![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfres2 | Structured version Visualization version GIF version |
Description: Alternate definition of the restriction operation. (Contributed by Mario Carneiro, 5-Nov-2013.) |
Ref | Expression |
---|---|
dfres2 | ⊢ (𝑅 ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 6010 | . 2 ⊢ Rel (𝑅 ↾ 𝐴) | |
2 | relopabv 5821 | . 2 ⊢ Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} | |
3 | vex 3478 | . . . 4 ⊢ 𝑧 ∈ V | |
4 | vex 3478 | . . . 4 ⊢ 𝑤 ∈ V | |
5 | eleq1w 2816 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
6 | breq1 5151 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥𝑅𝑦 ↔ 𝑧𝑅𝑦)) | |
7 | 5, 6 | anbi12d 631 | . . . 4 ⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) |
8 | breq2 5152 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝑧𝑅𝑦 ↔ 𝑧𝑅𝑤)) | |
9 | 8 | anbi2d 629 | . . . 4 ⊢ (𝑦 = 𝑤 → ((𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑦) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤))) |
10 | 3, 4, 7, 9 | opelopab 5542 | . . 3 ⊢ (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤)) |
11 | 4 | brresi 5990 | . . 3 ⊢ (𝑧(𝑅 ↾ 𝐴)𝑤 ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤)) |
12 | df-br 5149 | . . 3 ⊢ (𝑧(𝑅 ↾ 𝐴)𝑤 ↔ ⟨𝑧, 𝑤⟩ ∈ (𝑅 ↾ 𝐴)) | |
13 | 10, 11, 12 | 3bitr2ri 299 | . 2 ⊢ (⟨𝑧, 𝑤⟩ ∈ (𝑅 ↾ 𝐴) ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)}) |
14 | 1, 2, 13 | eqrelriiv 5790 | 1 ⊢ (𝑅 ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⟨cop 4634 class class class wbr 5148 {copab 5210 ↾ cres 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-res 5688 |
This theorem is referenced by: shftidt2 15032 bj-imdiridlem 36369 dfres4 37465 cnvepres 37470 ressn2 37615 tfsconcatrev 42400 |
Copyright terms: Public domain | W3C validator |