MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madebdayim Structured version   Visualization version   GIF version

Theorem madebdayim 27217
Description: If a surreal is a member of a made set, its birthday is less than or equal to the level. (Contributed by Scott Fenton, 10-Aug-2024.)
Assertion
Ref Expression
madebdayim (𝑋 ∈ ( M ‘𝐴) → ( bday 𝑋) ⊆ 𝐴)

Proof of Theorem madebdayim
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 𝑙 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6879 . . 3 (𝑋 ∈ ( M ‘𝐴) → 𝐴 ∈ dom M )
2 madef 27186 . . . 4 M :On⟶𝒫 No
32fdmi 6680 . . 3 dom M = On
41, 3eleqtrdi 2848 . 2 (𝑋 ∈ ( M ‘𝐴) → 𝐴 ∈ On)
5 fveq2 6842 . . . . . 6 (𝑎 = 𝑏 → ( M ‘𝑎) = ( M ‘𝑏))
6 sseq2 3970 . . . . . 6 (𝑎 = 𝑏 → (( bday 𝑥) ⊆ 𝑎 ↔ ( bday 𝑥) ⊆ 𝑏))
75, 6raleqbidv 3319 . . . . 5 (𝑎 = 𝑏 → (∀𝑥 ∈ ( M ‘𝑎)( bday 𝑥) ⊆ 𝑎 ↔ ∀𝑥 ∈ ( M ‘𝑏)( bday 𝑥) ⊆ 𝑏))
8 fveq2 6842 . . . . . . 7 (𝑥 = 𝑦 → ( bday 𝑥) = ( bday 𝑦))
98sseq1d 3975 . . . . . 6 (𝑥 = 𝑦 → (( bday 𝑥) ⊆ 𝑏 ↔ ( bday 𝑦) ⊆ 𝑏))
109cbvralvw 3225 . . . . 5 (∀𝑥 ∈ ( M ‘𝑏)( bday 𝑥) ⊆ 𝑏 ↔ ∀𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏)
117, 10bitrdi 286 . . . 4 (𝑎 = 𝑏 → (∀𝑥 ∈ ( M ‘𝑎)( bday 𝑥) ⊆ 𝑎 ↔ ∀𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏))
12 fveq2 6842 . . . . 5 (𝑎 = 𝐴 → ( M ‘𝑎) = ( M ‘𝐴))
13 sseq2 3970 . . . . 5 (𝑎 = 𝐴 → (( bday 𝑥) ⊆ 𝑎 ↔ ( bday 𝑥) ⊆ 𝐴))
1412, 13raleqbidv 3319 . . . 4 (𝑎 = 𝐴 → (∀𝑥 ∈ ( M ‘𝑎)( bday 𝑥) ⊆ 𝑎 ↔ ∀𝑥 ∈ ( M ‘𝐴)( bday 𝑥) ⊆ 𝐴))
15 elmade2 27198 . . . . . . . 8 (𝑎 ∈ On → (𝑥 ∈ ( M ‘𝑎) ↔ ∃𝑙 ∈ 𝒫 ( O ‘𝑎)∃𝑟 ∈ 𝒫 ( O ‘𝑎)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)))
1615adantr 481 . . . . . . 7 ((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) → (𝑥 ∈ ( M ‘𝑎) ↔ ∃𝑙 ∈ 𝒫 ( O ‘𝑎)∃𝑟 ∈ 𝒫 ( O ‘𝑎)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)))
17 elpwi 4567 . . . . . . . . . . 11 (𝑙 ∈ 𝒫 ( O ‘𝑎) → 𝑙 ⊆ ( O ‘𝑎))
18 elpwi 4567 . . . . . . . . . . 11 (𝑟 ∈ 𝒫 ( O ‘𝑎) → 𝑟 ⊆ ( O ‘𝑎))
1917, 18anim12i 613 . . . . . . . . . 10 ((𝑙 ∈ 𝒫 ( O ‘𝑎) ∧ 𝑟 ∈ 𝒫 ( O ‘𝑎)) → (𝑙 ⊆ ( O ‘𝑎) ∧ 𝑟 ⊆ ( O ‘𝑎)))
20 unss 4144 . . . . . . . . . 10 ((𝑙 ⊆ ( O ‘𝑎) ∧ 𝑟 ⊆ ( O ‘𝑎)) ↔ (𝑙𝑟) ⊆ ( O ‘𝑎))
2119, 20sylib 217 . . . . . . . . 9 ((𝑙 ∈ 𝒫 ( O ‘𝑎) ∧ 𝑟 ∈ 𝒫 ( O ‘𝑎)) → (𝑙𝑟) ⊆ ( O ‘𝑎))
22 simpr 485 . . . . . . . . . . . . 13 ((((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) ∧ (𝑙𝑟) ⊆ ( O ‘𝑎)) ∧ 𝑙 <<s 𝑟) → 𝑙 <<s 𝑟)
23 simplll 773 . . . . . . . . . . . . 13 ((((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) ∧ (𝑙𝑟) ⊆ ( O ‘𝑎)) ∧ 𝑙 <<s 𝑟) → 𝑎 ∈ On)
24 dfss3 3932 . . . . . . . . . . . . . . . . 17 ((𝑙𝑟) ⊆ ( O ‘𝑎) ↔ ∀𝑧 ∈ (𝑙𝑟)𝑧 ∈ ( O ‘𝑎))
25 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑧 → ( bday 𝑦) = ( bday 𝑧))
2625sseq1d 3975 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑧 → (( bday 𝑦) ⊆ 𝑏 ↔ ( bday 𝑧) ⊆ 𝑏))
2726rspccv 3578 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏 → (𝑧 ∈ ( M ‘𝑏) → ( bday 𝑧) ⊆ 𝑏))
2827ralimi 3086 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏 → ∀𝑏𝑎 (𝑧 ∈ ( M ‘𝑏) → ( bday 𝑧) ⊆ 𝑏))
29 rexim 3090 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑏𝑎 (𝑧 ∈ ( M ‘𝑏) → ( bday 𝑧) ⊆ 𝑏) → (∃𝑏𝑎 𝑧 ∈ ( M ‘𝑏) → ∃𝑏𝑎 ( bday 𝑧) ⊆ 𝑏))
3028, 29syl 17 . . . . . . . . . . . . . . . . . . . 20 (∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏 → (∃𝑏𝑎 𝑧 ∈ ( M ‘𝑏) → ∃𝑏𝑎 ( bday 𝑧) ⊆ 𝑏))
3130adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) → (∃𝑏𝑎 𝑧 ∈ ( M ‘𝑏) → ∃𝑏𝑎 ( bday 𝑧) ⊆ 𝑏))
32 elold 27199 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ On → (𝑧 ∈ ( O ‘𝑎) ↔ ∃𝑏𝑎 𝑧 ∈ ( M ‘𝑏)))
3332adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) → (𝑧 ∈ ( O ‘𝑎) ↔ ∃𝑏𝑎 𝑧 ∈ ( M ‘𝑏)))
34 bdayelon 27116 . . . . . . . . . . . . . . . . . . . . 21 ( bday 𝑧) ∈ On
35 onelssex 6365 . . . . . . . . . . . . . . . . . . . . 21 ((( bday 𝑧) ∈ On ∧ 𝑎 ∈ On) → (( bday 𝑧) ∈ 𝑎 ↔ ∃𝑏𝑎 ( bday 𝑧) ⊆ 𝑏))
3634, 35mpan 688 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ On → (( bday 𝑧) ∈ 𝑎 ↔ ∃𝑏𝑎 ( bday 𝑧) ⊆ 𝑏))
3736adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) → (( bday 𝑧) ∈ 𝑎 ↔ ∃𝑏𝑎 ( bday 𝑧) ⊆ 𝑏))
3831, 33, 373imtr4d 293 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) → (𝑧 ∈ ( O ‘𝑎) → ( bday 𝑧) ∈ 𝑎))
3938ralimdv 3166 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) → (∀𝑧 ∈ (𝑙𝑟)𝑧 ∈ ( O ‘𝑎) → ∀𝑧 ∈ (𝑙𝑟)( bday 𝑧) ∈ 𝑎))
4024, 39biimtrid 241 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) → ((𝑙𝑟) ⊆ ( O ‘𝑎) → ∀𝑧 ∈ (𝑙𝑟)( bday 𝑧) ∈ 𝑎))
4140imp 407 . . . . . . . . . . . . . . 15 (((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) ∧ (𝑙𝑟) ⊆ ( O ‘𝑎)) → ∀𝑧 ∈ (𝑙𝑟)( bday 𝑧) ∈ 𝑎)
4241adantr 481 . . . . . . . . . . . . . 14 ((((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) ∧ (𝑙𝑟) ⊆ ( O ‘𝑎)) ∧ 𝑙 <<s 𝑟) → ∀𝑧 ∈ (𝑙𝑟)( bday 𝑧) ∈ 𝑎)
43 bdayfun 27112 . . . . . . . . . . . . . . . . 17 Fun bday
44 oldssno 27191 . . . . . . . . . . . . . . . . . . 19 ( O ‘𝑎) ⊆ No
45 sstr 3952 . . . . . . . . . . . . . . . . . . 19 (((𝑙𝑟) ⊆ ( O ‘𝑎) ∧ ( O ‘𝑎) ⊆ No ) → (𝑙𝑟) ⊆ No )
4644, 45mpan2 689 . . . . . . . . . . . . . . . . . 18 ((𝑙𝑟) ⊆ ( O ‘𝑎) → (𝑙𝑟) ⊆ No )
47 bdaydm 27114 . . . . . . . . . . . . . . . . . 18 dom bday = No
4846, 47sseqtrrdi 3995 . . . . . . . . . . . . . . . . 17 ((𝑙𝑟) ⊆ ( O ‘𝑎) → (𝑙𝑟) ⊆ dom bday )
49 funimass4 6907 . . . . . . . . . . . . . . . . 17 ((Fun bday ∧ (𝑙𝑟) ⊆ dom bday ) → (( bday “ (𝑙𝑟)) ⊆ 𝑎 ↔ ∀𝑧 ∈ (𝑙𝑟)( bday 𝑧) ∈ 𝑎))
5043, 48, 49sylancr 587 . . . . . . . . . . . . . . . 16 ((𝑙𝑟) ⊆ ( O ‘𝑎) → (( bday “ (𝑙𝑟)) ⊆ 𝑎 ↔ ∀𝑧 ∈ (𝑙𝑟)( bday 𝑧) ∈ 𝑎))
5150adantl 482 . . . . . . . . . . . . . . 15 (((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) ∧ (𝑙𝑟) ⊆ ( O ‘𝑎)) → (( bday “ (𝑙𝑟)) ⊆ 𝑎 ↔ ∀𝑧 ∈ (𝑙𝑟)( bday 𝑧) ∈ 𝑎))
5251adantr 481 . . . . . . . . . . . . . 14 ((((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) ∧ (𝑙𝑟) ⊆ ( O ‘𝑎)) ∧ 𝑙 <<s 𝑟) → (( bday “ (𝑙𝑟)) ⊆ 𝑎 ↔ ∀𝑧 ∈ (𝑙𝑟)( bday 𝑧) ∈ 𝑎))
5342, 52mpbird 256 . . . . . . . . . . . . 13 ((((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) ∧ (𝑙𝑟) ⊆ ( O ‘𝑎)) ∧ 𝑙 <<s 𝑟) → ( bday “ (𝑙𝑟)) ⊆ 𝑎)
54 scutbdaybnd 27154 . . . . . . . . . . . . 13 ((𝑙 <<s 𝑟𝑎 ∈ On ∧ ( bday “ (𝑙𝑟)) ⊆ 𝑎) → ( bday ‘(𝑙 |s 𝑟)) ⊆ 𝑎)
5522, 23, 53, 54syl3anc 1371 . . . . . . . . . . . 12 ((((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) ∧ (𝑙𝑟) ⊆ ( O ‘𝑎)) ∧ 𝑙 <<s 𝑟) → ( bday ‘(𝑙 |s 𝑟)) ⊆ 𝑎)
56 fveq2 6842 . . . . . . . . . . . . 13 ((𝑙 |s 𝑟) = 𝑥 → ( bday ‘(𝑙 |s 𝑟)) = ( bday 𝑥))
5756sseq1d 3975 . . . . . . . . . . . 12 ((𝑙 |s 𝑟) = 𝑥 → (( bday ‘(𝑙 |s 𝑟)) ⊆ 𝑎 ↔ ( bday 𝑥) ⊆ 𝑎))
5855, 57syl5ibcom 244 . . . . . . . . . . 11 ((((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) ∧ (𝑙𝑟) ⊆ ( O ‘𝑎)) ∧ 𝑙 <<s 𝑟) → ((𝑙 |s 𝑟) = 𝑥 → ( bday 𝑥) ⊆ 𝑎))
5958expimpd 454 . . . . . . . . . 10 (((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) ∧ (𝑙𝑟) ⊆ ( O ‘𝑎)) → ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) → ( bday 𝑥) ⊆ 𝑎))
6059ex 413 . . . . . . . . 9 ((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) → ((𝑙𝑟) ⊆ ( O ‘𝑎) → ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) → ( bday 𝑥) ⊆ 𝑎)))
6121, 60syl5 34 . . . . . . . 8 ((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) → ((𝑙 ∈ 𝒫 ( O ‘𝑎) ∧ 𝑟 ∈ 𝒫 ( O ‘𝑎)) → ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) → ( bday 𝑥) ⊆ 𝑎)))
6261rexlimdvv 3204 . . . . . . 7 ((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) → (∃𝑙 ∈ 𝒫 ( O ‘𝑎)∃𝑟 ∈ 𝒫 ( O ‘𝑎)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) → ( bday 𝑥) ⊆ 𝑎))
6316, 62sylbid 239 . . . . . 6 ((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) → (𝑥 ∈ ( M ‘𝑎) → ( bday 𝑥) ⊆ 𝑎))
6463ralrimiv 3142 . . . . 5 ((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏) → ∀𝑥 ∈ ( M ‘𝑎)( bday 𝑥) ⊆ 𝑎)
6564ex 413 . . . 4 (𝑎 ∈ On → (∀𝑏𝑎𝑦 ∈ ( M ‘𝑏)( bday 𝑦) ⊆ 𝑏 → ∀𝑥 ∈ ( M ‘𝑎)( bday 𝑥) ⊆ 𝑎))
6611, 14, 65tfis3 7794 . . 3 (𝐴 ∈ On → ∀𝑥 ∈ ( M ‘𝐴)( bday 𝑥) ⊆ 𝐴)
67 fveq2 6842 . . . . 5 (𝑥 = 𝑋 → ( bday 𝑥) = ( bday 𝑋))
6867sseq1d 3975 . . . 4 (𝑥 = 𝑋 → (( bday 𝑥) ⊆ 𝐴 ↔ ( bday 𝑋) ⊆ 𝐴))
6968rspccv 3578 . . 3 (∀𝑥 ∈ ( M ‘𝐴)( bday 𝑥) ⊆ 𝐴 → (𝑋 ∈ ( M ‘𝐴) → ( bday 𝑋) ⊆ 𝐴))
7066, 69syl 17 . 2 (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) → ( bday 𝑋) ⊆ 𝐴))
714, 70mpcom 38 1 (𝑋 ∈ ( M ‘𝐴) → ( bday 𝑋) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  cun 3908  wss 3910  𝒫 cpw 4560   class class class wbr 5105  dom cdm 5633  cima 5636  Oncon0 6317  Fun wfun 6490  cfv 6496  (class class class)co 7357   No csur 26988   bday cbday 26990   <<s csslt 27120   |s cscut 27122   M cmade 27172   O cold 27173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-1o 8412  df-2o 8413  df-no 26991  df-slt 26992  df-bday 26993  df-sslt 27121  df-scut 27123  df-made 27177  df-old 27178
This theorem is referenced by:  oldbdayim  27218  madebday  27229
  Copyright terms: Public domain W3C validator