Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brressn | Structured version Visualization version GIF version |
Description: Binary relation on a restriction to a singleton. (Contributed by Peter Mazsa, 11-Jun-2024.) |
Ref | Expression |
---|---|
brressn | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵(𝑅 ↾ {𝐴})𝐶 ↔ (𝐵 = 𝐴 ∧ 𝐵𝑅𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brres 5910 | . . 3 ⊢ (𝐶 ∈ 𝑊 → (𝐵(𝑅 ↾ {𝐴})𝐶 ↔ (𝐵 ∈ {𝐴} ∧ 𝐵𝑅𝐶))) | |
2 | 1 | adantl 483 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵(𝑅 ↾ {𝐴})𝐶 ↔ (𝐵 ∈ {𝐴} ∧ 𝐵𝑅𝐶))) |
3 | elsng 4579 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ {𝐴} ↔ 𝐵 = 𝐴)) | |
4 | 3 | adantr 482 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ∈ {𝐴} ↔ 𝐵 = 𝐴)) |
5 | 4 | anbi1d 631 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝐵 ∈ {𝐴} ∧ 𝐵𝑅𝐶) ↔ (𝐵 = 𝐴 ∧ 𝐵𝑅𝐶))) |
6 | 2, 5 | bitrd 279 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵(𝑅 ↾ {𝐴})𝐶 ↔ (𝐵 = 𝐴 ∧ 𝐵𝑅𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 {csn 4565 class class class wbr 5081 ↾ cres 5602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-xp 5606 df-res 5612 |
This theorem is referenced by: refressn 36657 antisymressn 36658 trressn 36659 |
Copyright terms: Public domain | W3C validator |