Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brressn Structured version   Visualization version   GIF version

Theorem brressn 37777
Description: Binary relation on a restriction to a singleton. (Contributed by Peter Mazsa, 11-Jun-2024.)
Assertion
Ref Expression
brressn ((𝐵𝑉𝐶𝑊) → (𝐵(𝑅 ↾ {𝐴})𝐶 ↔ (𝐵 = 𝐴𝐵𝑅𝐶)))

Proof of Theorem brressn
StepHypRef Expression
1 brres 5988 . . 3 (𝐶𝑊 → (𝐵(𝑅 ↾ {𝐴})𝐶 ↔ (𝐵 ∈ {𝐴} ∧ 𝐵𝑅𝐶)))
21adantl 481 . 2 ((𝐵𝑉𝐶𝑊) → (𝐵(𝑅 ↾ {𝐴})𝐶 ↔ (𝐵 ∈ {𝐴} ∧ 𝐵𝑅𝐶)))
3 elsng 4642 . . . 4 (𝐵𝑉 → (𝐵 ∈ {𝐴} ↔ 𝐵 = 𝐴))
43adantr 480 . . 3 ((𝐵𝑉𝐶𝑊) → (𝐵 ∈ {𝐴} ↔ 𝐵 = 𝐴))
54anbi1d 629 . 2 ((𝐵𝑉𝐶𝑊) → ((𝐵 ∈ {𝐴} ∧ 𝐵𝑅𝐶) ↔ (𝐵 = 𝐴𝐵𝑅𝐶)))
62, 5bitrd 279 1 ((𝐵𝑉𝐶𝑊) → (𝐵(𝑅 ↾ {𝐴})𝐶 ↔ (𝐵 = 𝐴𝐵𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  {csn 4628   class class class wbr 5148  cres 5678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-res 5688
This theorem is referenced by:  refressn  37779  antisymressn  37780  trressn  37781
  Copyright terms: Public domain W3C validator