Step | Hyp | Ref
| Expression |
1 | | elfvdm 6788 |
. . 3
⊢ (𝑋 ∈ ( M ‘𝐴) → 𝐴 ∈ dom M ) |
2 | | madef 33967 |
. . . 4
⊢ M
:On⟶𝒫 No |
3 | 2 | fdmi 6596 |
. . 3
⊢ dom M =
On |
4 | 1, 3 | eleqtrdi 2849 |
. 2
⊢ (𝑋 ∈ ( M ‘𝐴) → 𝐴 ∈ On) |
5 | | fveq2 6756 |
. . . . . 6
⊢ (𝑎 = 𝑏 → ( M ‘𝑎) = ( M ‘𝑏)) |
6 | | sseq2 3943 |
. . . . . 6
⊢ (𝑎 = 𝑏 → (( bday
‘𝑥) ⊆
𝑎 ↔ ( bday ‘𝑥) ⊆ 𝑏)) |
7 | 5, 6 | raleqbidv 3327 |
. . . . 5
⊢ (𝑎 = 𝑏 → (∀𝑥 ∈ ( M ‘𝑎)( bday
‘𝑥) ⊆
𝑎 ↔ ∀𝑥 ∈ ( M ‘𝑏)( bday
‘𝑥) ⊆
𝑏)) |
8 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ( bday
‘𝑥) = ( bday ‘𝑦)) |
9 | 8 | sseq1d 3948 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (( bday
‘𝑥) ⊆
𝑏 ↔ ( bday ‘𝑦) ⊆ 𝑏)) |
10 | 9 | cbvralvw 3372 |
. . . . 5
⊢
(∀𝑥 ∈ (
M ‘𝑏)( bday ‘𝑥) ⊆ 𝑏 ↔ ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) |
11 | 7, 10 | bitrdi 286 |
. . . 4
⊢ (𝑎 = 𝑏 → (∀𝑥 ∈ ( M ‘𝑎)( bday
‘𝑥) ⊆
𝑎 ↔ ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏)) |
12 | | fveq2 6756 |
. . . . 5
⊢ (𝑎 = 𝐴 → ( M ‘𝑎) = ( M ‘𝐴)) |
13 | | sseq2 3943 |
. . . . 5
⊢ (𝑎 = 𝐴 → (( bday
‘𝑥) ⊆
𝑎 ↔ ( bday ‘𝑥) ⊆ 𝐴)) |
14 | 12, 13 | raleqbidv 3327 |
. . . 4
⊢ (𝑎 = 𝐴 → (∀𝑥 ∈ ( M ‘𝑎)( bday
‘𝑥) ⊆
𝑎 ↔ ∀𝑥 ∈ ( M ‘𝐴)( bday
‘𝑥) ⊆
𝐴)) |
15 | | elmade2 33979 |
. . . . . . . 8
⊢ (𝑎 ∈ On → (𝑥 ∈ ( M ‘𝑎) ↔ ∃𝑙 ∈ 𝒫 ( O
‘𝑎)∃𝑟 ∈ 𝒫 ( O
‘𝑎)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥))) |
16 | 15 | adantr 480 |
. . . . . . 7
⊢ ((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) → (𝑥 ∈ ( M ‘𝑎) ↔ ∃𝑙 ∈ 𝒫 ( O
‘𝑎)∃𝑟 ∈ 𝒫 ( O
‘𝑎)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥))) |
17 | | elpwi 4539 |
. . . . . . . . . . 11
⊢ (𝑙 ∈ 𝒫 ( O
‘𝑎) → 𝑙 ⊆ ( O ‘𝑎)) |
18 | | elpwi 4539 |
. . . . . . . . . . 11
⊢ (𝑟 ∈ 𝒫 ( O
‘𝑎) → 𝑟 ⊆ ( O ‘𝑎)) |
19 | 17, 18 | anim12i 612 |
. . . . . . . . . 10
⊢ ((𝑙 ∈ 𝒫 ( O
‘𝑎) ∧ 𝑟 ∈ 𝒫 ( O
‘𝑎)) → (𝑙 ⊆ ( O ‘𝑎) ∧ 𝑟 ⊆ ( O ‘𝑎))) |
20 | | unss 4114 |
. . . . . . . . . 10
⊢ ((𝑙 ⊆ ( O ‘𝑎) ∧ 𝑟 ⊆ ( O ‘𝑎)) ↔ (𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎)) |
21 | 19, 20 | sylib 217 |
. . . . . . . . 9
⊢ ((𝑙 ∈ 𝒫 ( O
‘𝑎) ∧ 𝑟 ∈ 𝒫 ( O
‘𝑎)) → (𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎)) |
22 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) ∧ (𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎)) ∧ 𝑙 <<s 𝑟) → 𝑙 <<s 𝑟) |
23 | | simplll 771 |
. . . . . . . . . . . . 13
⊢ ((((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) ∧ (𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎)) ∧ 𝑙 <<s 𝑟) → 𝑎 ∈ On) |
24 | | dfss3 3905 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎) ↔ ∀𝑧 ∈ (𝑙 ∪ 𝑟)𝑧 ∈ ( O ‘𝑎)) |
25 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = 𝑧 → ( bday
‘𝑦) = ( bday ‘𝑧)) |
26 | 25 | sseq1d 3948 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 = 𝑧 → (( bday
‘𝑦) ⊆
𝑏 ↔ ( bday ‘𝑧) ⊆ 𝑏)) |
27 | 26 | rspccv 3549 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑦 ∈ (
M ‘𝑏)( bday ‘𝑦) ⊆ 𝑏 → (𝑧 ∈ ( M ‘𝑏) → ( bday
‘𝑧) ⊆
𝑏)) |
28 | 27 | ralimi 3086 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑏 ∈
𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏 → ∀𝑏 ∈ 𝑎 (𝑧 ∈ ( M ‘𝑏) → ( bday
‘𝑧) ⊆
𝑏)) |
29 | | rexim 3168 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑏 ∈
𝑎 (𝑧 ∈ ( M ‘𝑏) → ( bday
‘𝑧) ⊆
𝑏) → (∃𝑏 ∈ 𝑎 𝑧 ∈ ( M ‘𝑏) → ∃𝑏 ∈ 𝑎 ( bday
‘𝑧) ⊆
𝑏)) |
30 | 28, 29 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑏 ∈
𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏 → (∃𝑏 ∈ 𝑎 𝑧 ∈ ( M ‘𝑏) → ∃𝑏 ∈ 𝑎 ( bday
‘𝑧) ⊆
𝑏)) |
31 | 30 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) → (∃𝑏 ∈ 𝑎 𝑧 ∈ ( M ‘𝑏) → ∃𝑏 ∈ 𝑎 ( bday
‘𝑧) ⊆
𝑏)) |
32 | | elold 33980 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∈ On → (𝑧 ∈ ( O ‘𝑎) ↔ ∃𝑏 ∈ 𝑎 𝑧 ∈ ( M ‘𝑏))) |
33 | 32 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) → (𝑧 ∈ ( O ‘𝑎) ↔ ∃𝑏 ∈ 𝑎 𝑧 ∈ ( M ‘𝑏))) |
34 | | bdayelon 33898 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ( bday ‘𝑧) ∈ On |
35 | | onelssex 33563 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((( bday ‘𝑧) ∈ On ∧ 𝑎 ∈ On) → ((
bday ‘𝑧)
∈ 𝑎 ↔
∃𝑏 ∈ 𝑎 ( bday
‘𝑧) ⊆
𝑏)) |
36 | 34, 35 | mpan 686 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∈ On → (( bday ‘𝑧) ∈ 𝑎 ↔ ∃𝑏 ∈ 𝑎 ( bday
‘𝑧) ⊆
𝑏)) |
37 | 36 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) → (( bday ‘𝑧) ∈ 𝑎 ↔ ∃𝑏 ∈ 𝑎 ( bday
‘𝑧) ⊆
𝑏)) |
38 | 31, 33, 37 | 3imtr4d 293 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) → (𝑧 ∈ ( O ‘𝑎) → (
bday ‘𝑧)
∈ 𝑎)) |
39 | 38 | ralimdv 3103 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) → (∀𝑧 ∈ (𝑙 ∪ 𝑟)𝑧 ∈ ( O ‘𝑎) → ∀𝑧 ∈ (𝑙 ∪ 𝑟)( bday
‘𝑧) ∈
𝑎)) |
40 | 24, 39 | syl5bi 241 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) → ((𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎) → ∀𝑧 ∈ (𝑙 ∪ 𝑟)( bday
‘𝑧) ∈
𝑎)) |
41 | 40 | imp 406 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) ∧ (𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎)) → ∀𝑧 ∈ (𝑙 ∪ 𝑟)( bday
‘𝑧) ∈
𝑎) |
42 | 41 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) ∧ (𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎)) ∧ 𝑙 <<s 𝑟) → ∀𝑧 ∈ (𝑙 ∪ 𝑟)( bday
‘𝑧) ∈
𝑎) |
43 | | bdayfun 33894 |
. . . . . . . . . . . . . . . . 17
⊢ Fun bday |
44 | | oldssno 33972 |
. . . . . . . . . . . . . . . . . . 19
⊢ ( O
‘𝑎) ⊆ No |
45 | | sstr 3925 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎) ∧ ( O ‘𝑎) ⊆ No )
→ (𝑙 ∪ 𝑟) ⊆
No ) |
46 | 44, 45 | mpan2 687 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎) → (𝑙 ∪ 𝑟) ⊆ No
) |
47 | | bdaydm 33896 |
. . . . . . . . . . . . . . . . . 18
⊢ dom bday = No
|
48 | 46, 47 | sseqtrrdi 3968 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎) → (𝑙 ∪ 𝑟) ⊆ dom bday
) |
49 | | funimass4 6816 |
. . . . . . . . . . . . . . . . 17
⊢ ((Fun
bday ∧ (𝑙 ∪ 𝑟) ⊆ dom bday
) → (( bday “ (𝑙 ∪ 𝑟)) ⊆ 𝑎 ↔ ∀𝑧 ∈ (𝑙 ∪ 𝑟)( bday
‘𝑧) ∈
𝑎)) |
50 | 43, 48, 49 | sylancr 586 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎) → (( bday
“ (𝑙 ∪
𝑟)) ⊆ 𝑎 ↔ ∀𝑧 ∈ (𝑙 ∪ 𝑟)( bday
‘𝑧) ∈
𝑎)) |
51 | 50 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) ∧ (𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎)) → (( bday
“ (𝑙 ∪
𝑟)) ⊆ 𝑎 ↔ ∀𝑧 ∈ (𝑙 ∪ 𝑟)( bday
‘𝑧) ∈
𝑎)) |
52 | 51 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) ∧ (𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎)) ∧ 𝑙 <<s 𝑟) → (( bday
“ (𝑙 ∪
𝑟)) ⊆ 𝑎 ↔ ∀𝑧 ∈ (𝑙 ∪ 𝑟)( bday
‘𝑧) ∈
𝑎)) |
53 | 42, 52 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ ((((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) ∧ (𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎)) ∧ 𝑙 <<s 𝑟) → ( bday
“ (𝑙 ∪ 𝑟)) ⊆ 𝑎) |
54 | | scutbdaybnd 33936 |
. . . . . . . . . . . . 13
⊢ ((𝑙 <<s 𝑟 ∧ 𝑎 ∈ On ∧ ( bday
“ (𝑙 ∪
𝑟)) ⊆ 𝑎) → (
bday ‘(𝑙 |s
𝑟)) ⊆ 𝑎) |
55 | 22, 23, 53, 54 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) ∧ (𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎)) ∧ 𝑙 <<s 𝑟) → ( bday
‘(𝑙 |s 𝑟)) ⊆ 𝑎) |
56 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ ((𝑙 |s 𝑟) = 𝑥 → ( bday
‘(𝑙 |s 𝑟)) = (
bday ‘𝑥)) |
57 | 56 | sseq1d 3948 |
. . . . . . . . . . . 12
⊢ ((𝑙 |s 𝑟) = 𝑥 → (( bday
‘(𝑙 |s 𝑟)) ⊆ 𝑎 ↔ ( bday
‘𝑥) ⊆
𝑎)) |
58 | 55, 57 | syl5ibcom 244 |
. . . . . . . . . . 11
⊢ ((((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) ∧ (𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎)) ∧ 𝑙 <<s 𝑟) → ((𝑙 |s 𝑟) = 𝑥 → ( bday
‘𝑥) ⊆
𝑎)) |
59 | 58 | expimpd 453 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) ∧ (𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎)) → ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) → ( bday
‘𝑥) ⊆
𝑎)) |
60 | 59 | ex 412 |
. . . . . . . . 9
⊢ ((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) → ((𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎) → ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) → ( bday
‘𝑥) ⊆
𝑎))) |
61 | 21, 60 | syl5 34 |
. . . . . . . 8
⊢ ((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) → ((𝑙 ∈ 𝒫 ( O
‘𝑎) ∧ 𝑟 ∈ 𝒫 ( O
‘𝑎)) → ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) → ( bday
‘𝑥) ⊆
𝑎))) |
62 | 61 | rexlimdvv 3221 |
. . . . . . 7
⊢ ((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) → (∃𝑙 ∈ 𝒫 ( O
‘𝑎)∃𝑟 ∈ 𝒫 ( O
‘𝑎)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) → ( bday
‘𝑥) ⊆
𝑎)) |
63 | 16, 62 | sylbid 239 |
. . . . . 6
⊢ ((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) → (𝑥 ∈ ( M ‘𝑎) → (
bday ‘𝑥)
⊆ 𝑎)) |
64 | 63 | ralrimiv 3106 |
. . . . 5
⊢ ((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) → ∀𝑥 ∈ ( M ‘𝑎)( bday
‘𝑥) ⊆
𝑎) |
65 | 64 | ex 412 |
. . . 4
⊢ (𝑎 ∈ On → (∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏 → ∀𝑥 ∈ ( M ‘𝑎)( bday
‘𝑥) ⊆
𝑎)) |
66 | 11, 14, 65 | tfis3 7679 |
. . 3
⊢ (𝐴 ∈ On → ∀𝑥 ∈ ( M ‘𝐴)( bday
‘𝑥) ⊆
𝐴) |
67 | | fveq2 6756 |
. . . . 5
⊢ (𝑥 = 𝑋 → ( bday
‘𝑥) = ( bday ‘𝑋)) |
68 | 67 | sseq1d 3948 |
. . . 4
⊢ (𝑥 = 𝑋 → (( bday
‘𝑥) ⊆
𝐴 ↔ ( bday ‘𝑋) ⊆ 𝐴)) |
69 | 68 | rspccv 3549 |
. . 3
⊢
(∀𝑥 ∈ (
M ‘𝐴)( bday ‘𝑥) ⊆ 𝐴 → (𝑋 ∈ ( M ‘𝐴) → ( bday
‘𝑋) ⊆
𝐴)) |
70 | 66, 69 | syl 17 |
. 2
⊢ (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) → (
bday ‘𝑋)
⊆ 𝐴)) |
71 | 4, 70 | mpcom 38 |
1
⊢ (𝑋 ∈ ( M ‘𝐴) → (
bday ‘𝑋)
⊆ 𝐴) |