MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfres2 Structured version   Visualization version   GIF version

Theorem dfres2 6034
Description: Alternate definition of the restriction operation. (Contributed by Mario Carneiro, 5-Nov-2013.)
Assertion
Ref Expression
dfres2 (𝑅𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Proof of Theorem dfres2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 6005 . 2 Rel (𝑅𝐴)
2 relopabv 5816 . 2 Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
3 vex 3479 . . . 4 𝑧 ∈ V
4 vex 3479 . . . 4 𝑤 ∈ V
5 eleq1w 2817 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
6 breq1 5147 . . . . 5 (𝑥 = 𝑧 → (𝑥𝑅𝑦𝑧𝑅𝑦))
75, 6anbi12d 632 . . . 4 (𝑥 = 𝑧 → ((𝑥𝐴𝑥𝑅𝑦) ↔ (𝑧𝐴𝑧𝑅𝑦)))
8 breq2 5148 . . . . 5 (𝑦 = 𝑤 → (𝑧𝑅𝑦𝑧𝑅𝑤))
98anbi2d 630 . . . 4 (𝑦 = 𝑤 → ((𝑧𝐴𝑧𝑅𝑦) ↔ (𝑧𝐴𝑧𝑅𝑤)))
103, 4, 7, 9opelopab 5538 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)} ↔ (𝑧𝐴𝑧𝑅𝑤))
114brresi 5985 . . 3 (𝑧(𝑅𝐴)𝑤 ↔ (𝑧𝐴𝑧𝑅𝑤))
12 df-br 5145 . . 3 (𝑧(𝑅𝐴)𝑤 ↔ ⟨𝑧, 𝑤⟩ ∈ (𝑅𝐴))
1310, 11, 123bitr2ri 300 . 2 (⟨𝑧, 𝑤⟩ ∈ (𝑅𝐴) ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)})
141, 2, 13eqrelriiv 5785 1 (𝑅𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1542  wcel 2107  cop 4630   class class class wbr 5144  {copab 5206  cres 5674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5145  df-opab 5207  df-xp 5678  df-rel 5679  df-res 5684
This theorem is referenced by:  shftidt2  15015  bj-imdiridlem  35971  dfres4  37068  cnvepres  37073  ressn2  37218  tfsconcatrev  41969
  Copyright terms: Public domain W3C validator