Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brressn Structured version   Visualization version   GIF version

Theorem brressn 38405
Description: Binary relation on a restriction to a singleton. (Contributed by Peter Mazsa, 11-Jun-2024.)
Assertion
Ref Expression
brressn ((𝐵𝑉𝐶𝑊) → (𝐵(𝑅 ↾ {𝐴})𝐶 ↔ (𝐵 = 𝐴𝐵𝑅𝐶)))

Proof of Theorem brressn
StepHypRef Expression
1 brres 5973 . . 3 (𝐶𝑊 → (𝐵(𝑅 ↾ {𝐴})𝐶 ↔ (𝐵 ∈ {𝐴} ∧ 𝐵𝑅𝐶)))
21adantl 481 . 2 ((𝐵𝑉𝐶𝑊) → (𝐵(𝑅 ↾ {𝐴})𝐶 ↔ (𝐵 ∈ {𝐴} ∧ 𝐵𝑅𝐶)))
3 elsng 4615 . . . 4 (𝐵𝑉 → (𝐵 ∈ {𝐴} ↔ 𝐵 = 𝐴))
43adantr 480 . . 3 ((𝐵𝑉𝐶𝑊) → (𝐵 ∈ {𝐴} ↔ 𝐵 = 𝐴))
54anbi1d 631 . 2 ((𝐵𝑉𝐶𝑊) → ((𝐵 ∈ {𝐴} ∧ 𝐵𝑅𝐶) ↔ (𝐵 = 𝐴𝐵𝑅𝐶)))
62, 5bitrd 279 1 ((𝐵𝑉𝐶𝑊) → (𝐵(𝑅 ↾ {𝐴})𝐶 ↔ (𝐵 = 𝐴𝐵𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {csn 4601   class class class wbr 5119  cres 5656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-res 5666
This theorem is referenced by:  refressn  38407  antisymressn  38408  trressn  38409
  Copyright terms: Public domain W3C validator