![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brressn | Structured version Visualization version GIF version |
Description: Binary relation on a restriction to a singleton. (Contributed by Peter Mazsa, 11-Jun-2024.) |
Ref | Expression |
---|---|
brressn | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵(𝑅 ↾ {𝐴})𝐶 ↔ (𝐵 = 𝐴 ∧ 𝐵𝑅𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brres 6006 | . . 3 ⊢ (𝐶 ∈ 𝑊 → (𝐵(𝑅 ↾ {𝐴})𝐶 ↔ (𝐵 ∈ {𝐴} ∧ 𝐵𝑅𝐶))) | |
2 | 1 | adantl 481 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵(𝑅 ↾ {𝐴})𝐶 ↔ (𝐵 ∈ {𝐴} ∧ 𝐵𝑅𝐶))) |
3 | elsng 4644 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ {𝐴} ↔ 𝐵 = 𝐴)) | |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ∈ {𝐴} ↔ 𝐵 = 𝐴)) |
5 | 4 | anbi1d 631 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝐵 ∈ {𝐴} ∧ 𝐵𝑅𝐶) ↔ (𝐵 = 𝐴 ∧ 𝐵𝑅𝐶))) |
6 | 2, 5 | bitrd 279 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵(𝑅 ↾ {𝐴})𝐶 ↔ (𝐵 = 𝐴 ∧ 𝐵𝑅𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 {csn 4630 class class class wbr 5147 ↾ cres 5690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-xp 5694 df-res 5700 |
This theorem is referenced by: refressn 38424 antisymressn 38425 trressn 38426 |
Copyright terms: Public domain | W3C validator |