MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madebdayim Structured version   Visualization version   GIF version

Theorem madebdayim 27806
Description: If a surreal is a member of a made set, its birthday is less than or equal to the level. (Contributed by Scott Fenton, 10-Aug-2024.)
Assertion
Ref Expression
madebdayim (𝑋 ∈ ( M ‘𝐴) → ( bday 𝑋) ⊆ 𝐴)

Proof of Theorem madebdayim
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 𝑙 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6898 . . 3 (𝑋 ∈ ( M ‘𝐴) → 𝐴 ∈ dom M )
2 madef 27771 . . . 4 M :On⟶𝒫 No
32fdmi 6702 . . 3 dom M = On
41, 3eleqtrdi 2839 . 2 (𝑋 ∈ ( M ‘𝐴) → 𝐴 ∈ On)
5 fveq2 6861 . . . . . 6 (𝑎 = 𝑏 → ( M ‘𝑎) = ( M ‘𝑏))
6 sseq2 3976 . . . . . 6 (𝑎 = 𝑏 → (( bday 𝑥) ⊆ 𝑎 ↔ ( bday 𝑥) ⊆ 𝑏))
75, 6raleqbidv 3321 . . . . 5 (𝑎 = 𝑏 → (∀𝑥 ∈ ( M ‘𝑎)( bday 𝑥) ⊆ 𝑎 ↔ ∀𝑥 ∈ ( M ‘𝑏)( bday 𝑥) ⊆ 𝑏))
8 fveq2 6861 . . . . . . 7 (𝑥 = 𝑦 → ( bday 𝑥) = ( bday 𝑦))
98sseq1d 3981 . . . . . 6 (𝑥 = 𝑦 → (( bday 𝑥) ⊆ 𝑏 ↔ ( bday 𝑦) ⊆ 𝑏))
109cbvralvw 3216 . . . . 5 (∀𝑥 ∈ ( M ‘𝑏)( bday 𝑥) ⊆ 𝑏 ↔ ∀𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏)
117, 10bitrdi 287 . . . 4 (𝑎 = 𝑏 → (∀𝑥 ∈ ( M ‘𝑎)( bday 𝑥) ⊆ 𝑎 ↔ ∀𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏))
12 fveq2 6861 . . . . 5 (𝑎 = 𝐴 → ( M ‘𝑎) = ( M ‘𝐴))
13 sseq2 3976 . . . . 5 (𝑎 = 𝐴 → (( bday 𝑥) ⊆ 𝑎 ↔ ( bday 𝑥) ⊆ 𝐴))
1412, 13raleqbidv 3321 . . . 4 (𝑎 = 𝐴 → (∀𝑥 ∈ ( M ‘𝑎)( bday 𝑥) ⊆ 𝑎 ↔ ∀𝑥 ∈ ( M ‘𝐴)( bday 𝑥) ⊆ 𝐴))
15 elmade2 27787 . . . . . . . 8 (𝑎 ∈ On → (𝑥 ∈ ( M ‘𝑎) ↔ ∃𝑙 ∈ 𝒫 ( O ‘𝑎)∃𝑟 ∈ 𝒫 ( O ‘𝑎)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)))
1615adantr 480 . . . . . . 7 ((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) → (𝑥 ∈ ( M ‘𝑎) ↔ ∃𝑙 ∈ 𝒫 ( O ‘𝑎)∃𝑟 ∈ 𝒫 ( O ‘𝑎)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)))
17 elpwi 4573 . . . . . . . . . . 11 (𝑙 ∈ 𝒫 ( O ‘𝑎) → 𝑙 ⊆ ( O ‘𝑎))
18 elpwi 4573 . . . . . . . . . . 11 (𝑟 ∈ 𝒫 ( O ‘𝑎) → 𝑟 ⊆ ( O ‘𝑎))
1917, 18anim12i 613 . . . . . . . . . 10 ((𝑙 ∈ 𝒫 ( O ‘𝑎) ∧ 𝑟 ∈ 𝒫 ( O ‘𝑎)) → (𝑙 ⊆ ( O ‘𝑎) ∧ 𝑟 ⊆ ( O ‘𝑎)))
20 unss 4156 . . . . . . . . . 10 ((𝑙 ⊆ ( O ‘𝑎) ∧ 𝑟 ⊆ ( O ‘𝑎)) ↔ (𝑙𝑟) ⊆ ( O ‘𝑎))
2119, 20sylib 218 . . . . . . . . 9 ((𝑙 ∈ 𝒫 ( O ‘𝑎) ∧ 𝑟 ∈ 𝒫 ( O ‘𝑎)) → (𝑙𝑟) ⊆ ( O ‘𝑎))
22 simpr 484 . . . . . . . . . . . . 13 ((((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) ∧ (𝑙𝑟) ⊆ ( O ‘𝑎)) ∧ 𝑙 <<s 𝑟) → 𝑙 <<s 𝑟)
23 simplll 774 . . . . . . . . . . . . 13 ((((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) ∧ (𝑙𝑟) ⊆ ( O ‘𝑎)) ∧ 𝑙 <<s 𝑟) → 𝑎 ∈ On)
24 dfss3 3938 . . . . . . . . . . . . . . . . 17 ((𝑙𝑟) ⊆ ( O ‘𝑎) ↔ ∀𝑧 ∈ (𝑙𝑟)𝑧 ∈ ( O ‘𝑎))
25 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑧 → ( bday 𝑦) = ( bday 𝑧))
2625sseq1d 3981 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑧 → (( bday 𝑦) ⊆ 𝑏 ↔ ( bday 𝑧) ⊆ 𝑏))
2726rspccv 3588 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏 → (𝑧 ∈ ( M ‘𝑏) → ( bday 𝑧) ⊆ 𝑏))
2827ralimi 3067 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏 → ∀𝑏𝑎 (𝑧 ∈ ( M ‘𝑏) → ( bday 𝑧) ⊆ 𝑏))
29 rexim 3071 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑏𝑎 (𝑧 ∈ ( M ‘𝑏) → ( bday 𝑧) ⊆ 𝑏) → (∃𝑏𝑎 𝑧 ∈ ( M ‘𝑏) → ∃𝑏𝑎 ( bday 𝑧) ⊆ 𝑏))
3028, 29syl 17 . . . . . . . . . . . . . . . . . . . 20 (∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏 → (∃𝑏𝑎 𝑧 ∈ ( M ‘𝑏) → ∃𝑏𝑎 ( bday 𝑧) ⊆ 𝑏))
3130adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) → (∃𝑏𝑎 𝑧 ∈ ( M ‘𝑏) → ∃𝑏𝑎 ( bday 𝑧) ⊆ 𝑏))
32 elold 27788 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ On → (𝑧 ∈ ( O ‘𝑎) ↔ ∃𝑏𝑎 𝑧 ∈ ( M ‘𝑏)))
3332adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) → (𝑧 ∈ ( O ‘𝑎) ↔ ∃𝑏𝑎 𝑧 ∈ ( M ‘𝑏)))
34 bdayelon 27695 . . . . . . . . . . . . . . . . . . . . 21 ( bday 𝑧) ∈ On
35 onelssex 6384 . . . . . . . . . . . . . . . . . . . . 21 ((( bday 𝑧) ∈ On ∧ 𝑎 ∈ On) → (( bday 𝑧) ∈ 𝑎 ↔ ∃𝑏𝑎 ( bday 𝑧) ⊆ 𝑏))
3634, 35mpan 690 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ On → (( bday 𝑧) ∈ 𝑎 ↔ ∃𝑏𝑎 ( bday 𝑧) ⊆ 𝑏))
3736adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) → (( bday 𝑧) ∈ 𝑎 ↔ ∃𝑏𝑎 ( bday 𝑧) ⊆ 𝑏))
3831, 33, 373imtr4d 294 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) → (𝑧 ∈ ( O ‘𝑎) → ( bday 𝑧) ∈ 𝑎))
3938ralimdv 3148 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) → (∀𝑧 ∈ (𝑙𝑟)𝑧 ∈ ( O ‘𝑎) → ∀𝑧 ∈ (𝑙𝑟)( bday 𝑧) ∈ 𝑎))
4024, 39biimtrid 242 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) → ((𝑙𝑟) ⊆ ( O ‘𝑎) → ∀𝑧 ∈ (𝑙𝑟)( bday 𝑧) ∈ 𝑎))
4140imp 406 . . . . . . . . . . . . . . 15 (((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) ∧ (𝑙𝑟) ⊆ ( O ‘𝑎)) → ∀𝑧 ∈ (𝑙𝑟)( bday 𝑧) ∈ 𝑎)
4241adantr 480 . . . . . . . . . . . . . 14 ((((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) ∧ (𝑙𝑟) ⊆ ( O ‘𝑎)) ∧ 𝑙 <<s 𝑟) → ∀𝑧 ∈ (𝑙𝑟)( bday 𝑧) ∈ 𝑎)
43 bdayfun 27691 . . . . . . . . . . . . . . . . 17 Fun bday
44 oldssno 27776 . . . . . . . . . . . . . . . . . . 19 ( O ‘𝑎) ⊆ No
45 sstr 3958 . . . . . . . . . . . . . . . . . . 19 (((𝑙𝑟) ⊆ ( O ‘𝑎) ∧ ( O ‘𝑎) ⊆ No ) → (𝑙𝑟) ⊆ No )
4644, 45mpan2 691 . . . . . . . . . . . . . . . . . 18 ((𝑙𝑟) ⊆ ( O ‘𝑎) → (𝑙𝑟) ⊆ No )
47 bdaydm 27693 . . . . . . . . . . . . . . . . . 18 dom bday = No
4846, 47sseqtrrdi 3991 . . . . . . . . . . . . . . . . 17 ((𝑙𝑟) ⊆ ( O ‘𝑎) → (𝑙𝑟) ⊆ dom bday )
49 funimass4 6928 . . . . . . . . . . . . . . . . 17 ((Fun bday ∧ (𝑙𝑟) ⊆ dom bday ) → (( bday “ (𝑙𝑟)) ⊆ 𝑎 ↔ ∀𝑧 ∈ (𝑙𝑟)( bday 𝑧) ∈ 𝑎))
5043, 48, 49sylancr 587 . . . . . . . . . . . . . . . 16 ((𝑙𝑟) ⊆ ( O ‘𝑎) → (( bday “ (𝑙𝑟)) ⊆ 𝑎 ↔ ∀𝑧 ∈ (𝑙𝑟)( bday 𝑧) ∈ 𝑎))
5150adantl 481 . . . . . . . . . . . . . . 15 (((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) ∧ (𝑙𝑟) ⊆ ( O ‘𝑎)) → (( bday “ (𝑙𝑟)) ⊆ 𝑎 ↔ ∀𝑧 ∈ (𝑙𝑟)( bday 𝑧) ∈ 𝑎))
5251adantr 480 . . . . . . . . . . . . . 14 ((((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) ∧ (𝑙𝑟) ⊆ ( O ‘𝑎)) ∧ 𝑙 <<s 𝑟) → (( bday “ (𝑙𝑟)) ⊆ 𝑎 ↔ ∀𝑧 ∈ (𝑙𝑟)( bday 𝑧) ∈ 𝑎))
5342, 52mpbird 257 . . . . . . . . . . . . 13 ((((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) ∧ (𝑙𝑟) ⊆ ( O ‘𝑎)) ∧ 𝑙 <<s 𝑟) → ( bday “ (𝑙𝑟)) ⊆ 𝑎)
54 scutbdaybnd 27734 . . . . . . . . . . . . 13 ((𝑙 <<s 𝑟𝑎 ∈ On ∧ ( bday “ (𝑙𝑟)) ⊆ 𝑎) → ( bday ‘(𝑙 |s 𝑟)) ⊆ 𝑎)
5522, 23, 53, 54syl3anc 1373 . . . . . . . . . . . 12 ((((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) ∧ (𝑙𝑟) ⊆ ( O ‘𝑎)) ∧ 𝑙 <<s 𝑟) → ( bday ‘(𝑙 |s 𝑟)) ⊆ 𝑎)
56 fveq2 6861 . . . . . . . . . . . . 13 ((𝑙 |s 𝑟) = 𝑥 → ( bday ‘(𝑙 |s 𝑟)) = ( bday 𝑥))
5756sseq1d 3981 . . . . . . . . . . . 12 ((𝑙 |s 𝑟) = 𝑥 → (( bday ‘(𝑙 |s 𝑟)) ⊆ 𝑎 ↔ ( bday 𝑥) ⊆ 𝑎))
5855, 57syl5ibcom 245 . . . . . . . . . . 11 ((((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) ∧ (𝑙𝑟) ⊆ ( O ‘𝑎)) ∧ 𝑙 <<s 𝑟) → ((𝑙 |s 𝑟) = 𝑥 → ( bday 𝑥) ⊆ 𝑎))
5958expimpd 453 . . . . . . . . . 10 (((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) ∧ (𝑙𝑟) ⊆ ( O ‘𝑎)) → ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) → ( bday 𝑥) ⊆ 𝑎))
6059ex 412 . . . . . . . . 9 ((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) → ((𝑙𝑟) ⊆ ( O ‘𝑎) → ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) → ( bday 𝑥) ⊆ 𝑎)))
6121, 60syl5 34 . . . . . . . 8 ((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) → ((𝑙 ∈ 𝒫 ( O ‘𝑎) ∧ 𝑟 ∈ 𝒫 ( O ‘𝑎)) → ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) → ( bday 𝑥) ⊆ 𝑎)))
6261rexlimdvv 3194 . . . . . . 7 ((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) → (∃𝑙 ∈ 𝒫 ( O ‘𝑎)∃𝑟 ∈ 𝒫 ( O ‘𝑎)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) → ( bday 𝑥) ⊆ 𝑎))
6316, 62sylbid 240 . . . . . 6 ((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) → (𝑥 ∈ ( M ‘𝑎) → ( bday 𝑥) ⊆ 𝑎))
6463ralrimiv 3125 . . . . 5 ((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) → ∀𝑥 ∈ ( M ‘𝑎)( bday 𝑥) ⊆ 𝑎)
6564ex 412 . . . 4 (𝑎 ∈ On → (∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏 → ∀𝑥 ∈ ( M ‘𝑎)( bday 𝑥) ⊆ 𝑎))
6611, 14, 65tfis3 7837 . . 3 (𝐴 ∈ On → ∀𝑥 ∈ ( M ‘𝐴)( bday 𝑥) ⊆ 𝐴)
67 fveq2 6861 . . . . 5 (𝑥 = 𝑋 → ( bday 𝑥) = ( bday 𝑋))
6867sseq1d 3981 . . . 4 (𝑥 = 𝑋 → (( bday 𝑥) ⊆ 𝐴 ↔ ( bday 𝑋) ⊆ 𝐴))
6968rspccv 3588 . . 3 (∀𝑥 ∈ ( M ‘𝐴)( bday 𝑥) ⊆ 𝐴 → (𝑋 ∈ ( M ‘𝐴) → ( bday 𝑋) ⊆ 𝐴))
7066, 69syl 17 . 2 (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) → ( bday 𝑋) ⊆ 𝐴))
714, 70mpcom 38 1 (𝑋 ∈ ( M ‘𝐴) → ( bday 𝑋) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  cun 3915  wss 3917  𝒫 cpw 4566   class class class wbr 5110  dom cdm 5641  cima 5644  Oncon0 6335  Fun wfun 6508  cfv 6514  (class class class)co 7390   No csur 27558   bday cbday 27560   <<s csslt 27699   |s cscut 27701   M cmade 27757   O cold 27758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-1o 8437  df-2o 8438  df-no 27561  df-slt 27562  df-bday 27563  df-sslt 27700  df-scut 27702  df-made 27762  df-old 27763
This theorem is referenced by:  oldbdayim  27807  madebday  27818
  Copyright terms: Public domain W3C validator