Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brressn Structured version   Visualization version   GIF version

Theorem brressn 38397
Description: Binary relation on a restriction to a singleton. (Contributed by Peter Mazsa, 11-Jun-2024.)
Assertion
Ref Expression
brressn ((𝐵𝑉𝐶𝑊) → (𝐵(𝑅 ↾ {𝐴})𝐶 ↔ (𝐵 = 𝐴𝐵𝑅𝐶)))

Proof of Theorem brressn
StepHypRef Expression
1 brres 6016 . . 3 (𝐶𝑊 → (𝐵(𝑅 ↾ {𝐴})𝐶 ↔ (𝐵 ∈ {𝐴} ∧ 𝐵𝑅𝐶)))
21adantl 481 . 2 ((𝐵𝑉𝐶𝑊) → (𝐵(𝑅 ↾ {𝐴})𝐶 ↔ (𝐵 ∈ {𝐴} ∧ 𝐵𝑅𝐶)))
3 elsng 4662 . . . 4 (𝐵𝑉 → (𝐵 ∈ {𝐴} ↔ 𝐵 = 𝐴))
43adantr 480 . . 3 ((𝐵𝑉𝐶𝑊) → (𝐵 ∈ {𝐴} ↔ 𝐵 = 𝐴))
54anbi1d 630 . 2 ((𝐵𝑉𝐶𝑊) → ((𝐵 ∈ {𝐴} ∧ 𝐵𝑅𝐶) ↔ (𝐵 = 𝐴𝐵𝑅𝐶)))
62, 5bitrd 279 1 ((𝐵𝑉𝐶𝑊) → (𝐵(𝑅 ↾ {𝐴})𝐶 ↔ (𝐵 = 𝐴𝐵𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {csn 4648   class class class wbr 5166  cres 5702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-res 5712
This theorem is referenced by:  refressn  38399  antisymressn  38400  trressn  38401
  Copyright terms: Public domain W3C validator