MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imadmres Structured version   Visualization version   GIF version

Theorem imadmres 6126
Description: The image of the domain of a restriction. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
imadmres (𝐴 “ dom (𝐴𝐵)) = (𝐴𝐵)

Proof of Theorem imadmres
StepHypRef Expression
1 resdmres 6124 . . 3 (𝐴 ↾ dom (𝐴𝐵)) = (𝐴𝐵)
21rneqi 5835 . 2 ran (𝐴 ↾ dom (𝐴𝐵)) = ran (𝐴𝐵)
3 df-ima 5593 . 2 (𝐴 “ dom (𝐴𝐵)) = ran (𝐴 ↾ dom (𝐴𝐵))
4 df-ima 5593 . 2 (𝐴𝐵) = ran (𝐴𝐵)
52, 3, 43eqtr4i 2776 1 (𝐴 “ dom (𝐴𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  dom cdm 5580  ran crn 5581  cres 5582  cima 5583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593
This theorem is referenced by:  ssimaex  6835  fnwelem  7943  imafiALT  9042  r0weon  9699  limsupgle  15114  kqdisj  22791
  Copyright terms: Public domain W3C validator