Step | Hyp | Ref
| Expression |
1 | | fveq2 6663 |
. . . . 5
⊢ (𝑎 = 𝑏 → ( M ‘𝑎) = ( M ‘𝑏)) |
2 | | sseq2 3920 |
. . . . 5
⊢ (𝑎 = 𝑏 → (( bday
‘𝑥) ⊆
𝑎 ↔ ( bday ‘𝑥) ⊆ 𝑏)) |
3 | 1, 2 | raleqbidv 3319 |
. . . 4
⊢ (𝑎 = 𝑏 → (∀𝑥 ∈ ( M ‘𝑎)( bday
‘𝑥) ⊆
𝑎 ↔ ∀𝑥 ∈ ( M ‘𝑏)( bday
‘𝑥) ⊆
𝑏)) |
4 | | fveq2 6663 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ( bday
‘𝑥) = ( bday ‘𝑦)) |
5 | 4 | sseq1d 3925 |
. . . . 5
⊢ (𝑥 = 𝑦 → (( bday
‘𝑥) ⊆
𝑏 ↔ ( bday ‘𝑦) ⊆ 𝑏)) |
6 | 5 | cbvralvw 3361 |
. . . 4
⊢
(∀𝑥 ∈ (
M ‘𝑏)( bday ‘𝑥) ⊆ 𝑏 ↔ ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) |
7 | 3, 6 | bitrdi 290 |
. . 3
⊢ (𝑎 = 𝑏 → (∀𝑥 ∈ ( M ‘𝑎)( bday
‘𝑥) ⊆
𝑎 ↔ ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏)) |
8 | | fveq2 6663 |
. . . 4
⊢ (𝑎 = 𝐴 → ( M ‘𝑎) = ( M ‘𝐴)) |
9 | | sseq2 3920 |
. . . 4
⊢ (𝑎 = 𝐴 → (( bday
‘𝑥) ⊆
𝑎 ↔ ( bday ‘𝑥) ⊆ 𝐴)) |
10 | 8, 9 | raleqbidv 3319 |
. . 3
⊢ (𝑎 = 𝐴 → (∀𝑥 ∈ ( M ‘𝑎)( bday
‘𝑥) ⊆
𝑎 ↔ ∀𝑥 ∈ ( M ‘𝐴)( bday
‘𝑥) ⊆
𝐴)) |
11 | | elmade2 33642 |
. . . . . . 7
⊢ (𝑎 ∈ On → (𝑥 ∈ ( M ‘𝑎) ↔ ∃𝑙 ∈ 𝒫 ( O
‘𝑎)∃𝑟 ∈ 𝒫 ( O
‘𝑎)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥))) |
12 | 11 | adantr 484 |
. . . . . 6
⊢ ((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) → (𝑥 ∈ ( M ‘𝑎) ↔ ∃𝑙 ∈ 𝒫 ( O
‘𝑎)∃𝑟 ∈ 𝒫 ( O
‘𝑎)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥))) |
13 | | pwuncl 7497 |
. . . . . . . . 9
⊢ ((𝑙 ∈ 𝒫 ( O
‘𝑎) ∧ 𝑟 ∈ 𝒫 ( O
‘𝑎)) → (𝑙 ∪ 𝑟) ∈ 𝒫 ( O ‘𝑎)) |
14 | 13 | elpwid 4508 |
. . . . . . . 8
⊢ ((𝑙 ∈ 𝒫 ( O
‘𝑎) ∧ 𝑟 ∈ 𝒫 ( O
‘𝑎)) → (𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎)) |
15 | | simprr 772 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) ∧ ((𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎) ∧ 𝑙 <<s 𝑟)) → 𝑙 <<s 𝑟) |
16 | | simpll 766 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) ∧ ((𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎) ∧ 𝑙 <<s 𝑟)) → 𝑎 ∈ On) |
17 | | dfss3 3882 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎) ↔ ∀𝑧 ∈ (𝑙 ∪ 𝑟)𝑧 ∈ ( O ‘𝑎)) |
18 | | fveq2 6663 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = 𝑧 → ( bday
‘𝑦) = ( bday ‘𝑧)) |
19 | 18 | sseq1d 3925 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 = 𝑧 → (( bday
‘𝑦) ⊆
𝑏 ↔ ( bday ‘𝑧) ⊆ 𝑏)) |
20 | 19 | rspccv 3540 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑦 ∈ (
M ‘𝑏)( bday ‘𝑦) ⊆ 𝑏 → (𝑧 ∈ ( M ‘𝑏) → ( bday
‘𝑧) ⊆
𝑏)) |
21 | 20 | ralimi 3092 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑏 ∈
𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏 → ∀𝑏 ∈ 𝑎 (𝑧 ∈ ( M ‘𝑏) → ( bday
‘𝑧) ⊆
𝑏)) |
22 | | rexim 3168 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑏 ∈
𝑎 (𝑧 ∈ ( M ‘𝑏) → ( bday
‘𝑧) ⊆
𝑏) → (∃𝑏 ∈ 𝑎 𝑧 ∈ ( M ‘𝑏) → ∃𝑏 ∈ 𝑎 ( bday
‘𝑧) ⊆
𝑏)) |
23 | 21, 22 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑏 ∈
𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏 → (∃𝑏 ∈ 𝑎 𝑧 ∈ ( M ‘𝑏) → ∃𝑏 ∈ 𝑎 ( bday
‘𝑧) ⊆
𝑏)) |
24 | 23 | adantl 485 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) → (∃𝑏 ∈ 𝑎 𝑧 ∈ ( M ‘𝑏) → ∃𝑏 ∈ 𝑎 ( bday
‘𝑧) ⊆
𝑏)) |
25 | | elold 33643 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∈ On → (𝑧 ∈ ( O ‘𝑎) ↔ ∃𝑏 ∈ 𝑎 𝑧 ∈ ( M ‘𝑏))) |
26 | 25 | adantr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) → (𝑧 ∈ ( O ‘𝑎) ↔ ∃𝑏 ∈ 𝑎 𝑧 ∈ ( M ‘𝑏))) |
27 | | bdayelon 33568 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ( bday ‘𝑧) ∈ On |
28 | | onelssex 33191 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((( bday ‘𝑧) ∈ On ∧ 𝑎 ∈ On) → ((
bday ‘𝑧)
∈ 𝑎 ↔
∃𝑏 ∈ 𝑎 ( bday
‘𝑧) ⊆
𝑏)) |
29 | 27, 28 | mpan 689 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∈ On → (( bday ‘𝑧) ∈ 𝑎 ↔ ∃𝑏 ∈ 𝑎 ( bday
‘𝑧) ⊆
𝑏)) |
30 | 29 | adantr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) → (( bday ‘𝑧) ∈ 𝑎 ↔ ∃𝑏 ∈ 𝑎 ( bday
‘𝑧) ⊆
𝑏)) |
31 | 24, 26, 30 | 3imtr4d 297 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) → (𝑧 ∈ ( O ‘𝑎) → (
bday ‘𝑧)
∈ 𝑎)) |
32 | 31 | ralimdv 3109 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) → (∀𝑧 ∈ (𝑙 ∪ 𝑟)𝑧 ∈ ( O ‘𝑎) → ∀𝑧 ∈ (𝑙 ∪ 𝑟)( bday
‘𝑧) ∈
𝑎)) |
33 | 17, 32 | syl5bi 245 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) → ((𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎) → ∀𝑧 ∈ (𝑙 ∪ 𝑟)( bday
‘𝑧) ∈
𝑎)) |
34 | 33 | imp 410 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) ∧ (𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎)) → ∀𝑧 ∈ (𝑙 ∪ 𝑟)( bday
‘𝑧) ∈
𝑎) |
35 | 34 | adantrr 716 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) ∧ ((𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎) ∧ 𝑙 <<s 𝑟)) → ∀𝑧 ∈ (𝑙 ∪ 𝑟)( bday
‘𝑧) ∈
𝑎) |
36 | | bdayfun 33564 |
. . . . . . . . . . . . . . 15
⊢ Fun bday |
37 | | ssltss1 33580 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑙 <<s 𝑟 → 𝑙 ⊆ No
) |
38 | | ssltss2 33581 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑙 <<s 𝑟 → 𝑟 ⊆ No
) |
39 | 37, 38 | unssd 4093 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑙 <<s 𝑟 → (𝑙 ∪ 𝑟) ⊆ No
) |
40 | 39 | adantl 485 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎) ∧ 𝑙 <<s 𝑟) → (𝑙 ∪ 𝑟) ⊆ No
) |
41 | 40 | adantl 485 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) ∧ ((𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎) ∧ 𝑙 <<s 𝑟)) → (𝑙 ∪ 𝑟) ⊆ No
) |
42 | | bdaydm 33566 |
. . . . . . . . . . . . . . . 16
⊢ dom bday = No
|
43 | 41, 42 | sseqtrrdi 3945 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) ∧ ((𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎) ∧ 𝑙 <<s 𝑟)) → (𝑙 ∪ 𝑟) ⊆ dom bday
) |
44 | | funimass4 6723 |
. . . . . . . . . . . . . . 15
⊢ ((Fun
bday ∧ (𝑙 ∪ 𝑟) ⊆ dom bday
) → (( bday “ (𝑙 ∪ 𝑟)) ⊆ 𝑎 ↔ ∀𝑧 ∈ (𝑙 ∪ 𝑟)( bday
‘𝑧) ∈
𝑎)) |
45 | 36, 43, 44 | sylancr 590 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) ∧ ((𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎) ∧ 𝑙 <<s 𝑟)) → (( bday
“ (𝑙 ∪
𝑟)) ⊆ 𝑎 ↔ ∀𝑧 ∈ (𝑙 ∪ 𝑟)( bday
‘𝑧) ∈
𝑎)) |
46 | 35, 45 | mpbird 260 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) ∧ ((𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎) ∧ 𝑙 <<s 𝑟)) → ( bday
“ (𝑙 ∪
𝑟)) ⊆ 𝑎) |
47 | | scutbdaybnd 33604 |
. . . . . . . . . . . . 13
⊢ ((𝑙 <<s 𝑟 ∧ 𝑎 ∈ On ∧ ( bday
“ (𝑙 ∪
𝑟)) ⊆ 𝑎) → (
bday ‘(𝑙 |s
𝑟)) ⊆ 𝑎) |
48 | 15, 16, 46, 47 | syl3anc 1368 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) ∧ ((𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎) ∧ 𝑙 <<s 𝑟)) → ( bday
‘(𝑙 |s 𝑟)) ⊆ 𝑎) |
49 | | fveq2 6663 |
. . . . . . . . . . . . 13
⊢ ((𝑙 |s 𝑟) = 𝑥 → ( bday
‘(𝑙 |s 𝑟)) = (
bday ‘𝑥)) |
50 | 49 | sseq1d 3925 |
. . . . . . . . . . . 12
⊢ ((𝑙 |s 𝑟) = 𝑥 → (( bday
‘(𝑙 |s 𝑟)) ⊆ 𝑎 ↔ ( bday
‘𝑥) ⊆
𝑎)) |
51 | 48, 50 | syl5ibcom 248 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) ∧ ((𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎) ∧ 𝑙 <<s 𝑟)) → ((𝑙 |s 𝑟) = 𝑥 → ( bday
‘𝑥) ⊆
𝑎)) |
52 | 51 | expr 460 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) ∧ (𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎)) → (𝑙 <<s 𝑟 → ((𝑙 |s 𝑟) = 𝑥 → ( bday
‘𝑥) ⊆
𝑎))) |
53 | 52 | impd 414 |
. . . . . . . . 9
⊢ (((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) ∧ (𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎)) → ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) → ( bday
‘𝑥) ⊆
𝑎)) |
54 | 53 | ex 416 |
. . . . . . . 8
⊢ ((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) → ((𝑙 ∪ 𝑟) ⊆ ( O ‘𝑎) → ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) → ( bday
‘𝑥) ⊆
𝑎))) |
55 | 14, 54 | syl5 34 |
. . . . . . 7
⊢ ((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) → ((𝑙 ∈ 𝒫 ( O
‘𝑎) ∧ 𝑟 ∈ 𝒫 ( O
‘𝑎)) → ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) → ( bday
‘𝑥) ⊆
𝑎))) |
56 | 55 | rexlimdvv 3217 |
. . . . . 6
⊢ ((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) → (∃𝑙 ∈ 𝒫 ( O
‘𝑎)∃𝑟 ∈ 𝒫 ( O
‘𝑎)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) → ( bday
‘𝑥) ⊆
𝑎)) |
57 | 12, 56 | sylbid 243 |
. . . . 5
⊢ ((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) → (𝑥 ∈ ( M ‘𝑎) → (
bday ‘𝑥)
⊆ 𝑎)) |
58 | 57 | ralrimiv 3112 |
. . . 4
⊢ ((𝑎 ∈ On ∧ ∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏) → ∀𝑥 ∈ ( M ‘𝑎)( bday
‘𝑥) ⊆
𝑎) |
59 | 58 | ex 416 |
. . 3
⊢ (𝑎 ∈ On → (∀𝑏 ∈ 𝑎 ∀𝑦 ∈ ( M ‘𝑏)( bday
‘𝑦) ⊆
𝑏 → ∀𝑥 ∈ ( M ‘𝑎)( bday
‘𝑥) ⊆
𝑎)) |
60 | 7, 10, 59 | tfis3 7577 |
. 2
⊢ (𝐴 ∈ On → ∀𝑥 ∈ ( M ‘𝐴)( bday
‘𝑥) ⊆
𝐴) |
61 | | fveq2 6663 |
. . . 4
⊢ (𝑥 = 𝑋 → ( bday
‘𝑥) = ( bday ‘𝑋)) |
62 | 61 | sseq1d 3925 |
. . 3
⊢ (𝑥 = 𝑋 → (( bday
‘𝑥) ⊆
𝐴 ↔ ( bday ‘𝑋) ⊆ 𝐴)) |
63 | 62 | rspccva 3542 |
. 2
⊢
((∀𝑥 ∈ (
M ‘𝐴)( bday ‘𝑥) ⊆ 𝐴 ∧ 𝑋 ∈ ( M ‘𝐴)) → ( bday
‘𝑋) ⊆
𝐴) |
64 | 60, 63 | sylan 583 |
1
⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ ( M ‘𝐴)) → ( bday ‘𝑋) ⊆ 𝐴) |