contributed by AV, 16-Nov-2020.) |
Ref | Expression |
---|---|
resresdm | ⊢ (𝐹 = (𝐸 ↾ 𝐴) → 𝐹 = (𝐸 ↾ dom 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐹 = (𝐸 ↾ 𝐴) → 𝐹 = (𝐸 ↾ 𝐴)) | |
2 | dmeq 5830 | . . . 4 ⊢ (𝐹 = (𝐸 ↾ 𝐴) → dom 𝐹 = dom (𝐸 ↾ 𝐴)) | |
3 | 2 | reseq2d 5908 | . . 3 ⊢ (𝐹 = (𝐸 ↾ 𝐴) → (𝐸 ↾ dom 𝐹) = (𝐸 ↾ dom (𝐸 ↾ 𝐴))) |
4 | resdmres 6155 | . . 3 ⊢ (𝐸 ↾ dom (𝐸 ↾ 𝐴)) = (𝐸 ↾ 𝐴) | |
5 | 3, 4 | eqtr2di 2794 | . 2 ⊢ (𝐹 = (𝐸 ↾ 𝐴) → (𝐸 ↾ 𝐴) = (𝐸 ↾ dom 𝐹)) |
6 | 1, 5 | eqtrd 2777 | 1 ⊢ (𝐹 = (𝐸 ↾ 𝐴) → 𝐹 = (𝐸 ↾ dom 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 dom cdm 5605 ↾ cres 5607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pr 5365 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-sn 4570 df-pr 4572 df-op 4576 df-br 5086 df-opab 5148 df-xp 5611 df-rel 5612 df-cnv 5613 df-dm 5615 df-rn 5616 df-res 5617 |
This theorem is referenced by: uhgrspan1 27778 |
Copyright terms: Public domain | W3C validator |