![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfres2 | Structured version Visualization version GIF version |
Description: Alternate definition of the restriction operation. (Contributed by Mario Carneiro, 5-Nov-2013.) |
Ref | Expression |
---|---|
dfres2 | ⊢ (𝑅 ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 6025 | . 2 ⊢ Rel (𝑅 ↾ 𝐴) | |
2 | relopabv 5833 | . 2 ⊢ Rel {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} | |
3 | vex 3481 | . . . 4 ⊢ 𝑧 ∈ V | |
4 | vex 3481 | . . . 4 ⊢ 𝑤 ∈ V | |
5 | eleq1w 2821 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
6 | breq1 5150 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥𝑅𝑦 ↔ 𝑧𝑅𝑦)) | |
7 | 5, 6 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) |
8 | breq2 5151 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝑧𝑅𝑦 ↔ 𝑧𝑅𝑤)) | |
9 | 8 | anbi2d 630 | . . . 4 ⊢ (𝑦 = 𝑤 → ((𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑦) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤))) |
10 | 3, 4, 7, 9 | opelopab 5551 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤)) |
11 | 4 | brresi 6008 | . . 3 ⊢ (𝑧(𝑅 ↾ 𝐴)𝑤 ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤)) |
12 | df-br 5148 | . . 3 ⊢ (𝑧(𝑅 ↾ 𝐴)𝑤 ↔ 〈𝑧, 𝑤〉 ∈ (𝑅 ↾ 𝐴)) | |
13 | 10, 11, 12 | 3bitr2ri 300 | . 2 ⊢ (〈𝑧, 𝑤〉 ∈ (𝑅 ↾ 𝐴) ↔ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)}) |
14 | 1, 2, 13 | eqrelriiv 5802 | 1 ⊢ (𝑅 ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1536 ∈ wcel 2105 〈cop 4636 class class class wbr 5147 {copab 5209 ↾ cres 5690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-xp 5694 df-rel 5695 df-res 5700 |
This theorem is referenced by: shftidt2 15116 bj-imdiridlem 37167 dfres4 38274 cnvepres 38279 ressn2 38423 tfsconcatrev 43337 |
Copyright terms: Public domain | W3C validator |